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Abstract: Due to its high precision, phase-shifting interferometry (PSI) is a commonly used optical
component detection method in interferometers. However, traditional PSI, which is susceptible to
environmental factors, is costly, with piezoelectric ceramic transducer (PZT) being a major contributor
to the high cost of interferometers. In contrast, two-frame random interferometry does not require
precise multiple phase shifts, which only needs one random phase shift, reducing control costs
and time requirements, as well as mitigating the impact of environmental factors (mechanical
vibrations and air turbulence) when acquiring multiple interferograms. A novel method for wavefront
reconstruction using two-frame random interferometry based on Swin-Unet is proposed. Besides,
improvements have been made on the basis of the established algorithm to develop a new wavefront
reconstruction method named Phase U-Net plus (PUN+). According to training the Swin-Unet and
PUN+ with a large amount of simulated data generated by physical models, both of the methods
accurately compute the wrapped phase from two frames of interferograms with an unknown phase
step (except for multiples of π). The superior performance of both methods is effectively showcased
by reconstructing phases from both simulated and real interferograms, in comprehensive comparisons
with several classical algorithms. The proposed Swin-Unet outperforms PUN+ in reconstructing the
wrapped phase and unwrapped phase.

Keywords: wavefront reconstruction; deep learning; phase-shifting interferometry

1. Introduction

PSI is one of the most popular techniques in optical metrology [1], known for its high
robustness and accuracy. Traditional PSI require multiple interferograms with fixed and
known phase shifts [2–4], but acquiring interferograms is time-consuming and susceptible
to adverse effects from mechanical vibrations, environmental turbulence, and temperature
variations. Therefore, it is desirable to minimize the number of interferograms. However,
single-frame interferometry for wavefront reconstruction requires additional prior infor-
mation for phase ambiguity. Takeda et al. [5] proposed a Fourier transform-based method
that introduces a large spatial carrier frequency by adding significant tilt to the testing
object or reference surface, which allows separating the phase from other information in
the frequency domain. However, the method is not suitable for interferograms with closed
fringes and suffers from fringe densification due to high tilt. Ge et al. [6] specified the
concavity and convexity of the phase and were able to recover a monotonic phase from a
single interferogram with closed fringes. The concavity or convexity of the phase is difficult
to determine. Different from single-frame interferometry, two-frame random interferometry
effectively solves the phase ambiguity problem and provides better reconstruction accu-
racy, which introduces an unknown phase step between the two frames of interferograms,
significantly reducing detection costs and shortening capture time compared to traditional
phase-shifting interferometry. In comparison, two-frame random interferometry achieves
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a good balance between capturing time and reconstruction accuracy, which has received
extensive research attention.

Kreis et al. [7] proposed a Fourier transform-based two-frame interferometric phase-
shifting wavefront reconstruction, known as the Kreis method, which demodulated the
phase from two frames of interferograms without introducing sign ambiguity. The original
Kreis method does not consider the pre-filtering process, making it sensitive to noise in
practical applications. Vargas et al. [8] proposed a two-frame reconstruction method based
on regularized optical flow (OF), which calculated the motion direction of fringes from the
two frames of interferograms, applying the spiral phase transform to one interferogram
to obtain the wrapped phase and combing it with the fringe motion direction map to
eliminate sign ambiguity. But OF requires subtracting the direct current (DC) component
of interferograms in advance. Vargas et al. [9] proposed another self-tuning (ST) two-frame
phase-shifting method that did not need to know the phase-step between interferograms,
by which the quadrature filter was tuned sequentially at a predetermined discrete set of
frequencies within [0, 2π], and the reconstructed wrapped phase was obtained. ST method
requires subtracting the DC component in interferograms before wavefront reconstruc-
tion. Besides, Vargas et al. [10] proposed a two-frame reconstruction method based on
Gram–Schmidt (GS) orthogonalization. GS method demodulates the wrapped phase by
treating the interferograms as independent vectors, which has the advantages of high
efficiency and accuracy but also requires subtracting the DC component in advance.

In recent years, with the development of artificial neural networks, the typical U-
shaped convolutional neural network U-Net [11] has been proposed and applied to biomed-
ical image segmentation, consisting of a symmetric encoder–decoder with skip connections.
The convolution in U-Net has local restrictions and does not effectively utilize global
information until many layers of convolution are performed. Inspired by the tremen-
dous success of Transformers in natural language processing (NLP), researchers have
attempted to introduce Transformers into the field of computer vision (CV), Liu et al. [12]
proposed Swin Transformer for image recognition tasks, whose self-attention mechanism
has a natural advantage in extracting global information. Inspired by Swin Transformer,
Cao et al. [13] proposed Swin-Unet for medical image segmentation, combining U-Net with
Swin Transformer and achieving higher image segmentation accuracy.

