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Abstract: Down-sampling Fourier single-pixel imaging is typically achieved by truncating the Fourier
spectrum, where exclusively the low-frequency Fourier coefficients are extracted while discarding
the high-frequency components. However, the truncation of the Fourier spectrum can lead to an un-
desired ringing effect in the reconstructed result. Moreover, the original Fourier single-pixel imaging
necessitated grayscale Fourier basis patterns for illumination. This requirement limits imaging speed
because digital micromirror devices (DMDs) generate grayscale patterns at a lower refresh rate. In
order to solve the above problem, a fast and high-quality Fourier single-pixel imaging reconstruction
method is proposed in the paper. In the method, the threshold binarization of the Fourier base pattern
is performed online to improve the DMD refresh rate, and the reconstruction quality of Fourier
single-pixel imaging at a low-sampling rate is improved by generating an adversarial network. This
method enables fast reconstruction of target images with higher quality despite low-sampling rates.
Compared with conventional Fourier single-pixel imaging, numerical simulation and experimen-
tation demonstrate the effectiveness of the proposed method. Notably, this method is particularly
significant for fast Fourier single-pixel imaging applications.

Keywords: Fourier single-pixel imaging; online modulation pattern binarization; deep learning

1. Introduction

Single-pixel imaging is a computational imaging method that enables image acqui-
sition and capture using a single-pixel detector without the use of an array sensor [1–3].
Compared with array sensors, the benefits of a single-pixel detector are its quick reaction
time, excellent sensitivity, and wide operating band [2]. Therefore, single-pixel imaging
has attracted wide attention and has been used in terahertz imaging [4,5], 3D imaging [6,7],
multispectral imaging [8,9], image encryption [10], target tracking [11–13], polarization
imaging [14,15], underwater imaging [16,17], remote sensing [18,19], and other fields.

However, single-pixel detectors do not have spatial resolution capability. For single-
pixel imaging, spatial light modulation and spatial information encoding-decoding meth-
ods are critical. Specifically, encoding refers to the use of a spatial light modulator to
modulate the laser’s spatial distribution using different patterns decoding refers to obtain-
ing the reconstructed result with the reconstruction algorithm. To improve the performance
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of single-pixel imaging, Fourier single-pixel imaging and single-pixel imaging with Gao–
Boole patterns [20] have been sequentially proposed. These techniques aim to improve
the quality of target image reconstruction in single-pixel imaging by using deterministic
patterns instead of random patterns. The quality of image reconstruction is substantially
enhanced by Fourier single-pixel imaging (FSPI) [21–25], which employs the Fourier basis
patterns for spatial light modulation to obtain the Fourier spectrum of the target. The
quality and efficiency of image reconstruction are both important for FSPI. However, nu-
merous single-pixel measurements result in a longer data gathering process, which slows
down imaging speed. Digital micromirror devices that modulate grayscale patterns have a
low-refresh rate, and the Fourier single-pixel imaging method based on grayscale patterns
in lighting is likewise constrained by the imaging speed.

In order to achieve fast speed and high-quality imaging results at a low-sampling rate,
fast Fourier single-pixel imaging via a generative adversarial network (F2SPI-GAN) is pro-
posed in the paper. The method consists of two parts: Fourier basis patterns, binarization,
and reconstruction. In the paper, the online modulation of grayscale Fourier base pattern
binarization is adopted. Binarization Fourier basis patterns are obtained by binarizing
the fixed threshold value of the grayscale Fourier basis patterns. The purpose of online
modulation binarization is to save DMD memory and improve system performance and
program stability. The decoding results are reconstructed by the generative adversarial
network based on deep learning. The use of this method effectively reduces the ringing
impact of the rebuilt results and ensures that high-quality results may be quickly recreated
with a low-sampling rate. The generator of F2SPI-GAN uses an improved encoder and
decoder as the primary network architecture. The network has a double-skip connection
in between the encoding layer and the decoding layer, while one of the skip connections
has an attention block added to it to enhance the network’s ability to be reconstructed.
The choice of using a convolutional neural network as the discriminator is to guide and
supervise the image generation process of the generator in the proposed method. The
input of the generator is the under-sampled image obtained by projecting the binarized
Fourier basis patterns, and the output is the reconstructed image. Numerical simulation
and experimental consequences show that the image reconstructed by the F2SPI-GAN
method has higher quality, higher generation ability, and fast speed imaging efficiency. The
proposed F2SPI-GAN is applicable for fast, high-quality imaging at low-sampling rates.

