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Abstract: With the rapid advancement of modern technology and radar detection systems, electro-
magnetic (EM) stealth technology has become increasingly significant, particularly in aircraft stealth
and military radar applications. In this work, an all-metal metasurface is designed for broadband
terahertz radar cross-section (RCS) reduction and infrared invisibility. The all-metal metasurface
possesses extremely low infrared emissivity and high polarization conversion in the terahertz band.
Through the joint simulation of MATLAB and CST, a genetic algorithm is used to optimize the
random phase distribution of 2, 3, and 4-bit metasurfaces, so that the reflected wave is scattered
to achieve broadband terahertz RCS reduction. Simulation results show that the metasurface can
simultaneously achieve broadband terahertz RCS reduction in 3–5 THz and infrared invisibility in
24–38 THz (8–12.5 µm). The RCS reduction of the coding metasurface is greater than 10 dB compared
to the metal plate, and the maximum RCS reduction of the 4-bit metasurface can reach 21.1 dB.
Compared to the traditional design method, the proposed method can reduce time consumption and
find the optimal result to achieve high performance. We believe the proposed method can provide
significant guidance for surface coating in camouflage applications and opens up new possibilities
for improving the information capacity of coding metasurfaces.

Keywords: broadband terahertz RCS reduction; coding metasurface; genetic algorithm

1. Introduction

With the development of science and technology, the application range of EM wave
technology has been expanding [1–3]. Regardless of the underlying mechanism of each
application, all different applications are achieved on the basis of manipulating funda-
mental properties of EM phenomena during their propagation [4]. Recently, artificially
structured metasurfaces have shown flexible manipulation of amplitude, phase, and polar-
ization of EM waves [5–12]. Metasurfaces’ exceptional properties and abilities have made
breakthroughs in many different fields, including stealth technology [13–17], quantum
photonics [18], optical devices [19,20], and even polarization transformation devices [21,22].
Among them, stealth technology is the most important technology for the development
of military power under the condition of informational warfare [23–25]. Radar stealth is
mainly achieved by redirecting the scattering wave to an abnormal direction to reduce the
RCS of the target [26,27]. Infrared stealth is mainly in the wavelength range of 3–14 µm,
and is achieved by reducing the infrared emissivity of the object’s surface [28–30].

Recently, various building blocks are presented to construct metasurfaces for RCS
reduction and infrared invisibility [31,32]. In 2019, Pedersen‘s team realized a structure in
which a reflective antenna and a lens are coated on the absorbing material unit. Compared
with the traditional reflective array antenna, wideband RCS reduction on checkerboard
metasurfaces with dual resonance and surface wave suppression was implemented by Kim
et al. in the same year [33]. The proposed structure increases the high frequency of the
−10 dB RCS reduction from 14.9 to 16.32 GHz. At the same time, Xie et al. proposed a new
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method of using a heat-resistant all-metal metasurface as a new thermal infrared stealth [34].
The designed metasurface has strong EM wave manipulation ability. In order to further
improve the EM control ability of metasurfaces, the team of Cui proposed the concept of
‘coding metamaterials’, which can regulate electromagnetic waves by digital coding of
units [35]. The digital coding metasurface is a new type of metasurface, which brings a fancy
perspective on the connection between physics and information science [36–40]. In 2021,
Cao’s group presented a design method using simple patches with a non-resonant mode to
achieve broadband phase-gradient metasurfaces of a reflective type [41]. A design example
of a reflective RCS reduction structure with a −10 dB bandwidth of 5.3–18 GHz is given
to prove the efficiency of the method. Qi et al. proposed a high-efficiency reflective-type
coding metasurface using the PB phase concept in the same year. The designed metasurface
structure can arbitrarily manipulate the scattering mode of terahertz waves and realize
many novel functions [42]. However, most of the metasurface devices at home and abroad
can only work in a single frequency band. The research on metasurfaces that can achieve
stealth in dual-band remains to be developed.