The remarkable achievements of deep learning in CV activated researchers to explore
its application in optical metrology. Different from traditional “physical based” approaches,
deep learning-supported optical metrology is based on “data-driven” principles. The field
of optical metrology has been developed inspired by the achievement of deep learning,
such as enhancement [14], denoising [15–17], and phase unwrapping [18–21]. Li et al. [22]
proposed a two-frame reconstruction method based on the Phase U-Net (PUN) accurately
estimating the wrapped phase from two frames of interferograms. PUN requires nor-
malization of the interferograms, offering higher accuracy compared to other two-frame
reconstruction methods. To reach the higher precision requirements of reconstructing the
wrapped phase in two-frame random interferometry and further improving the reconstruc-
tion accuracy, we propose a new two-frame reconstruction method inspired by PUN [22]
and Swin-Unet [12], which just require normalization of the interferograms in advance.
Concretely, our contributions can be summarized as follows: (1) Swin-Unet has been con-
structed for wavefront reconstruction from two-frame phase-shifting interferograms, which
only needs one random phase shift, reducing control costs and time requirements, as well
as mitigating the impact of environmental factors; (2) PUN+, based on original PUN, has
been proposed, which includes the development of a bilinear interpolation operation for
up-sampling, eliminating the need for transpose convolution, also ReLU has been applied
in final convolution layer without Softmax or ELU. Experimental results have confirmed
the effectiveness of these changes; (3) Simulations and experiments indicate that both of
the two proposed methods have superior performance than other traditional methods and
deep learning method (PUN) in wavefront reconstruction.
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2. Methods
2.1. The Process of Proposed Method

As shown in the blue part of Figure 1a, the proposed method reconstructs the wrapped
phase from two randomly shifted interferograms. During network training, as shown in
the green part, it involves solving the mean squared error (MSE) loss between the predicted
results and the ground truth, and computing gradients for backpropagation. The model
parameters are then adjusted and optimized through the adaptive moment estimation
(ADAM) optimizer. During network testing, only the blue part is needed, and the green part
is not used. Figure 1b illustrates the unwrapped phase being recovered from the wrapped
phase by the unwrapping algorithm (”unwrap” function in the MATLAB R2018b [22]).

(a)

(b)

Figure 1. The workflow of two-frame PSI based on Swin-Unet; (a) the blue part represents wrapped
phase prediction stage, whose input is two frame of interferograms with random step, the green part
is Swin-Unet parameters update stage, where Swin-Unet weights are updated by computing MSE
between the predicted wrapped phase and the ground truth; (b) the blue part is unwrapping stage,
the unwrapping algorithm is used to recover the unwrapped phase.

2.2. Theoretical Background

Two-frame random phase-shifting interferometry obtains two-frame interferograms
by altering the optical path difference between the reference wavefront and the testing
wavefront [23]. The expressions for the intensity of the two obtained interference patterns
are as follows:

I1(x, y) = a(x, y) + b(x, y) cos[ϕ(x, y)] (1)

I2(x, y) = a(x, y) + b(x, y) cos[ϕ(x, y) + δ] (2)
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where, I1(x, y) and I2(x, y) represent the intensity of the original and phase shifting in-
terferograms, respectively, at the coordinate point (x, y), a(x, y), and b(x, y) represent DC
component and modulation component, respectively. ϕ(x, y) represents the phase of the
testing wavefront at the coordinate point (x, y), and δ represents the random phase step
(except for 0 and π rad). Accurately generating the original phase ϕ(x, y) is crucial in
simulations, and Zernike polynomials [24] play a key role in this process.