In general, the contribution of this study is mainly in three aspects:

(1) The binarization Fourier basis pattern is used to replace the grayscale Fourier basis patterns
to improve the modulation speed of DMD and realize fast Fourier single-pixel imaging.

(2) The F2SPI-GAN method is proposed to obtain high-quality reconstruction results, in
which the generator adopts double-skip connections between corresponding layers
and adds an attention block to each skip connection.

(3) Numerical simulation and experimentation demonstrate the effectiveness of the pro-
posed method. The F2SPI-GAN method can achieve fast and high-quality imaging
at a low-sampling rate. This work speeds up the application process for Fourier
single-pixel imaging.

2. Related Work
2.1. The Method of Fourier Basis Pattern Binarization

To enhance Fourier single-pixel imaging effectiveness, researchers proposed spectrum
under-sampling [26] and Fourier basis pattern binarization [27–29] to improve the speed of
FSPI. Spatial frequency under-sampling in FSPI refers to acquiring only the low-frequency
component and discarding the high-frequency component. Fourier basis pattern binariza-
tion refers to converting grayscale patterns into binarization pattern illumination, which
is mainly divided into the following three methods: spatial dithering strategy [27], signal
dithering strategy [28], and improved error diffusion jitter algorithm [29].

The spatial jitter strategy is based on upsampling and error diffusion jitter to binarize
the Fourier basis patterns. The process of upsampling is necessary because it can introduce
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additional pixels into the pattern and therefore eliminate quantization errors due to dither-
ing to some extent. Imaging spatial resolution is sacrificed because additional physical
pixels are required to represent pattern pixels. Under their 20,000 Hz DMD projection rate
of 10 frames per second, they capture a dynamic scene of 256 × 256 pixels. To a certain ex-
tent, it speeds up the image acquisition speed of FSPI. However, the spatial jitter algorithm
comes at the expense of spatial resolution. In addition, generating high-resolution images
causes the DMD to load the Fourier basis pattern and occupy more memory.

The signal dithering strategy is a technique aimed at enhancing the imaging efficiency
of FSPI by employing a detected signal that is computationally weighted through binary
pattern illumination using a DMD. Using DMD at a projected rate of 22 KHz, 9 frames
per second capture a 128 × 128 pixel dynamic scene. Compared with the spatial dithering
strategy, this method can improve the speed of DMD-based Fourier single-pixel imaging
without sacrificing spatial resolution. The technology based on the signal jitter algorithm
involves a balance between temporal resolution and spatial resolution but still cannot meet
the high-speed and high-resolution imaging requirements.

The improved error diffusion jitter algorithm method uses two sets of binarized Fourier
basis patterns for spatial light modulation. Each set of patterns is determined by using a
different scanning strategy without upsampling. The two images are synthesized to even
out the noise caused by the dithering. The method can therefore reconstruct a high-quality,
full-resolution, and full-FOV image. For the improved error diffusion dithering algorithm,
although it can satisfy full resolution and high-quality fast Fourier single-pixel imaging, it
is still difficult to reconstruct high-quality images at a low-sampling rate.

2.2. Reconstruction Network

The researchers proposed Fourier single-pixel imaging based on deep learning to
further enhance the reconstruction quality at a low-sampling rate. Deep convolutional
autoencoder networks and generative adversarial networks are two instances of Fourier
single-pixel imaging based on deep learning [25,30].

The deep convolutional autoencoder network is a type of neural network architecture
used for unsupervised learning and image reconstruction tasks. It consists of two main
parts: an encoder and a decoder. The deep convolutional autoencoder network learns
end-to-end between the under-sampled image and the real image through symmetric skip
connections. However, it cannot meet the requirements of larger resolution and faster
imaging speed.