In this paper, an all-metal metasurface is designed for broadband terahertz RCS
reduction and infrared invisibility. Through the joint simulation of MATLAB and CST,
a genetic algorithm is used to optimize the random phase distribution of 2, 3, and 4-bit
metasurfaces. The coding metasurface is composed of 20 × 20 unit structures with a PB
phase, and the PB phase is controlled by 2, 3, and 4-bit of coding elements. In the frequency
range of 3–5 THz, the RCS reduction of the coding metasurface is greater than 10 dB
compared to the metal plate, and the maximum RCS reduction of the 4-bit metasurface
can reach 21.1 dB. By comparing the 2, 3, and 4-bit coding sequences, it is shown that the
higher the randomness of the PB phase of the structure, the better the RCS reduction. At
the same time, the designed metasurface has low emissivity in the infrared band and has
a good infrared stealth function. This method opens up new possibilities for improving
the information capacity of coding metasurfaces and paves the way for further research on
terahertz radar and infrared stealth technology.

2. Materials and Methods
2.1. Methods of RCS Reduction

RCS represents the echo intensity generated by a target object when it is detected by a
radar’s transmitted EM waves. RCS reduction can be achieved by controlling the amount
of EM energy reflected in various directions using the coding elements of a metasurface.
Under normal incidence of a plane wave, the far-field pattern function of the coding
metasurface can be expressed as follows:

f (θ, ϕ) = fe(θ, ϕ)
N

∑
m=1

N

∑
n=1

exp
{
−i
{

ϕ(m, n) + kp sin θ

[(
m− 1

2

)
cos ϕ +

(
n− 1

2

)
sin ϕ

]}}
(1)

In the given context, fe(θ, ϕ) represents the far-field function of the unit structure,
where θ and ϕ are the elevation angle and azimuth angle in any given direction, respectively.
ϕ(m, n) represents the reflection phase of the unit at (m, n) position. k = 2π/λ denotes the
propagation constant, where λ is the wavelength. Additionally, p signifies the period of the
unit structure. The directivity function Dir(θ, ϕ) of the metasurface is expressed as

Dir(θ, ϕ) =
4π| f (θ, ϕ)|2(∫ 2π

0

∫ π
2

0 | f (θ, ϕ)|2 sin θdθdϕ
) (2)

During the design process, the cross-polarization reflection of the unit structure re-
mains relatively consistent across all coding elements. However, the PB phases of the
structural units associated with different coding elements are different, resulting in dif-
ferent phase differences. The scattering characteristics of two basic unit structures with
a phase difference of 180◦ can be eliminated. From Equations (1) and (2), it can be seen
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that the scattering characteristics of metasurfaces can be controlled by different sequences
of coding units. Therefore, the EM wave incident on the coding metasurface scatters in
multiple directions within space by optimizing the coding sequence. It can achieve RCS
reduction to the greatest extent.

2.2. Multi-Bit Coding Metasurface

Figure 1a illustrates the schematic diagram of the coding metasurface, which is com-
prised of a 20 × 20 array of elements. Each individual array element contains a basic unit
structure represented by a multi-bit element. This multi-bit element is composed of ‘0’
and ‘1’ elements, and their distribution within the array is randomized. The unit structure
diagram of the metasurface is shown in Figure 1b,c. The structure consists of a metal plate
with a thickness of t = 0.5 µm and a C-shaped split ring with a height of h = 20 µm. The
opening angle of the C-shaped split ring is 115◦. Both the metal plate and the C-shaped split
ring are made of copper, with a conductivity of 5.96 × 107 S/m. Other detailed parameters
of the unit structure are included p = 60 µm, R1 = 26 µm, and R2 = 18 µm. The unit structure
is simulated in CST with a frequency range of 3–5 THz. The boundary conditions in the x,
y, and z directions are set as open. The background distances along the z direction (both the
upper and lower z distance) are set as 300 µm. A circular polarized light is applied in the
simulation. The results of the reflection are shown in Figure 1d. The black dot-line diagram
represents the reflection of cross-polarization, and the red dot-line diagram represents
the reflection of co-polarization. It can be seen from the figure that the cross-polarization
reflection of the unit structure largely exceeds 87% in the frequency range of 3–5 THz,
which has a high conversion efficiency. Meanwhile, the co-polarization efficiency is very
low. This shows that the unit structure has good wavefront control ability.
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Figure 1. (a) Schematic of the proposed multi-bit coding metasurface. (b) The unit structure of
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co-polarization reflection amplitude of the unit structure in the terahertz band. (e) The reflection
amplitude distribution of the unit structure in the infrared band.
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In addition, since the designed metasurface is composed of all-metallic materials, the
structure also exhibits low infrared emission performance and can be used to wrap over
an object to render it free from thermal infrared detection. This additional functionality is
verified by CST simulation software. Other settings are consistent with the terahertz band,
except for the frequency band. The unit structure is simulated in CST with a frequency
range of 24–38 THz (8–12.5 µm). The result is shown in Figure 1e. The results demonstrate
that the reflectivity of the structure exceeds 96% within the range of 24–38 THz. Because the
metasurface has a metal substrate of sufficient thickness, its transmittance can be ignored.
According to the principle of energy conservation, the sum of absorptivity, reflectivity,
and transmittance is 100%. Therefore, the metasurface has a very low absorption in the
infrared band. Based on Kirchhoff’s law [43], low absorption represents low emissivity.
The bandwidth of 24 to 38 THz is part of the atmospheric window of infrared radiation.
The extremely low emissivity in this band means that the designed metasurface cannot be
recognized by passive infrared monitoring equipment.