Zernike polynomials are a sequence of orthogonal and linearly independent polynomi-
als defined on the unit circle. The orthogonality of the Zernike polynomials, enabling them
to represent any square-integrable function within the unit disk, allows the coefficients of
different polynomials to be independent of each other, which is advantageous in eliminating
interference from accidental factors. In addition, Zernike polynomials and Seidel aberration
coefficients can be easily correlated. Thus, any continuous arbitrary shape of the wavefront
can be represented by a linear combination of Zernike polynomials [25], whose coefficients
can be calculated using methods such as least squares fitting [26], Gram–Schmidt [27] and
cubic B-spline [28]. The expression for the original phase ϕ(x, y) generated by Zernike
polynomials is as follows:

ϕ(ρ, θ) =
L

∑
r=0

ZrUr(ρ, θ) (3)

where L is the coefficient of the highest-order term, Zr represents the Zernike coefficients
for each term, and Ur represents the Zernike polynomials, whose expression is as follows:

Un−2m
n (ρ, θ) = Rn−2m

n (ρ)

[
sin
cos

]
(n − 2m)θ (4)

where ρ represents the vector length between the coordinate point (x, y) and the origin
point, and θ represents the angle between the vector and projection in the x-axis. When
(n − 2m) > 0, sin[(n − 2m)θ is used, and when (n − 2m) < 0, the cos[(n − 2m)θ is used.
Polynomial Rn−2m

n (ρ) is as follows:

Rn−2m
n (ρ) =

m

∑
s=0

(−1)s (n − s)!
s!(m − s)!(n − m − s)!

ρn−2s. (5)

The expression for the continuous orthogonality of Zernike polynomials is as follows:

∫ 1

0

∫ 2π

0
Ul

n(ρ, θ) · Uk
m(ρ, θ)ρdθdρ =

{
0 (n = m, l = k)

π
2(n+1) δnmδlk (n ̸= m l ̸= k) (6)

where Ul
n(ρ, θ) and Uk

m(ρ, θ) represent Zernike polynomials.
To visualize that Zernike polynomials can accurately represent continuous wavefront

shapes, we measure and analyze the plane mirror by ZYGO GPI-XP/D4 laser interferometer
and software Metro Pro® Version 8.3.5 [29] to obtain the real phase map. Figure 2a,b shows
the real phase map and phase map generated by Zernike polynomials, respectively.

After the original phase is generated, the wrapped phase is computed as the corre-
sponding ground truth for the network. The wrapped phase ϕw represents the phase angle
of the original phase, which can be calculated by the MATLAB R2018b function ”angle” [18],
and then can be mapped directly to the target interval [−π/2, π/2].

ϕw = angle[exp(jϕ)] (7)
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(a) (b)

Figure 2. (a) Real phase map, (b) phase map generated by Zernike polynomials.

2.3. The Architecture of Neural Networks
2.3.1. PUN+

Based on the inspiration from PUN and the original U-Net, we have developed a
PUN+ framework depicted in Figure 3, which comprises three main components: the
left-side feature extraction network, the right-side feature fusion network, and the bridging
network in the middle.

Figure 3. The architecture of PUN+, whose orange boxes correspond to multi-channel feature maps,
gray-dotted boxes represent copied feature maps. The number of channels is on top of the box and
the feature map size is denoted at the lower left edge of the box.

The left-side feature extraction network consists of four convolution blocks, each
containing two sets of 3 × 3 convolutions, batch normalization, and rectified linear unit
(ReLU) activation. Additionally, a downsampling layer using max pooling is included.
Batch normalization accelerates network convergence and mitigates overfitting.

The right-side feature fusion network consists of four convolution blocks and an
upsampling layer. The upsampled feature maps are combined with multi-scale feature
maps from the left-side network through skip connections. The purpose of the feature
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fusion is to compensate for the loss of spatial information during downsampling. Different
from PUN and U-Net, we utilize the bilinear interpolation for upsampling. Estimating the
pixel value at the target coordinates based on the surrounding pixel values and relative
position enables image upscaling, and bilinear interpolation maintains the smoothness and
details of the image to some extent which achieves a good balance between computational
cost and scaling accuracy, compared to other interpolation algorithms.

The bridging network in the middle comprises a single convolution block that connects
the left-side and right-side networks. Different from the original U-Net and PUN employing
softmax and ELU activations in the output layer, respectively, PUN+ proposed employs
ReLU activation to predict the wrapped phase. The output pixel values of the network
image are expected to fall within the range [0, 1], allowing for direct mapping to the
target range [−π/2, π/2]. Since ReLU activation produces only positive values and has no
negative output, we can ensure the network’s output remains within the desired range by
applying a suitable threshold.

For training, PUN+ employs the MSE loss function which measures the difference
between the predicted phase and the ground truth.

2.3.2. Swin-Unet

The Swin-UNet architecture, shown in Figure 4, is a Transformer-based network
inspired by U-Net, which consists of an encoder, bottleneck, decoder, and skip connections,
and comprises 12 Swin Transformer blocks.