Drawing inspiration from the generative adversarial network, researchers introduced
an approach called Fourier single-pixel imaging via the generative adversarial network.
This model incorporates perceptual loss, pixel loss, and frequency loss into the total loss
function, which effectively preserves intricate details in the target image. Consequently,
the proposed model can achieve high-quality target image reconstruction directly from the
FSPI measurements. By leveraging this innovative model, high-quality FSPI reconstruction
results can be obtained even under low-sampling rate conditions. Although this method
has achieved good results, the network model parameters of the architecture are too large.
When deploying models, long inference times and large memory usage can lead to failure
to meet the response requirements.

In order to enhance the imaging quality and imaging speed of Fourier single-pixel
imaging, researchers have conducted related research and promoted the development
of Fourier single-pixel imaging technology. However, it is still difficult to reconstruct
high-quality images at high speed with a low-sampling rate. Therefore, one of the issues
that has to be conquered is the speedy reconstruction of images of excellent quality at
low-sampling rates.
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3. Method
3.1. Forward Imaging Model

Figure 1 illustrates the schematic diagram of the Fourier single-pixel imaging system.
The laser beam emits light, which is then expanded by the beam expander. Then, the
spatial distribution of the light is modulated by the spatial light modulator according to
the computer-controlled binarization Fourier basis patterns. The DMD-modulated laser
passes through a 50–50% beam splitter (BS), altering its path, and then goes through the
transmitting antenna to illuminate the target scene. The receiving antenna gathers and
concentrates the illumination that is reflected from the target scene onto the single-pixel
detector. The entire light intensity is measured by the data acquisition system (DAS), which
then uses a USB connection to send the data to the computer for image reconstruction.
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In conventional FSPI, grayscale Fourier basis patterns are employed for illumina-
tion, with each pattern being sinusoidal. These grayscale Fourier basis patterns can be
represented by their spatial frequency (fx, fy) and initial phase ϕ:

Pϕ(x, y) =
1
2
+

1
2
· cos

(
2π fxx + 2π fyy + ϕ

)
(1)

Among them, the two-dimensional Cartesian coordinates are represented by x and y,
while fx and fy correspond to the spatial frequencies along the x and y axes, respectively. ϕ
is phase. To streamline the derivation process, it is assumed that the light intensity of the
laser illumination on the modulator is uniform and is represented by S0. The modulated
laser is illuminated on the target object, and its distribution is denoted by S(x,y).

S(x, y) = Pϕ(x, y)S0 (2)

After the Fourier basis pattern is irradiated on the target object, the optical signal
intensity is detected by the single-pixel detector. The measured light intensity value of the
single-pixel detector is expressed as:

Zϕ

(
fx, fy

)
= Zn + v

x
U(x, y)S(x, y)dxdy (3)

Zn represents the noise term. U(x,y) is the reflectance of the object. The factor v
is associated with the magnification of the single-pixel detector. Spatial frequencies of
(fx, fy) and beginning phases of 0, π/2, π, and 3π/2 are irradiated on the target object in
accordance with the four-step phase-shifting methodology to get the Fourier spectrum
T(fx, fy) corresponding to the spatial frequency of (fx, fy). Therefore, the single-pixel detector
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can measure 4 light intensity values D0, Dπ/2, Dπ, and D3π/2 at each spatial frequency.
Fourier spectrum T(fx, fy) with frequency (fx, fy) can be calculated as follows:

T( fx, fy) =
[
Z0( fx, fy)− Zπ( fx, fy)

]
+ j

[
Zπ/2( fx, fy)− Z3π/2( fx, fy)

]
= v·F{R(x, y)} (4)

Here j represents an imaginary unit, and F{R(x,y)} denotes the Fourier transform of
R(x,y). By performing an inverse Fourier transform on the equation mentioned above, the
image of the reflective object can be reconstructed.

In order to speed up imaging, the paper adopts a binary pattern to approximate
grayscale pattern lighting, which can be expressed as:

Bϕ(x, y) = α +
2
π

∞

∑
n=1

sin(αnπ)

n
cos

(
n
(
2π fxx + 2π fyy

)
+ ϕ

)
(5)

Here α is impact factors and threshold values. The value of a is 0 to 1. As a result, the
binary pattern distribution S(x,y) illuminating the target object can be expressed as:

S′(x, y) = Bϕ(x, y)S0 (6)

After the binarization Fourier basis pattern is irradiated on the target object, the optical
signal intensity is detected by the single-pixel detector. The measured light intensity value
of the single-pixel detector is expressed as:

Z′ϕ
(

fx, fy
)
= Zn + v

x
U(x, y)S′(x, y)dxdy (7)

Therefore, the single-pixel detector can measure 4 light intensity values D0, Dπ/2, Dπ,
and D3π/2 at each spatial frequency. Fourier spectrum T(fx, fy) with frequency (fx, fy) can be
calculated as follows:

T′( fx, fy) =
[
Z′0

(
fx, fy

)
− Z′π

(
fx, fy

)]
+ j

[
Z′π/2

(
fx, fy

)
− Z′3π/2

(
fx, fy

)]
(8)

where j is an imaginary unit. By substituting the four light intensity values into Equation
(9), we can further simplify it and obtain the expression for T(fx, fy):

T′( fx, fy) =
4
π
·v· sin(απ)·F{R(x, y)}+ 1(

fx fy
)2 F{R∗(0, 0)}

∞

∑
n=2

sin(αnπ)

nπ
(9)

In order to reduce the influence of binarization Fourier basis patterns on imaging
quality, the result derived from Equation (9) should be close to Equation (4). Because the
second term of Equation (9) is an unavoidable error term. Therefore, the previous term
of Equation (9) is approximated by Equation (4). Because the gray Fourier base pattern is
normalized, the threshold is selected in the range (0, 1), and the α value is calculated as 0.29
or 0.71.

Due to the conjugate symmetry of the Fourier spectrum, there is no need to sample the
symmetry coefficients. According to conjugate symmetry, it takes 2×M×N measurements
to fully sample an object image with M × N pixels. However, for fast Fourier single-
pixel imaging, full sampling requires a large number of measurements, and longer data
acquisition times cannot meet the requirements of efficient imaging. Because the circle
sampling strategy [25] has achieved good results, the system adopts the circle sampling
strategy with a 1~3% sampling rate. However, when the sampling rate is low, the resulting
image may lose detailed parts of the image and have a significant ringing effect. The use
of binarization Fourier basis patterns instead of grayscale Fourier basis patterns will also
reduce the quality of the image. In order to achieve fast and high-quality imaging at a
low-sampling rate, it is necessary to reconstruct the under-sampling intensity image of the
target scene using a reconstruction algorithm. After further reconstruction processing, a
high-quality reconstructed image is finally obtained.
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3.2. Network Architecture

The network architecture, denoted as F2SPI-GAN, is illustrated in Figure 2. The
network comprises two main parts: the generator network G and the discriminator network
D. The primary objective of the generator network G is to produce an image that closely
resembles the real image, while the discriminator network D aims to distinguish between
generated images and real images.
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Generator: The proposed generator in Figure 2a is inspired by an encoder-
decoder [30–33] structure. The input to the generator is an under-sampled image with a
resolution of 256 × 256 and a number of channels of 1. The main function of the encoder
is to extract image features, and the main function of the decoder is to recover the feature
image. Among them, the encoder extracts the feature, structure, and content information
of under-sampled images by using convolutional layers. The encoder consists of 6 2D
convolution layers and 4 max-pooling layers. Each convolutional layer is followed by a
ReLU activation function. The max-pooling layer is used to remove redundant information
and simplify network complexity. After down-sampling by the encoder, a feature map
with 2048 channels and a resolution of 4 × 4 is obtained. However, as the network layers
deepen, some characteristics and details of the input signal may be lost. To address this
issue, a skip connection is introduced in the reconstructed network. Unlike conventional
skip connections, an attention block is incorporated into the skip connection path to filter
noise and retain important features. The decoder obtains a 32-channel feature map with
256 × 256 resolution by upsampling. The final output is obtained by applying a 2D con-
volution with a kernel size of 1 × 1 and a stride of 1 to the feature map. Furthermore, to
enhance the recovery of details, a skip connection path [33] is introduced, connecting the
corresponding layers of the encoder and decoder. This double-skip connection facilitates
the smooth flow of information between the encoder and decoder, leading to improved
reconstruction results.

Discriminator: The structure of the discriminator is shown in Figure 2b. The role
of the discriminator is to improve the reconstruction performance of the generator. The
discriminator is composed of 9 2D convolutional layers, 4 batch normalization layers, and
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one fully connected layer. Among them, convolutional layers are used to extract features.
The batch normalization layer accelerates convergence, improves stability, and acts as a
form of regularization in deep neural networks. The fully connected layer converts the
output of the 9 convolutional layers into a one-dimensional feature vector output. In this
way, it is easy to achieve the purpose of discrimination.