3. Results and Discussion
3.1. Design of Coding Metasurface

The electromagnetic wave modulation characteristics of coding metasurfaces are
closely related to their phase distribution. The phase distribution of multi-bit coding
metasurfaces is diverse. It is challenging to find the coding metasurface with the best
scattering effect from these phase distributions, which requires researcher experience
and a significant amount of time and effort. Therefore, we proposed a convenient and
automatic design approach to optimize the phase distribution of the coding metasurface,
which is achieved by joint simulation of CST and MATLAB. First, the parameters of
the unit are continuously optimized to meet the requirements in CST. Then, the coding
elements of different bits are obtained by changing the phase of the optimized unit. Finally,
MATLAB is used to control the generation of random coding elements and simulate them
in CST. The coding metasurface is composed of 20 × 20 unit structures, that is, its size
is 1.2 mm × 1.2 mm. The frequency is set to 3–5 THz in the simulation. The boundary
conditions in the x, y, and z directions are set as open (add space). The background
distances along the z direction (both the upper and lower z distance) are set as 300 µm.
We set up probes and far-field monitors to observe RCS results. Considering the actual
test environment, linear polarized light is applied in the simulation. The whole process
uses the genetic algorithm to optimize the coding sequence until the optimal solution
is obtained. The genetic algorithm, first proposed by Professor John in 1992 [44], is a
global optimization algorithm inspired by the natural evolution of organisms. It serves
as a computational model that simulates Darwin’s theory of biological evolution. The
fundamental concept revolves around the principle of “survival of the fittest” where
each generation strives to outperform the previous one. This is achieved through the
basic processes of selection, crossover, and mutation. The selection method employed is
tournament selection. The underlying principle is to choose a specific number of individuals
from the population in each round. The individual with the highest fitness value is
selected to enter the offspring population. This process is repeated multiple times to
generate a new offspring population. For crossover, the simplest method, known as single-
point crossover, is used. A random position is selected, and the information of the two
parent individuals is swapped after that position. Mutation, on the other hand, involves
randomly selecting a location and making random changes to the information at that
location. We demonstrate the specific process in Figure 2a. By utilizing computer simulation
and mathematical methods, the algorithm transforms the problem-solving process into a
procedure resembling biological evolution. In the case of solving complex combinatorial
optimization problems, the genetic algorithm often yields superior optimization results at
a faster pace compared to conventional optimization algorithms.
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Figure 2. (a) Flow chart of the whole design. (b) Coding elements corresponding to 2, 3, and 4-bit phases.

Figure 2a illustrates the flow chart of the whole design employed in this paper. The
design concept of this randomly coding metasurface is as follows: firstly, an all-metal
C-shaped split ring was proposed through optimization design and simulation. Secondly,
the cross-polarization reflection phase within the range of 3–5 THz was selected as the
reference. Next, the genetic algorithm was applied to optimize the coding matrix of the
metasurface in order to obtain the optimal solution for diffuse scattering characteristics.
Based on the aforementioned approach, the coding elements of different bits serve as
the population for the genetic algorithm, with its diffusion characteristics used as the
fitness. The coding elements are obtained by the geometric phase of the control unit, and
the corresponding relationship is shown in Figure 2b. From Figure 2b, it is evident that
2-bit corresponds to 4 coding elements, 3-bit corresponds to 8 coding elements, and 4-bit
corresponds to 16 coding elements. The phase of each bit’s coding element ranges from
0 to 2π. Since the phase angle is twice the rotation angle, the rotation angle only needs to
cover π. Based on the unit structure with a phase of 0, the unit structure corresponding to
the current coding element is obtained by rotating the unit structure corresponding to the
previous coding element by π/16.