The encoder consists of a linear embedding layer, three sets of two consecutive Swin
Transformer blocks, and a patch merging layer. The input image is divided into non-
overlapping patches of size 4 × 4, with each patch having a feature dimension of 32. The
linear embedding layer projects the patch features to a specified dimension, generating
patch tokens. The tokenized patches, with a resolution of H

4 × W
4 , undergo feature repre-

sentation learning by two consecutive Swin Transformer blocks. The Swin Transformer
blocks maintain the feature dimension and resolution. Simultaneously, the patch merging
layer downsamples the patches by a factor of 2× and reduces the resolution to H

8 × W
8 . The

process is repeated three times.
The decoder comprises Swin Transformer blocks and a patch-expanding layer. The

patch-expanding layer performs 2× upsampling, expanding the feature map from a resolu-
tion of H

32 ×
W
32 to H

16 ×
W
16 while halving its dimension. Similar to U-Net, the output features

from the patch expanding layer are fused with multi-scale features from the encoder
through skip connections, mitigating spatial information loss caused by downsampling.
The final patch expanding layer uses 4× upsampling to restore the feature map resolution
to the original (W × H) while maintaining the same dimension. A linear projection layer is
applied to generate pixel-level predictions.

The encoder, bottleneck, and decoder are interconnected, with the bottleneck consist-
ing of two consecutive Swin Transformer blocks that preserve the feature map’s dimension
and resolution. Figure 4 illustrates the details of two consecutive Swin Transformer blocks.
Each block includes a layer normalization (LN) layer, a window-based multi-head self-
attention (W-MSA) model, a shifted window-based multi-head self-attention (SW-MSA)
model, residual connections, and a multi-layer perception (MLP). W-MSA incorporates
window partitioning into the conventional multi-head self-attention (MSA), while SW-MSA
additionally incorporates window shifting operations. Using this window partitioning
mechanism, two consecutive Swin Transformer blocks can be represented as follows:

ẑl = W-MSA
(

LN
(

zl−1
))

+ zl−1, (8)

zl = MLP
(

LN
(

ẑl
))

+ ẑl , (9)

ẑl+1 = SW-MSA
(

LN
(

zl
))

+ zl , (10)

zl+1 = MLP
(

LN
(

ẑl+1
))

+ ẑl+1 (11)
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where zl+1 and zl are outputs of MLP, and ẑl and ẑl+1 are outputs of W-MSA and SW-MSA,
respectively.

Refer to reference [12], the expression for the self-attention mechanism is as follows:

Attention(Q, K, V) = So f tMax
(

QKT
√

d
+ B

)
V (12)

where Q, K, V ∈ RM2×d, Q, K, V represent query, key, and value matrices, respectively. M2

represents the number of patches by splitting windows, and d represents the dimension of
the query or key.

Figure 4. The architecture of Swin-Unet, which consists of four main components: encoder, bottleneck,
decoder, and skip connections, constructed by Swin Transformer blocks.

2.4. Network Training

PUN+ and Swin-Unet are implemented using Python 3.9 and PyTorch 1.11.1. Training
and testing are conducted on a PC with an NVIDIA GeForce RTX 3090 GPU, Xeon Plat-
inum 8260C CPU. Both of the two training processes include 300 epochs on a dataset of
24,000 pairs of images, and the batch size of the dataloader is 32.

3. Results and Analysis
3.1. Simulation Dataset

Based on Section 2.2, we generate the simulated training data based on ZYGO’s
Zernike polynomials, employing a linear combination of nine Zernike polynomials to
generate the initial phase. To avoid generating excessively dense fringes, we choose
Zernike coefficients from the 2nd to the 10th order (excluding Piston) and randomly assign
amplitudes ranging from −9 to +9. This approach enables us to generate a variety of
original phase patterns with different types of aberrations while maintaining manageable
fringe densities in the interferograms.

To ensure that the trained network has a strong generalization ability and performs
well in various scenarios, we utilize a large amount of simulated phase and its correspond-
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ing interferograms generated from physical models for network training, respectively. By
incorporating diverse variations in the training data, we aim to enhance the network’s
ability to handle different situations and improve its overall performance. Based on
Equations (1), (2) and (7), we generate a total of 24,000 pairs of interferograms and their cor-
responding wrapped phase. These data are used as inputs and targets for the network after
undergoing normalization preprocessing. The phase step for each pair of interferograms is
a random value between 0 and π rad (excluding 0 and π rad). The dataset is divided into a
training set (90%) and a testing set (10%). These interferograms are normalized between 0
and 1 to be the inputs of neural networks, while the predicted wrapped phase is the output.
Figure 5a shows an example of an original phase generated by the Zernike polynomials,
Figure 5b,c show the corresponding two-frame interferograms with random phase step;
Figure 5d shows the corresponding wrapped phase.