Attention Block: Figure 2c shows the structure diagram of the attention block. Here,
the two corresponding inputs correspond to the down-sampling layer of the encoder and
the up-sampling layer of the decoder, respectively. The two are added pixel by pixel,
followed by the ReLU activation function and 1 × 1 convolution, and then the attention
coefficient γ is calculated by the sigmoid activation function. Then, multiply with the up-
sampling layer of the decoder to obtain the output. Because the fine-grained information in
the encoder is relatively large, a lot of it is redundant and unnecessary. The attention block
is equivalent to filtering the current layer of the encoder, suppressing irrelevant information
in the image, and highlighting the local medium-important features.

Double-skip connections: The double-skip connections consist of two connections: the
concatenation connection and the element-wise add connection.

1. Concatenation Connection: The introduction of concatenation connections serves
two primary objectives. Firstly, as the network’s depth increases, there is a risk of
losing intricate image details, which might not be easily recoverable through the
deconvolution process alone. The feature maps transferred via the concatenation
connections hold valuable detail information that aids the deconvolution process
in producing more accurate and clear reconstructions. Secondly, when employing
gradient-based backpropagation during training, the concatenation connections con-
tribute to smoother and more efficient training dynamics. This promotes better
convergence and improved training stability.

2. Element-wise Add Connection: The integration of element-wise addition connections
proves highly beneficial, particularly due to the important analogous characteristics
shared by the input and output layers. This configuration results in a discernible
enhancement in performance compared to a similar network lacking element-wise
added connections. Furthermore, these connections effectively mitigate the van-
ishing gradient problem that can arise during training, leading to a more effective
optimization process and improved overall training performance.

3.3. Loss Function of F2SPI-GAN

The loss function is used to measure the difference between the original image and
the network reconstructed image. To enhance performance, the total loss function of the
generator during training is determined by the weighted sum of perceptual loss, pixel loss,
and adversarial loss. The perceptual loss is computed based on the VGG19 [34] network,
which serves as a pre-trained network model. The perceptual loss is described as follows:

Lpercepyual = ‖ fvgg19(qg)− fvgg19(q)‖2
2 (10)

The pixel loss is described as follows:

Lpiexl = ‖qg − q‖2
2 (11)

qg represents the reconstruction image obtained from the network, while q denotes the
target image. In addition, fvgg19 is the network trained by VGG19.

The adversarial loss is expressed as follows:

Ladversarial = Ei∼Pi(i){log[D(G(i))]} (12)
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In the equation, E represents the expected value of the distribution function, i denotes
the input of the network model, Pi(i) represents the data distribution of i, and G(i) represents
the output of the generator. Therefore, the total loss can be expressed as follows:

Ltotal = µLLperceptual + νLLpixel + ωLLadversarial (13)

In the proposed network model, the values of µ, ν, and ω are 0.006, 1, and 0.001,
respectively. The optimizer employs Adam to optimize the loss function. The proposed
network model is implemented on an RTX 3090 GPU (NVIDIA Corporation, Santa Clara,
California, United States) using Tensorflow version 1.15.

Specifically, the weighting coefficient ν for Lpixel is set to 1, reflecting its critical role
in guiding the network model to accurately reconstruct images based on pixel-level in-
formation. On the other hand, the loss functions Lperceptual and Ladversarial are assigned
complementary weighting coefficients µ and ω, respectively, to control their impact on the
training process. The values of µ and ω are chosen as 0.006 and 0.001, respectively. These
coefficients strike a balance between leveraging perceptual information and incorporating
adversarial training while maintaining the primary focus on pixel-level accuracy.

4. Numerical Simulations and Experimental Results
4.1. Dataset Preparation and Training Process

The training process utilizes a dataset of car images [35], which includes 196 classes of
cars with a total of 16,185 images. From this dataset, 13,185 images are randomly selected
to form the training set, while the remaining 3000 images constitute the testing set. Each
image in the dataset has dimensions of 256 × 256 pixels.