The metasurface can be regarded as an M × N matrix, where M and N represent the
number of units along the x-axis and y-axis, respectively. In the simulation, the values of
M and N are both set to 20. To enhance the design of broadband RCS reduction devices,
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the population size is set to 40, the crossover probability ranges from 0.7 to 0.9, and the
mutation probability ranges from 0.001 to 0.05. Each population contains 20 individuals.
The interval from −30 to −46 dB, with a −2 dB increment, is divided into 8 sub-intervals.
Additionally, the frequency range of 3–5 THz is divided into 1001 frequency points. The
frequency points within the RCS result interval are represented as N1 to N8. That is to say,
the number of frequency points with RCS values from −30 to −32 dB is recorded as N1,
and the number of frequency points with RCS values from −32 to −34 dB is recorded as
N2, and so on, until N8. The number of frequency points with RCS values less than −46 dB
is recorded as N9. The fitness function for the population is determined by obtaining the
value of Equation (3).

value = N1 × 1 + N2 × 3 + N3 × 5 + N4 × 7 + N5 × 9 + N6 × 11 + N7 × 13 + N8 × 15 + N9 × 17 (3)

The coefficient in Equation (3) represents the weight of Ni. We add different coefficients
to Ni to obtain a reasonable fitness function. Reasonable fitness functions can improve the
performance of genetic algorithms. The termination criteria for the population are based on
the average fitness becoming equal to the maximum fitness and maintaining this consistency
for two consecutive generations. If the condition is met, the coding sequence and RCS value
associated with the optimal solution are outputted. On the contrary, the current population
is abandoned and a new population is generated. The relevant parameters of the new
population are calculated through the processes of selection, crossover, and mutation. This
cycle continues until the optimal solution is found.

3.2. Simulation and Analysis of Coding Metasurface

To investigate the scattering characteristics of the metasurface, we conducted simu-
lations using CST for five types of different metasurfaces at 4 THz, including the metal
plate, a 4-bit random coding metasurface, and three 4-bit fixed coding metasurfaces. The
simulation results are presented in Figure 3. Figure 3a shows the RCS results of five types
of different metasurfaces, in which three different sequences of 4-bit fixed coding meta-
surfaces are designed to illustrate the following conclusion. From Figure 3a, we can see
that the RCS of all fixed coding sequence metasurfaces is significantly lower than that of
the metal plate, and the RSC reduction is above 5 dB. Compared with the fixed coding
sequence, the RCS result of the random coding sequence metasurface is generally lower
and the reduction is more obvious. Compared with the metal plate, the RCS reduction
of the random coding metasurface is greater than 10 dB. The local schematic and phase
distribution of each metasurface are shown in Figures 3b–f and 3g–k, respectively. The
horizontal and vertical coordinates of the phase distribution diagram represent the Nth unit
on the x-axis and the y-axis, respectively. It more vividly illustrates the specific structure of
each metasurface. Since there is no structure on the metal plate, its phase distribution is 0.
The phase distribution of the three 4-bit fixed coding metasurfaces is to arrange the sixteen
coding elements of 4-bit from 0 to 2π, where each element is repeated once, twice, and
three times, respectively. The phase distribution of the 4-bit random coding metasurface is
optimized by a genetic algorithm.