(a) (b) (c) (d)

Figure 5. (a) An original phase generated by the Zernike polynomials method, (b,c) two-frame
interferograms with random phase step generated by original phase, (d) wrapped phase generated
by original phase.

To better simulate real-world conditions, random Gaussian white noise is added to
the interferograms. Based on local means and local variances method (LMLVM) [30], we
compute the signal-to-noise ratio (SNR) of testing interferograms with different noise
levels. Figure 6 shows simulated interferograms with different noise levels. In addition,
we set the DC component and modulation component of the interferograms to follow
Gaussian distributions. Figure 7 shows simulated interferograms with different background
intensities and modulations.

Our proposed method is trained on simulated data generated based on a physical
model. Therefore, the predictive performance of the proposed method heavily relies on
the content of the interferograms in the dataset, including but not limited to the settings of
random phase shifts, background light intensity, modulation, and noise levels. To achieve
better predictive results, it is essential to construct a large dataset for training. The training
process poses a challenge in terms of computational resources and time, requiring the use
of high-performance GPUs or TPUs, and it involves a lengthy training duration.

(a) (b) (c) (d)

Figure 6. The interferograms with different noise levels, (a) 13.8 dB, (b) 23.9 dB, (c) 26.9 dB, (d) 38.9 dB.
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Figure 7. The interferograms with different background intensities and modulations.

3.2. Accuracy Test

To begin with, we conduct thorough validation to assess the feasibility and accuracy of
the proposed method. The trained networks are subjected to test using the testing dataset.
In Figure 8, the demodulation results of Kreis [7], OF [8], ST [9], GS [10], PUN [22], PUN+,
and Swin-Unet are presented for a testing image with SNR = 43.5 dB and step = 1 rad. In
the magnified detail images, it can be observed that the details reconstructed by PUN+ and
Swin-Unet are closer to the ground truth. For further distinction and comparison, Table 1
provides the corresponding root mean square errors (RMSEs) comparing the reconstructed
results with the ground truth. The RMSEs between Kreis, OF, ST, GS, and PUN, and the
ground truths are 0.5255 rad, 0.5234 rad, 0.2534 rad, 0.2792 rad, and 0.1418 rad, respectively.

Table 1. Performance comparison of the reconstruction of different methods while step = 1 rad; flops
and parameters of deep learning methods.

Methods Flops (G) Parameters (M) Time (s)
13.9 dB 28.7 dB 43.5 dB

RMSE (rad) RMSE (rad) RMSE (rad)

Kreis —— —— 0.0463 0.8843 0.5894 0.5255

OF —— —— 0.1655 0.7085 0.5464 0.5234

ST —— —— 0.1094 0.7652 0.3282 0.2534

GS —— —— 0.0079 0.7651 0.3498 0.2792

PUN 18.02 58.61 0.0117 0.2068 0.1813 0.1418

PUN+ 40.15 17.26 0.0158 0.1840 0.1106 0.0921

Swin-Unet 7.72 27.14 0.0433 0.1647 0.1081 0.0719

Our proposed PUN+ and Swin-Unet whose reconstruction errors are 0.0921 rad and
0.0719 rad, respectively, outperform the other five existing reconstruction methods. While
PUN is currently the most accurate method available, the reconstruction RMSEs of PUN+
and Swin-Unet are approximately 65% and 50% lower, than that of PUN, respectively.

Furthermore, we investigate the accuracy of the proposed method under phase steps
ranging from 0 to π rad (excluding 0 and π rad). We compute the RMSEs between the
wrapped phase obtained by seven dual-frame reconstruction methods and the ground truth,
with interferograms that are devoid of additional noise. The results are plotted in Figure 9.
Under noise-free conditions, the fluctuation range of PUN+ (brown line) and Swin-Unet
(light blue line) does not exceed 0.055 rad and 0.045 rad, respectively, as the phase shift step
changes from 0 to π rad, showing overall stable performance. Additionally, PUN+ and
Swin-Unet consistently exhibit RMSEs below 0.1205 rad and 0.1124 rad, respectively, as the
phase shift step changes from 0 to π rad. Compared to PUN (purple line), the proposed
methods consistently outperform with significantly lower RMSEs for different phase shift
steps. Moreover, they also demonstrate better performance near the singular phase π.
Unlike OF (red line) and ST (blue line) which experience a rapid decline in reconstruction
accuracy near the singular phase, resulting in a jump in RMSE, our proposed methods
maintain better performance. These findings demonstrate that the trained Swin-Unet
consistently outperformed other methods, which affirms the effectiveness and precision of
the proposed method.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. The wrapped phase obtained by different reconstruction methods on the simulation testing
image with SNR = 43.5 dB, step = 1 rad, and 256 × 256 pixels, (a) Kreis, (b) OF, (c) ST, (d) GS, (e) PUN,
(f) PUN+, (g) Swin-Unet, (h) ground truth.