The sampling rates represented by a, b, and c in Figure 3 are 1%, 2%, and 3%, re-
spectively. Figure 3a depicts the loss curve using a sampling rate of 1%, while Figure 3b
illustrates the loss curve employing a sampling rate of 2%. Additionally, Figure 3c portrays
the loss curve with a sampling rate of 3%. As the number of epochs increases, the total
loss function steadily decreases. Moreover, a higher sampling rate leads to a more rapid
decline in the loss function. When the number of epochs exceeds 70, the loss function
curve stabilizes, indicating that the network has converged to an optimal state, fulfilling
the training objectives.
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4.2. Binarization Threshold Selection Verification

In the theoretical analysis, the optimal threshold is 0.29 or 0.71. In order to prove that
the threshold is binarized into the most appropriate threshold, the following simulation
experiments are carried out. After normalization of the grayscale Fourier basis patterns,
different thresholds were used for binarization, which were selected between 0.01 and 0.09
with an interval of 0.01, where the sampling rate is set to 5%. The circle sampling strategy
was chosen as the sampling strategy. The top half of Figure 4 refers to the simulation
reconstruction results of different thresholds, while the bottom half is the simulation
reconstruction results of the space dithering strategy (SPDS), signal dithering strategy
(SGDS), improved error diffusion jitter algorithm (DGA), and conventional Fourier single-
pixel imaging (FSPI) method, respectively.
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According to the upper part of Figure 4, it can be seen that at a 5% sampling rate,
the quality of the pictures obtained by using different threshold simulations varies greatly.
Among them, when the threshold is chosen at 0.5, the reconstructed image quality is the
worst. When the threshold is small or large, the reconstructed image is visually low in
brightness. When the threshold is 0.4 or 0.6, the visual effect of the image is improved
compared with other thresholds. When the threshold value is 0.3 or 0.7, the visual effect
is the best, and the reconstructed image is closest to the grayscale Fourier basis pattern
reconstruction. The lower part of Figure 4 illustrates the reconstruction results of different
binarization methods and conventional Fourier single-pixel imaging. Visually, it can be
seen that SPDS has the worst reconstruction. The images reconstructed by SGDS look
smoother. The simulation reconstruction result of DGA is closer to the traditional Fourier
single-pixel imaging method. By comparing the other three binarization methods, it is
found that when the threshold is 0.3 or 0.7, the simulation reconstruction results can achieve
similar results to the conventional Fourier single-pixel imaging method.

In order to quantitatively compare the reconstruction quality with different thresholds,
1000 images were selected for the numerical simulation test. The sampling rate is fixed at
5%. The sampling strategy utilized is the circle sampling strategy. The average peak signal
to noise ratio (PSNR) and structural similarity (SSIM) values of all intensity images were
computed. The indices calculated for the images in the test set are shown in Figure 5.

PSNR = 10× log10

(
M2

MSE

)
(14)
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M is the maximum possible pixel value (usually 255 for an 8-bit image). MSE is
the mean squared error between the original and reconstructed images, calculated as the
average of the squared pixel-wise differences.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(15)

x and y are the original and reconstructed images, respectively. and y are the mean
pixel values of x and y. σx

2 and σy
2 are the variances of x and y. σxy is the covariance

between x and y. c1 and c2 are constants to prevent instability when the denominator is
close to zero.

Figure 5 shows that when the threshold is chosen from 0.01 to 0.09, the average SSNR
and SSIM of the image are approximately M-shaped, and both are symmetric about 0.5. It
can be seen from the figure that the threshold of 0.29 or 0.71 is the best for both PSNR and
SSIM metrics. In summary, it can be concluded that the optimal threshold is 0.29 or 0.71
after theoretical and simulation analysis. Considering the real experimental situation, if
the threshold is 0.71, the grayscale Fourier base pattern is greater than the threshold and
set to 1, and less than the value is set to 0 to obtain the binarization Fourier basis pattern.
Compared with the threshold value of 0.29, when the threshold value is 0.71, the number 1
is small, the light intensity value is small, and the ability to suppress background light is
weak. Therefore, 0.29 is selected as the threshold value.