We present three-dimensional scattering maps of the aforementioned five metasurfaces
at 4 THz to gain a deeper understanding of the diffusion behavior. As shown in Figure 3l–p,
we can observe distinct differences among the five structures. In the case of the metal plate,
a clear main lobe is evident in the reflected wave. In 4-bit fixed coding metasurfaces, light
is mainly scattered in several fixed directions, which has poor scattering characteristics.
Obviously, in the case of the 4-bit random coding metasurface, there is almost no prominent
main lobe in the reflected wave, and the energy in each beam direction is significantly
reduced. The polar diagrams in Figure 3q–u provide a quantitative representation of the
RCS reduction, which further illustrates the scattering characteristics. It can be seen from
the diagram that the scattering direction of the metal plate is concentrated in the mirror
direction, and the RCS is larger than the other four groups of data. The scattering direction
of the 4-bit fixed coding metasurfaces begins to increase and the RCS decreases. The
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4-bit random coding metasurface exhibits substantial suppression in all scattering levels,
particularly in the mirror direction, when compared to other types of metasurfaces. At the
same time, its RCS reaches the minimum. Based on these observations, we can conclude
that the genetic algorithm-optimized coding metasurface demonstrates a more pronounced
RCS reduction compared to the other metasurface types.
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Based on the above analysis, it can be concluded that the RCS reduction of the random
phase distribution coding metasurface is superior to the fixed phase distribution. Therefore,
we have conducted an optimization of the random phase arrangement for 2–4 bit coding
metasurfaces. Due to the vast number of possible random phase distributions, it is chal-
lenging to manually find the coding metasurface with the best RCS reduction. This requires
leveraging the joint simulation-based design method mentioned above and using genetic
algorithms to obtain the optimal fitness function value for the random phase distribution,
given the initial population. In the process of using a genetic algorithm to optimize the
metasurface, the fitness curve fully proves the reliability of the results. For the optimal
process, a server with an Intel(R) Core(M) CPU I9-10900X @3.70 GHz (10 cores, 20 threads)
and 128 GB memory was employed. Figure 4a–c illustrate the evolutionary process of the
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fitness function in the 2, 3, and 4-bit random coding metasurfaces. For the 2-bit coding
metasurface, the optimal solution was achieved in the 9th generation. The 3-bit coding
metasurface reached the optimal solution in the 10th generation. The 4-bit coding metasur-
face realized the optimal solution in the 8th generation. According to the result of running
the program, the time consumption for the program to evolve one individual is 0.25 h; that
is, the one-generation process only takes 5 h. It can be observed that the average fitness of
the population gradually increases under the influence of the genetic algorithm. When the
average fitness becomes equal to the maximum fitness and this fitness value is maintained
for two consecutive generations, the program terminates. It guarantees the optimality and
stability of the output results. Upon completion of the loop, the program generates a CST
file containing the optimized metasurface structure and the corresponding RCS results.
The phase distribution of the metasurface can be digitized and displayed more clearly by
using the generated CST file. Figure 4d–f display the distribution of the metasurface coding
matrix, which has been optimized using the genetic algorithm. The coding sequence of the
metasurface is controlled by altering the PB phase of the unit structure through rotation.
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We designed the 2, 3, and 4-bit random coding metasurfaces and simulated and
evaluated the RCS reduction and corresponding scattering effects, as depicted in Figure 5.
It further illustrates the effectiveness of the proposed method. In Figure 5a, we observe
that the RCS reduction of the 2, 3, and 4-bit random coding metasurfaces exceeds 10 dB
compared to the metal plate, and the maximum RCS reduction of the 4-bit metasurface
can reach 21.1 dB. Moreover, we note that the RCS of the 4-bit random coding metasurface
is generally lower than that of the 3-bit metasurface, which, in turn, exhibits lower RCS
than the 2-bit metasurface. Figure 5b,c show the local structure diagrams of the 2, 3, and
4-bit random coding metasurfaces. Moreover, Figure 5e–g also present the scattering maps
at 4 THz for the 2, 3, and 4-bit random coding metasurfaces. In the three-dimensional
scattering diagrams, the scattering level of the 2, 3, and 4-bit random coding metasurfaces
is significantly limited. Furthermore, with the increase of bit, the scattering direction is
more uniform. In particular, the scattering direction of 4-bit is significantly larger than
that of 2-bit; multiple scattering beams are visible in the upper space. Figure 5h–j provide
a more detailed illustration of the scattering characteristics of 2, 3, and 4-bit random
coding metasurfaces. We can see that the scattering direction of the 2-bit random coding
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metasurface is less than that of the other two, and the RCS is the largest. An increase in
bit will lead to an increase in the scattering level of the metasurface and a decrease in RCS.
This observation suggests that the RCS reduction improves as the number of bits in the
coding matrix increases, along with the randomness of the coding sequence.
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We conducted the simulations to investigate the scattering patterns of 4-bit coding
metasurfaces at different frequency points to illustrate the broadband capability of RCS
reduction. Figure 6 presents the three-dimensional scattering diagrams, showcasing the
reflection of incident waves in various directions at different frequencies. This phenomenon
leads to the emergence of numerous side lobes with reduced energy, resulting in significant
scattering suppression. Additionally, the polar diagrams in Figure 6 provide a quantitative
description of the scattering characteristics at different frequency points. This representa-
tion effectively demonstrates the broadband stability of the metasurface’s RCS reduction,
illustrating its capability to reduce scattering over a wide frequency range. Moreover, the
diffusion behavior of the scattering field can be clearly observed over this wide frequency
range, emphasizing the metasurface’s ability to mitigate scattering in diverse directions.
Consequently, the designed random coding metasurface exhibits excellent RCS reduction
effects across a broad frequency band.