Cautiously, when the phase step between the two-frame interferograms is greater
than π radians, our proposed method can still accurately predict the wrapped phase, as
the result of that the interferogram obtained by adding (π + ∆δ) to the original phase is
equivalent to adding (π − ∆δ) to the original phase (0 < ∆δ < π). Moreover, based on
Equations (1) and (2), it is evident that the intensity expression is a periodic function with a
period of 2π. As a result, the proposed method can be applied to two-frame interferograms
with phase shift of any random value greater than 0 (except integer multiples of π). To
address scenarios with negative phase shift, predefined PZT movement directions are
commonly used as a preventive approach.

3.3. Anti-Noise Performance

In real measurement environments, noise is present in interferograms and cannot be
avoided, making it necessary to test the proposed method’s noise resistance. Gaussian
white noise is added to the randomly selected two-frame interferograms in the testing set,
resulting in their SNR varying from 13.9 dB to 43.5 dB. For the convenience of analysis,
the DC component and modulation component are both set to 1. Figure 10 shows testing
two-frame interferograms with SNR = 13.9 dB. As shown in Figure 11, we perform wave-
front reconstruction on the low SNR interferograms by Kreis, OF, ST, GS, PUN, PUN+, and
Swin-Unet. It is clear that in high-noise conditions, PUN+ and Swin-Unet have better recon-
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struction performance, which is not achievable by traditional existing methods. Figure 12
depicts the RMSEs between the wrapped phase obtained by different methods and the
ground truth as SNR varying from 13.9 dB to 43.5 dB. Table 1 provides the RMSEs for Kreis,
OF, ST, GS, PUN, PUN+, and Swin-Unet under 13.9 dB, 28.7 dB, and 43.5 dB SNR levels.
Compared to PUN and PUN+, Swin-Unet has the acceptable network parameters [31] and
the fewest flops, with 27.14 M and 7.72 G, respectively.

Figure 9. RMSEs of the Kreis, OF, ST, GS, PUN, PUN+, and Swin-Unet when phase step changes
from 0 to π rad.

Figure 10. The testing two-frame interferograms with SNR = 13.9 dB and 256 × 256 pixels.

While SNR varies from 28.7 dB to 43.5 dB, the proposed PUN+ (brown line) and
Swin-Unet (light blue line) consistently outperform other methods, with average RMSEs
of 0.1031 rad and 0.09617 rad, respectively. Conversely, when the interferograms contain
significant noise (13.9 dB), the reconstruction accuracy of nearly all methods drops. How-
ever, PUN+ (brown line) and Swin-Unet (light blue line) still exhibit RMSEs of 0.1840 rad
and 0.1647 rad, respectively, which remain lower than other methods. This simulation
confirms the superior performance of PUN+ and Swin-Unet across the entire tested SNR
range. It should be noted that PUN+ corresponds to higher RMSEs than that of Swin-
Unet, indicating that the noise resistance performance of PUN+ is slightly weaker than
that of Swin-Unet. In practical measurements, to achieve optimal reconstruction accuracy,
pre-denoising of interferograms is necessary.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. The wrapped phase obtained by different reconstruction methods on the testing image with
low SNR (13.9 dB), (a) Kreis, (b) OF, (c) ST, (d) GS, (e) PUN, (f) PUN+, (g) Swin-Unet, (h) ground truth.

Figure 12. RMSEs of the Kreis, OF, ST, GS, PUN, PUN+, and Swin-Unet when SNR varies from
13.9 dB to 43.5 dB.
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3.4. Low Modulation Test

In the actual measurement process, due to the influence of stray light and uneven
illumination, interferograms often exhibit a visual effect of a bright central region and
a dark surrounding area. For the two-frame phase-shifting interferometry, we assume
that the background intensity and modulation of the two interferograms follow spatial
inconsistency and temporal consistency. Spatial inconsistency means that the background
intensity and modulation follow different Gaussian distributions, not constant in spatial
distribution. Temporal consistency means that the PZT only needs to move once between
the two interferograms, with a very short time duration, and the impact on the two
interferograms is extremely similar. The background intensity and modulation are not
functions of time.