4.3. Numerical Simulations of F2SPI-GAN

The paper uses the same dataset to train images with different sample rates. Three
different network models are trained for the numerical simulation, and each model cor-
responds to a different sampling rate of 1%, 2%, and 3%, respectively. A circle sampling
strategy was used in the sampling process. The car dataset was used to train all three
network models, which all share the same network architecture. Figure 6 shows the image
reconstruction results with different methods and different sampling rates. The numerical
simulation reconstruction results for SPDS are shown in the first column. The SGDS numer-
ical simulation reconstruction results are shown in the second column. The DGA numerical
simulation reconstruction results are shown in the third column. The fourth column shows
the numerical simulation reconstruction results of the conventional FSPI method, while the
fifth row demonstrates the reconstruction results obtained using the F2SPI-GAN network
proposed in the paper.
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From Figure 6, it is evident that the sampling rate significantly affects the quality of
vehicle reconstruction. The SPDS reconstruction results are consistently the worst at any
sampling rate, particularly at a sampling rate of 1%, where the overall outline of the car is
barely discernible. For SGDS and DGA, although the reconstruction quality has improved,
there are still noticeable blurring and ringing effects. While the image quality reconstructed
by FSPI improves slightly with increasing sampling rates, these results still lack substantial,
detailed information. In comparison, the proposed method exhibits superior image recon-
struction clarity at any sampling rate, with minimal observable ringing artifacts. The visual
results obtained using this method surpass those of other FSPI methods significantly.

In order to quantitatively evaluate the reconstruction performance of the proposed
method and other methods, a test experiment was carried out. A total of 3000 images that
did not appear during training make up the test set. The average PSNRs and SSIMs of the
results of each method’s reconstruction are shown in Figure 7. It is shown in the figure
that the SPDS method is represented in red. The SGDS method is shown in green. The
DGA method is shown in blue. The orange is the conventional FSPI method. The proposed
method in the paper is represented by the purple color. The sampling rate shows up in the
figure’s horizontal coordinates. It is clear that when the sample rate rose, the performance
metrics of all approaches got better. It is noteworthy that the approach proposed in the
paper obtains the best results when compared to other methods at the same sample rate, as
shown by the PSNR and SSIM indices.
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To further validate the network model’s generalization ability beyond the car dataset,
the paper includes testing with a sailboat image and a bird image from other natural
scenes. As can be seen from Figure 8, the images reconstructed by SPDS are the worst
visually and in terms of indicators. SPDS, DGA, and conventional FSPI improve the image
quality visually and in terms of indicators, but there is still an obvious ringing effect. After
evaluating the proposed method at different sampling rates, it is clear that the method
successfully addresses the ringing artifacts that occur at low-sampling rates. Additionally, it
surpasses other methods in terms of evaluation metrics. The findings highlight the efficacy
of applying the network model trained on the automobile dataset to reconstructing other
images. Therefore, the proposed method demonstrates strong generalization ability and
can be readily employed in various real-world applications.