In order to further characterize the broadband performance of the random coding
metasurface, this work is compared with some previous works in the working frequency
band. The comparison is shown in Table 1. We can see from Table 1 that the frequency
range of this article is 2 THz, while the frequency range of other references does not exceed
1 THz. The relative bandwidth reaches 50%, and this parameter can be further enhanced
by optimizing the unit structure to expand the operating frequency range in low frequency.
The minimum RCS reduction of the designed coding metasurface is greater than 10 dB
in the whole frequency band, and the maximum RCS reduction can reach 21 dB. The
characterizations demonstrate the broadband feature of coding metasurfaces designed by
co-simulation with a genetic algorithm.
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Table 1. Comparison with other references.

References Frequency Range
(THz) Relative Bandwidth RCS Reduction

Liang [45] 0.7–1.3 60% 18 dB (max)
Li [46] 0.7–1.45 70% 27 dB (max)

Zhang [47] 1.0–1.2 18% 13 dB (max)
Li [48] 0.6–1.6 91% 29 dB (max)

Zhou [49] 1.2–2.3 63% 20 dB (max)
This work 3–5 50% 21 dB (max)

The above results are obtained at specular reflection directions. Then, we discuss the
output spectra under oblique incidence at 4 THz. The RCS reductions in the observation angles
of 0◦, 20◦, 40◦ and 60◦ at 4 THz are plotted in Figure 7a. We can clearly observe scattering dips
when the observation angles equal the incident angles (i.e., the specular reflection directions).
The scattered fields at the other observation angles are still small, which confirms the excellent
scattering behavior. From the scattering diagram of Figure 7b–i, the specular reflection is
smaller than that of other observation angles, and the RCS reductions at all directions are
larger than 10 dB. The above results confirm that our metasurface has great RCS suppression
properties in wide incidence angles. In this design, the height of the split ring resonator
is 20 µm and the feature size of the pattern is 8 µm, which makes the fabrication of the
multifunctional coding metasurface difficult. Due to the limitations of fabrication and testing
conditions, the coding metasurface has not been fabricated. However, we can provide a
feasible fabrication plan here. The pattern of the metasurface can be achieved using mask
lithography on the scale of a micrometer. Considering that the thickness of the unit structure
is too large, the metal structure cannot be obtained through IBE etching after lithography.
We can first fabricate the split ring resonator of silicon. The silicon split ring resonator can
be fabricated combined with mask lithography and ICP etching to obtain a height of nearly
20 µm. Then, the sample is coated with a layer of copper seed for the electroplating process,
and a layer of copper is electroplated above the silicon structure. Finally, we can obtain the
all-metal multifunctional coding metasurface.
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4. Conclusions

This work presents the design of an all-metal metasurface based on the theory of
coding metasurfaces, aiming to achieve broadband terahertz RCS reduction and infrared
invisibility. A genetic algorithm is used to optimize the coding sequence of random
metasurfaces through the joint simulation of MATLAB and CST. The high performance and
short design time of the metasurface are realized compared with the traditional metasurface
design method. In this paper, 2, 3, and 4-bit coding metasurfaces are designed by using
the above method. In the frequency range of 3–5 THz, simulation results demonstrate that
the RCS reduction of the coding metasurface is greater than 10 dB when compared to the
metal plate, and the maximum RCS reduction of the 4-bit metasurface can reach 21.1 dB.
Comparative analysis of the 2, 3, and 4-bit coding sequences reveals that higher randomness
in the PB phase of the structure leads to improved RCS reductions. Furthermore, the
proposed unit structure exhibits low emissivity in the infrared band, rendering it effective
for infrared stealth applications. This method opens up new possibilities for improving
the information capacity of coding metasurfaces and paves the way for further research on
cross-band stealth technology. We believe the proposed method can provide significant
guidance for surface coating in conformal camouflage applications.
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