As shown in Figure 13, we generated random phase-shifted dual-frame interferograms
with different background intensities, modulations, and a moderate amount of Gaussian
white noise. The residual maps between the reconstruction results obtained from different
methods and the ground truth are illustrated in Figure 14. Table 2 provides the correspond-
ing specific RMSEs. It can be clearly seen that under low modulation (29.7 dB), compared
to other methods, the proposed PUN+ and Swin-Unet perform better, preserving fewer
details lost, with RMSEs of 0.1329 rad and 0.1166 rad, respectively. As the modulation of
the interferograms increases, the reconstruction errors of all methods show a decreasing
trend. However, the reconstruction errors of PUN+ and Swin-Unet are consistently lower
than other methods, with Swin-Unet’s reconstruction accuracy slightly higher than PUN+.

Input

29.7 dB 30.6 dB 31.3 dB 33.0 dB

Figure 13. Two-frame interferograms with different background intensities, modulations, and noise
levels. Background intensities, modulations, and noise levels of interferograms are identical in each
column. The interferograms in different columns have different background intensities, modulations,
and various noise levels (from left to right, SNR varies from 29.7 dB to 33.0 dB, and background
intensity and modulation increase from low to high). Among them, the interferograms (29.7 dB) have
the lowest background intensity and modulation, while the interferograms (33.0 dB) have the highest.



Photonics 2024, 11, 122 14 of 20

Kreis

OF

ST

GS

PUN

PUN+

Swin-Unet

Figure 14. Residual maps between the predicted results reconstructed by different methods and the
ground truth. The residual maps between the predicted results and the ground truth for Kreis, OF,
ST, GS, PUN, PUN+, and Swin-Unet are sequentially presented from top to bottom.
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Table 2. Performance comparison of the reconstruction of different methods under different back-
ground intensities and modulations.

Methods
29.7 dB 30.6 dB 31.3 dB 33.0 dB

RMSE (rad) RMSE (rad) RMSE (rad) RMSE (rad)

Kreis 0.6276 0.6077 0.6267 0.5847
OF 0.5668 0.5571 0.5706 0.5534
ST 0.5251 0.4141 0.4605 0.3310
GS 0.5010 0.4258 0.4396 0.3391

PUN 0.1636 0.1596 0.1567 0.1486
PUN+ 0.1329 0.1249 0.1133 0.1110

Swin-Unet 0.1166 0.1074 0.1013 0.0940

3.5. Experiment

To further evaluate the effectiveness of the proposed methods, we conduct exper-
iments by interferograms with random phase step in the experimental setup shown in
Figure 15. The phase step between the two-frame interferograms is an unknown constant.
Therefore, the linear phase shift error induced by the linear drift of the PZT has been effec-
tively eliminated in the two-frame interferometry. Non-linear phase shift errors caused by
vibration exist in the form of harmonics. To address this issue, we use a vibration isolation
platform and a high-precision PZT to ensure that the phase shift between the two-frame
interferograms is an unknown constant as much as possible, minimizing harmonic errors
at this point. In actual measurement, by using ZYGO’s GPI-XP/D4 laser interferometer, we
capture multiple phase-shifting interferograms, Figures 16a and 17a show two real inter-
ferograms with random phase step in first set, and calculate the corresponding wrapped
phase which served as the ground truth by the traditional thirteen-steps PSI [32], as shown
in Figure 16i and Figure 17i, respectively. Then, in Figure 16, the wrapped phases are
calculated from the first set of real interferograms using Kreis, OF, ST, GS, PUN, PUN+,
and Swin-Unet methods, and both PUN and the proposed methods seem to perform well.
In the locally magnified image, PUN is not smooth along the edges and contours, while
PUN+ and Swin-Unet capture contour details that are closer to the ground truth. For ease
of analysis, we compute RMSEs (compared to traditional PSI) for the seven reconstruction
methods, which are 0.4235 rad, 0.4193 rad, 0.3505 rad, 0.3214 rad, 0.2650 rad, 0.25190 rad,
and 0.2304 rad, respectively. The performance of the proposed PUN+ and Swin-Unet is
better than PUN, reducing the RMSEs by 0.01 rad and 0.03 rad, respectively.

