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Abstract: In this article, we introduce a flexible and programmable method to construct a multi-
parameter optical array to meet urgent and personalized needs, such as multi-particle capture and
manipulation and material processing, and enrich the degree of freedom when constructing an optical
array. As an example, uniform and nonuniform spiral coherent lattices (SCLs) and their propagation
properties are investigated both theoretically and experimentally. Various intensity distributions, e.g.,
a uniform and nonuniform spiral light field, can be achieved by manipulating the diverse parameters.
Additionally, the complex degree of coherence exhibits phase singularities in the source plane, which
can be used for constructing optical vortex beams.

Keywords: coherence; optical coherence lattices; propagation

1. Introduction

Since Gori et al. proposed sufficient conditions for constructing partially coherent
beams [1,2], various partially coherent beams have been proposed, with different am-
plitude distributions [3,4] and spatial coherent structures [5,6] and carrying different
phases [7,8]. The partially coherent beams can be classified through response functions;
when the response functions of these two systems are different, they can be divided into
uniformly correlated partially coherent beams and non-uniformly correlated partially co-
herent beams [9,10]. In addition, there is a special type of partially coherent beam that
carries a twist phase which can be observed through the reasonable adjustment of the
system response function [11]. Among them, the complex degree of coherence of uniformly
correlated partially coherent beams depends on the absolute position of two points in space,
which can also be referred to as partially coherent Schell model beams. After determining
the system response function, multiple special correlated partially coherent beams can be
generated by designing weight functions. The Gaussian Schell model beam constructed
by Collett and Wolf in 1978, as a classical correlated partially coherent beam, has been
extensively studied for its generation, transmission, and application [12,13]. As research
progresses, various partially coherent beams, including scalar and vector partially coherent
beams, have been discovered and widely applied. These beams exhibit unique proper-
ties during propagation, including self-healing [14], self-focusing [15], self-splitting [16],
and self-shifting [17] properties, and they show extraordinary advantages in overcoming
random perturbation when propagating through random media, such as turbulent atmo-
sphere [18], turbulent ocean [19], and weak scattering [20]. Partially coherent beams can be
used to improve image quality in classical or correlation images [21] or to reduce bit error
rates [22] and have found potential use in laser processes [23], robust imaging through
random media [24], and free-space optical communication [25–27].

Recently, research on optical arrays has received increasing attention; various optical
arrays have been proposed to cater to practical applications, and currently there are many
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methods for generating optical array. Usually, a spatial light modulator is used to modulate
the beam to construct various optical arrays, as this method is not only simple but also
efficient [28,29]. Optical arrays have demonstrated their usefulness in many aspects, such
as beam shaping [30], lattice light microscopy [31], and as a universal tool for performing
quantum simulations [32]. However, all these discussions are based on completely coherent
beam modulation. As typical partially coherent sources, optical coherent lattices have
attracted great attention in recent years. Since Sergey et al. introduced the optical coherent
lattices mode [33], vector optical coherent lattices [34] and the carrying vortex phase [35],
as well as experimental generation [36] and paraxial propagation [37] through random
media [19,38], have been studied extensively. The periodicity reciprocity arises between the
source coherence and far-zone intensity of optical coherence lattices during propagation.
The periodicity reciprocity of optical coherent lattices mean a Gaussian intensity profile of
an optical coherence lattices evolves into a lattice-like far-field profile, while the periodic
spectral degree of coherence at the source loses its periodicity during propagation [37]. The
periodic reciprocity of optical coherent lattices has shown great potential use for the aspects
of orientation-selective sub-Rayleigh imaging [39], free space optical communication [37],
and optical encryption [36]. Recent research has shown that one can generate perfect
optical coherent lattices [40] and tunable polarization optical arrays [41], which indicates
that flexible and programmable optical coherent arrays extend the scope of application and
are now becoming a future trend.

