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Abstract: We have fabricated planar interdigitated photodetectors exhibiting high responsivity. These
detectors are based on thin layers of methylammonium lead bromide (MAPbBr3) at 90 nm thickness.
MAPbBr3 thin films were first characterized on glass (borosilicate) substrates using absorption and
photoluminescence measurements showing a high absorption edge at 521 nm and strong emission at
530 nm, as expected. MAPbBr3 thin films were then deposited on top of interdigitated electrodes,
hence producing planar photodetectors with responsivity up to 0.4 A/W. Such higher performances
were attributed to the interdigitated design, low crack density (0.05 µm−2), and lower resistivity
(20 MΩ.cm) compared to MAPbBr3 single crystal. Therefore, this work highlights MAPbBr3 thin
films as very promising for photodetection applications.
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1. Introduction

Organic–inorganic hybrid perovskites (OIHPs) thin films based on methylammonium
lead halide materials are widely studied for optoelectronics, including solar cells [1–3],
light-emitting diodes [4], solar concentrators [5], scintillators [6], and photodetectors [7,8],
since they present economical, fast, and easy fabrication processes as solutions [1,4,7,8].
For photodetectors, two designs are mainly studied: the vertical design [9–11] with an
electric field (E-field) perpendicular to the layer and the horizontal design [12] with an
E-field within the plane of the layer. For the horizontal configuration, the application of the
E-field parallel to the substrate prevents short circuits that can potentially happen along the
unavoidable thin-film cracks. Furthermore, it presents the advantage of simpler designs
and processing by depositing the OIHP layers on top of patterned electrodes. For these
reasons, many horizontal photodetectors have been studied for methylammonium lead
iodide (MAPbI3) [13,14], methylammonium lead chloride (MAPbCl3) [15], or methylam-
monium lead bromide (MAPbBr3) [16–23]. For MAPbBr3, horizontal photodetectors have
many advantages like room temperature crystallization and high stability and detection
in the visible range [20–25]. They have been studied with transistor designs [22], micro-
wires [26], single crystals [18,27], and thin films with face-to-face [20,28] or interdigitated
electrodes [23]. In these cases, thin-layer MAPbBr3 has very good properties for photode-
tection since they present perovskite structure with defects or doping, providing efficient
carrier collection for photoconductive applications. For usual layers (without transistor
designs [22]), responsivities are still limited to the maximal value of 55 mA/W [23] due
to inhomogeneous layers [23] and the designs that do not use combs [20,28,29]. Such
limitations can be attributed to the use of very small electrodes or non-homogeneous layers.
Therefore, the development of high-quality MAPbBr3 layers on top of larger electrodes
such as the interdigitated comb design is highly needed to increase the responsivity of such
promising detectors.

In this work, we report the fabrication of planar photodetectors based on 90 nm thick
MAPbBr3 layers. The layers were first characterized using absorption and photolumi-
nescence measurements. Photodetectors based on interdigitated electrode combs were
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then fabricated, with layers presenting low crack density. The spectral dependencies
were measured for different wavelengths. Finally, in order to better understand the mea-
sured responsivity, electrical properties were investigated for different distances between
the electrodes.

2. Materials and Methods

Figure 1a presents the process flow for the fabrication of planar photodetectors. In-
terdigitated combs [30] are first patterned using laser lithography (µPG101, Heidelberg
Instruments, Yokohama, Japan) with a GDS file on a BK7 substrate. A negative photoresist
(AZ5214(En), MicroChemicals) was spin-coated at 3000 rpm and insolated at 50 mJ/cm2

with 60 s development time. Cr/Au (10/300 nm) layers were then coated on top of the
sample by sputtering deposition followed by lift-off processing using acetone. The pe-
riod between the interdigitated electrodes is 8 µm, and the distance is 4 µm. Finally, the
MAPbBr3 thin film was deposited on top of the patterned substrate. MAPbBr3 thin films
were prepared following the anti-solvent method described in [31]. Briefly, 112 mg of
methylammonium bromide (MABr, 99.8%, Sigma Aldrich, St. Louis, MO, USA) powder
and 367 mg of lead bromide (99.999%, perovskite grade, Sigma Aldrich) were dissolved
in 2 mL of anhydrous Dimethylformamide (DMF 98%, Sigma Aldrich), leading to a 0.5 M
solution of MAPbBr3 precursor. In total, 100 µL of that solution was drop-casted on a
microscope coverslip (BK7) at 5000 rpm for 30 s. Five seconds after starting the spin coater,
500 µL of Chlorobenzene (99%, Sigma Aldrich) was injected to enforce the homogeneous
crystallization of the MAPbBr3 thin film. The result is a crystalline thin film with a thickness
of 90 nm measured using atomic force microscopy (AFM).
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This value demonstrates good layer uniformity compared to other works [23]. 