Figure 17 shows the wrapped phases are calculated from the second set of real interfer-
ograms using Kreis, OF, ST, GS, PUN, PUN+, and Swin-Unet methods. PUN, PUN+, and
Swin-Unet perform better than others. In the locally enlarged image, the wrapped phase
map reconstructed by PUN exhibits overall blurriness in the high-frequency signals, with a
significant loss of fine details. In contrast, the wrapped phase maps reconstructed by PUN+
and Swin-Unet show clear and well-preserved fine details. Particularly, Swin-Unet’s recon-
struction results are remarkably close to the ground truth. After calculation and analysis,
RMSEs between the wrapped phase obtained by the seven reconstruction algorithms (Kreis,
OF, ST, GS, PUN, PUN+, and Swin-Unet) and the ground truth are 0.4383 rad, 0.4372 rad,
0.3788 rad, 0.3459 rad, 0.2804 rad, 0.2619 rad, and 0.2543 rad, respectively. Although PSI
cannot be considered the actual ground truth, it is still reliable regardless of the noise
present in the interferograms.

Furthermore, to verify the reconstruction accuracy of the demodulated results, we use
the classic and simple ”unwrap” function in MATLAB R2018b to unwrap the wrapped
phase and obtain the unwrapped phase, as shown in Figures 18 and 19. Also, we compare
the unwrapped results obtained from the seven reconstruction methods with the ground
truth. In the first experimental data, RMSEs of Kreis, OF, ST, GS, PUN, PUN+, and Swin-
Unet methods are 0.5413 rad, 0.5804 rad, 0.2801 rad, 0.2929 rad, 0.1510 rad, 0.0682 rad, and
0.0546 rad, respectively. In the second experimental data, RMSEs of Kreis, OF, ST, GS, PUN,
PUN+, and Swin-Unet methods are 0.7562 rad, 0.7066 rad, 0.2025 rad, 0.1382 rad, 0.1176 rad,
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0.0602 rad, and 0.0449 rad, respectively. The wrapped phase of PUN exhibits noticeable
distortions in edge regions and high-frequency bands, leading to misalignment during
unwrapping and further amplifying the RMSE. However, using PUN+ and Swin-Unet can
effectively mitigate the distortion in high-frequency regions.

Figure 15. Environmental setup including computer, laser interferometer, tested mirror, fixture, and
vibration isolation platform.

(a)

(b) (c) (d)

(e) (f) (g) (h) (i)

Figure 16. Evaluation of different two-frame methods with the first set of experimental data. (a) Real
interferograms with random phase shift, the wrapped phase obtained by different reconstruction
methods on the real interferograms, (b) Kreis, (c) OF, (d) ST, (e) GS, (f) PUN, (g) PUN+, (h) Swin-Unet,
(i) ground truth.
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(a)

(b) (c) (d)

(e) (f) (g) (h) (i)

Figure 17. Evaluation of different two-frame methods with the second set of experimental data.
(a) Real interferograms with random phase shift, the wrapped phase obtained by different recon-
struction methods on the real interferograms, (b) Kreis, (c) OF, (d) ST, (e) GS, (f) PUN, (g) PUN+,
(h) Swin-Unet, (i) ground truth.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 18. The reconstructed unwrapped phase obtained by different methods on the first set of real
interferograms, (a) Kreis, (b) OF, (c) ST, (d) GS, (e) PUN, (f) PUN+, (g) Swin-Unet, (h) ground truth.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 19. The reconstructed unwrapped phase obtained by different methods on the second set of real
interferograms, (a) Kreis, (b) OF, (c) ST, (d) GS, (e) PUN, (f) PUN+, (g) Swin-Unet, (h) ground truth.

4. Conclusions

In conclusion, a novel approach is proposed for wavefront reconstruction based on Swin-
Unet to accurately estimate the wrapped phase from two interferograms. Additionally, we
have proposed PUN+, building upon the foundation of PUN [22], for wavefront reconstruction.
By evaluating the methods on both simulated and real interferograms, and comparing their
performance against the classical Kreis [7], OF [8], ST [9], GS [10], and PUN [22] methods. The
accuracy of the proposed PUN+ and Swin-Unet have been verified through simulation and
experimental results which demonstrate that our proposed methods compared to the above
several methods exhibit superior performance in terms of demodulation results while
being able to operate at a relatively acceptable time cost. Furthermore, by unwrapping
the obtained wrapped phase in experiments, we further indicate that the original phase
obtained from both methods still maintains higher accuracy. Overall, in the above processes,
the comprehensive performance of the proposed Swin-Unet is superior to PUN+. The
proposed Swin-Unet is a promising approach for wavefront reconstruction based on two-
frame random interferometry.
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