4.4. Real-World Experiments

The real experiment is shown in Figure 1. The laser used in the experiment is the OEM-
I-532, The OEM-532-1 is manufactured by Changchun NEW INDUSTRY PHOTOelectric
Technology Co. LTD. Their headquarters is located in Changchun, China. The beam
diameter at the position where the laser is emitted is 10 mm. The wavelength of the laser is
in the range of 531 and 533 nm. The laser was extended by a beam expander (BE02–05-A).
The BE02–05-A is manufactured by Thorlabs Inc. Their headquarters is located in Newton,
New Jersey, in the United States. The extended light shines in the modulation region of
the DMD (V-7001). The DMD has a maximum refresh rate of 22,000 Hz, a reflectivity
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of 88%, and a resolution of 1024 × 768. The threshold binarization method is used to
binarize the Fourier basis patterns, and the size of the Fourier base pattern is 256 × 256.
The DMD is utilized to modulate the laser distribution by employing a pre-generated
binarized Fourier base pattern. The optical antenna collects the light reflected from the
target, which is then detected by the H11706P-01 detector. The H11706P-01 detector is
manufactured by HAMAMATSU Photonics. Their headquarters is located in Hamamatsu,
Japan. The detector is linked to a data acquisition card (M4X.440-X4) that records the
overall light intensity. The data acquisition card has two channels with a sampling rate of
500 MS/s. The resolution of the data acquisition card is 14 or 16 bits. The target spatial
spectrum is acquired using the four-step phase shift method based on the experiment.
The under-sampled reconstruction result is achieved after the IFT operation. The final
reconstructed image is obtained by feeding the findings of the reconstruction into the
pre-trained network model.
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A ‘bear’ doll model is chosen as the target scene to demonstrate the effectiveness of
the proposed. The experimental scenario was performed under dark conditions. The exper-
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iment compares the proposed method to different methods. The results of the experiment
align with the results of the numerical simulation, as seen in Figure 9. It can be observed
that when the sampling rate advances, the quality of each method of reconstruction also
increases. The reconstruction results of SPDS at different sampling rates are obviously
blurred. The reconstruction results of SGDS and DGA, as well as the conventional FSPI,
come with obvious ringing effects. The FSPI reconstruction’s image quality is enhanced by
the F2SPI-GAN method, which can also get rid of the ringing effect. The refresh rate of the
DMD is set to 2000 Hz so that the imaging quality and the imaging efficiency are combined.
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In addition, in order to verify the fast Fourier single-pixel imaging method under
low-sampling rates, the experimental imaging time with a sampling rate of 2% was quan-
titatively calculated. The sampling strategy used is a circle sampling strategy. The test
platforms are Intel(R) Xeon(R) Gold 6330 CPU and RTX3090, as shown in Table 1. The first
column represents different methods, the second column IDAQ represents data collection
time, the third column IIFT represents inverse Fourier transform time, the fourth column
IRES represents algorithm reconstruction time, and the fifth column IT represents the total
system imaging time. The table shows that the reconstruction time of the method pro-
posed in the paper is significantly shorter than that of SGDS, DGA, and conventional FSPI.
Although the reconstruction time is the same as SPDS, the image quality is much better.

Table 1. Experimental imaging time.

Method IDAQ IIFT IRES IT

SPDS 1.311 s 4 ms / 1.314 s
SGDS 7.864 s 4 ms / 7.868 s
DGA 2.621 s 4 ms / 2.625 s
FSPI 9.039 s 4 ms / 9.043 s
Ours 1.311 s 4 ms 14 ms 1.329 s

5. Discussion

This study focuses on enhancing the imaging efficiency of Fourier single-pixel imaging,
thereby reducing the data acquisition time and enabling rapid reconstruction of the target
scene with high-quality results. In the method, the grayscale Fourier basis pattern is
binarized with a fixed threshold and modulated online into a binarized Fourier basis
pattern. The reconstruction quality can be further improved by reconstructing the network
at a low-sampling rate.

The experimental results show that the binarization Fourier single-pixel imaging
method proposed in the paper can effectively improve image quality. The reconstructed
image has higher fidelity than the original scene. Irradiation with binarized Fourier base
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patterns allows for faster data acquisition. In order to further improve the image quality, the
under-sampled image is reconstructed through the F2SPI-GAN network. This makes it an
alternative to conventional Fourier imaging methods. Binarization of Fourier single-pixel
imaging has important potential in many applications. Such as 3D imaging, underwater
imaging, and other areas.

In conclusion, the utilization of binarization Fourier single-pixel imaging can sig-
nificantly enhance the practical implementation of Fourier single-pixel imaging. It will
promote the development of Fourier single-pixel imaging.

6. Conclusions

In summary, this study proposes fast Fourier single-pixel imaging, which yields high-
quality reconstruction results quickly at low-sampling rates. The method uses the idea of
binarization and aims to make the DMD quickly load the binarized Fourier basis pattern.
In the F2SPI-GAN model, the generator adopts an encoder-decoder structure and adds an
attention block. This can enhance the quality of the reconstructed image and effectively
reduce the ringing effects. The car dataset was selected to train the network model, and the
trained model can quickly achieve high-quality reconstruction at a low-sampling rate. In
numerical simulations and experiments, the results of the traditional FSPI are compared.
The F2SPI-GAN model can shorten imaging times, remove ringing in the event of under-
sampling, and enhance imaging quality. In numerical simulations and experiments, other
target image types are chosen to evaluate the network model’s generalizability. The
results demonstrate that the model may be used to reconstruct other natural images after
being trained on the car image dataset. The method has strong generalizability and can
quickly generate high-quality reconstruction results at low-sampling rates, which provides
a method for fast Fourier single-pixel imaging.
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