3. Results 
3.1. Perovskite Thin Layers 

Figure 2 presents the optical properties of the studied layers deposited on the BK7 
substrate without electrodes and measured using a spectrofluorometer (Edinburgh Instr., 

Figure 1. (a) Process flow for detector fabrication starting with lithography and metallization,
followed by liftoff and film coating. Top image of fabricated photodetectors (b) after liftoff, (c) after
the perovskite deposition, and (d) during the opto-electrical characterization.

Figure 1b–d present microscopic images of the fabricated photodetectors after the
liftoff (Figure 1b), after coating (Figure 1c), and during electrical measurements (Figure 1d).
As observed in Figure 1c,d, the layers are homogeneous since crack density has been
typically evaluated at only 1 crack every 50 µm in the region of interest. Such linear crack
density between the inter-digitated electrode gives a surface crack density of 0.05 µm−2.
This value demonstrates good layer uniformity compared to other works [23].

3. Results
3.1. Perovskite Thin Layers

Figure 2 presents the optical properties of the studied layers deposited on the BK7
substrate without electrodes and measured using a spectrofluorometer (Edinburgh Instr.,
FS-5, Livingston, UK). Measurements were performed at room temperature. The photo-
luminescence measurement (Figure 2b) shows strong emission peaking at 530 nm with
20 nm full width half maximum. The shoulder peaks at around 550 nm can potentially
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be attributed to active sub-bandgap defects, which are detected at wavelengths as long
as 600 nm [32–34]. For the absorption spectrum (Figure 2a), the absorption exhibits an
exciton peak at 521 nm, as expected from similar MAPbBr3 thin films [35]. No significant
signals were detected for longer wavelengths for both absorption and photoluminescence
measurements.
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Figure 2. Optical properties of a MAPbBr3 thin film on a BK7 substrate with its(a) absorption
spectrum and (b) normalized photoluminescence excited at λexc = 405 nm. (c) AFM measurement
for the MAPBBr3 layer on SiO2 showing low roughness relative to a detected crack and (d) XRD
pattern of the film.

Figure 2c shows the topography of a film measured using Nanosurf Atomic Force
Microscopy (AFM). AFM measurements were performed using Nanosurf-EasyScan2 equip-
ment with a TAP190ALG-10 probe in tapping mode. A crack was observed on the left top
corner, which enabled the determination of a film thickness of ~90 nm. The roughness
value was measured relative to the cracks using Gwyddion software, giving a root mean
square (RMS) value at 2.4 nm. Figure 2d presents the measured X-ray diffraction (XRD) of
such films. A 2θ scan was performed using an AERIS PAN-analytic instrument from 5 to
45◦ and Cu-Kα radiation at λ = 15,406 Å with a step size of 0.0109◦ and counting time of
40 s. XRD measurements confirm the fabrication of a monocrystalline film [36].

3.2. Photodetectors

Current versus voltage (I-V) curves were measured under illumination using a micro-
scope (Eclipse LV100, Nikon), an electrical probe station, and a source/multimeter (2401,
Keithley). In our study, ×10 magnification and a 16 mm working distance were used to
achieve enough distance between the objective and the contacted sample. Light power
P was measured without the sample with a usual power meter. Figure 3a presents the
I-V curves of the sample illuminated with the blue light spectrum presented in Figure 3b.
The lamp spectra were measured using a fiber-coupled spectrometer (USB4000, Ocean
optics), with the fiber replacing the microscope camera. The I-V curves under illumination
were plotted with the colored full lines, and the I-V curve without light was plotted with
black dashed lines. Firstly, we directly observe that almost no current is detected without
light (~1 nA at 1 V), which confirms that the electrodes are not short-circuited. Under
illumination, the current increases with light, and responsivity increases with voltage, as
expected [16–18,20–23].
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The responsivities R at 4 V and 0.125 W/cm2 light excitation intensity have been
extracted for three different wavelength ranges of excitations. The different spectra of
the lamp used for this experiment are presented in Figure 3b–d with the corresponding
responsivities. Responsivity R was calculated using the following formula:

R =
I

P·S , (1)

where I is the detected photocurrent, S is the detector surface (9720 µm2 indicated by the
red dashed line in Figure 1b), and P is the light power density (indicated in the inset of
Figure 3a). The responsivities of 0.4, 0.05, and 0.03 A/W are measured for the spectra
presented in Figure 3b–d, respectively. The influence of the excitation light was also
investigated using long-pass filters placed in front of the detection path, with different
cut-off wavelengths ranging from 400 to 700 nm. We present in Figure 3e the detected
photocurrent as a function of the cut-off wavelength of the long-pass filters at 1 V using
the lamp spectra presented in Figure 3c at 0.125 W/cm2 light excitation intensity. The
non-zero photocurrent detected for a cut-on wavelength at 600 nm is a signature of active
sub-bandgap defects and intrinsic disorder in the Urbach tail of MAPbBr3, defects which
are detected at wavelengths as long as 600 nm [31–34,37].
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In order to better understand the responsivities measured in Figure 3, we have com-
pared the photogenerated currents for different devices. The interdigitated combs with
4 µm distance previously studied (Figure 4a) were compared to face-to-face electrode
pads with a 200 × 200 µm2 surface and distances of L = 45 and 1260 µm (Figure 4b).
Figure 4c presents the averaged current (for a statistic over 10 measurements) as a func-
tion of the excitation light intensity for the three different designs, including interdigitate
electrodes at 1 V polarization. Results are presented on a log scale to capture their full
dynamics. Furthermore, layer resistivity ρ was also extracted from such data using the
following equation:

ρ =
D·e
L

·r , (2)

L is the distance between the electrodes, r is the measured resistance of the MAPbBr3
thin film in between the electrodes, D is the effective width of the electrode (the values of D
are indicated in Figure 4a,b, corresponding to the dashed red lines) and the thickness of
the MAPbBr3 thin film. We found a resistivity of ρ = 25, 1, and 3 MΩ·cm for L = 4, 45, and
1260 µm, respectively.
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4. Discussion

As presented in Figure 3b, the highest responsivity is reported for blue light excitation
since the absorption of the perovskite layer is high in this spectral region (Figure 1b). Fur-
thermore, a higher photocurrent is also detected in Figure 3e for cut-on wavelengths below
500 nm (close to the MAPbBr3 bandgap). The spectral behavior of the photoconductive
devices is thus closely related to the layer’s properties, as expected. For suitable input
light, a maximum responsivity of 0.4 A/W is demonstrated. Such a value is seven times
higher than the highest values reported in the literature so far for similar devices due to
our interdigitate design [20,21] and the better layer uniformity compared to [23].

To further understand such high responsivity, we can compare the different devices
presented in Figure 4. We clearly see that the generated photocurrent is higher with the
interdigitated electrodes (L = 4 µm in Figure 4c) compared to the face-to-face electrodes
(L = 45 and 1260 µm in Figure 4c) given the following responsivities: 0.1, 0.001, and
10−6 A/W for L = 4, 45 and 1260 µm, respectively. Note that the interdigitated responsivity
is lower than the one in Figure 3 because a voltage of only 1 V was used here, giving
a minimum noise equivalent power of 10 nW. Therefore, the generated photocurrent
appears to be highly related to the dark current. The charge collection is thus more
efficient for the interdigitated electrodes compared to the face-to-face electrodes. Such
tests confirm the interest in the interdigitate design. For resistivity (indicated at the top
part of Figure 4c), comb resistivity (L = 4 µm) is higher compared to face-to-face designs
with larger L distances, probably due to the Schottky barriers that have a higher influence
on shorter distances [38]. Since no resistivity has been reported so far for MAPbBr3 thin
films in the literature, we can only compare these values with single-crystal MAPbBr3
values. In this case, resistivity is lower than single crystals that are typically closer to
GΩ.cm [39]. This behavior could be attributed to the higher trap density acting as residual
doping [9,40]. Therefore, this relatively larger dark current (usually associated with a
limitation for photodiode detectors) coming from low resistivity is an advantage here for
responsivity, especially for the interdigitated design. This work thus provides perspectives
on intentional MAPbBr3 doping [41,42] for detector applications.

5. Conclusions

As a conclusion, we have reported the fabrication of photodetectors based on interdig-
itated metallic combs with thin-film MAPbBr3 of 90 nm thickness as active layers. With
respect to the photodetector with comb designs, it exhibits high responsivity up to 0.4 A/W,
which is seven times larger than similar devices from the state of the art in the literature,
with a spectral dependence in good agreement with their optical properties. The highest
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responsivity value was attributed to the comb design, low crack density (0.05 µm−2), and
relatively low resistivity (25 MΩ·cm) probably due to the high trap density, allowing good
charge collection for photodetection. This work thus gives a better understanding of inter-
digitated devices with respect to MAPbBr3 thin films used as active layers and highlights
these thin layers as very promising candidates for the fast fabrication of economical devices
for optoelectronic applications.
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