A typical feature of a vortex beam is the circular symmetry distribution of intensity
distribution in the dark, with a continuous spiral phase distribution and an uncertain phase
at the center point, which is called phase singularity [42]. The expression for vortex phase is
exp(ilφ); l represents the direction of phase distortion, with a positive sign corresponding
to counterclockwise distortion and a negative sign corresponding to clockwise distortion.
Since its discovery, vortex beams have been extensively studied due to their wide range of
applications. Recent studies have shown that vortex beams can be applied in free space
optical communication [43], particle capture [44], microscopy imaging [45], astrometry [46],
and other fields. To cope with application environments in different fields, high-quality
vortex beam generation important. There are currently many methods for generating
vortex beams, and the most commonly used methods are those using spiral phase plates
(SPPs) [47,48] and spatial light modulators (SLMs) [28]. Given some new applications of
vortex beams, such as polarization detection [49] and edge enhancement images [50], the
generation of vortex beams has become increasingly important. However, is it possible to
construct a vortex beam without utilizing the vortex phase? Recently, research has shown
that high-quality vortex beams can be generated by using a gradual-width Fermat spiral
slit mask [51]. In this article, we were surprised to discover phase singularities in the CDOC
phase distribution of the source plane of SCLs, which may be useful for constructing vortex
beams in the future without utilizing the vortex phase.

In this article, we propose a flexible and programmable method for constructing optical
coherent lattices by manipulating the initial coherence structure. This method can modify
the generated optical array from aspects of the spatial structure, such as the amplitude or
the size of individual light spots, and the number and individual position of the light spots.
A spiral structure array and its propagation properties are studied in detail as examples, by
manipulating the initial beam parameters, e.g., the coherent length, and a spiral-like beam
field can be achieved in the far field. We also discovered phase singularities in the phase
distribution of CDOC in the source plane. Our discovery is useful for constructing vortex
beams without the vortex phase. Therefore, through our proposed method, optical array
can be flexibly modified to meet the requirements of diverse usage scenarios.
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2. Methods

We began with the construction of the partially coherent beam sources. In the space-
frequency domain, partially coherent beams can be characterized by the cross-spectral
density (CSD) function of the electric field, which is defined as [1]:

Wo(r1, r2) =
∫

I(v)H∗(r1, v)H(r2, v)d2v (1)

where r1 and r2 are two arbitrary spatial points at the source plane, with ‘*’ denoting the com-
plex conjugate. I(v) is a non-negative function. H(r, v) is an arbitrary kernel. Equation (1)
can be rewritten as an alternative form to facilitate experimental generation [35]:

Wo(r1, r2) =
∫ ∫

Wi(v1, v2)H∗(r1, v1)H(r2, v2)d2v1d2v2, (2)

with
Wi(v1, v2) =

√
I(v1)I(v2)δ(v1 − v2), (3)

where Wi(v1, v2) and Wo(r1, r2) denote the CSD functions in the input and output planes, re-
spectively. The terms I(v), δ(v1 − v2), and H(r, v) correspond to the intensity, the delta func-
tion, and the response function of the optical system, respectively. Based on Equation (2),
one can achieve any partially coherent beams desired by flexibly editing the I(v) or H(r, v)
functions. A coherent lattice with its incoherent intensity distribution is expressed as [35]:

I(v) = C0

M

∑
m=1

cm exp

[
− (v − v0m)

2

ω2
m/2

]
, (4)

where C0 is a constant factor, M is a non-negative integer denoting the number of Gaussian
beam spots, cm is the weight coefficient, which is used to adjust amplitude distribution, ωm
is the beam waist size of the Gaussian beam spot, and v0m =

(
v0mx, v0my

)
is the off-axis

displacement of the mth spot. Additionally, by manipulating the weight coefficient cm, the
beam waist size ωm, and the off-axis displacement v0m, arrays can be flexibly implemented
through programming.

Spiral coherent lattices (SCLs) can be obtained from the incoherent intensity distribu-
tion, which is shaped as an Archimedes spiral distribution, with its off-axis displacement
v0m expressed as:

v0mx = am cos(tm), v0my = am sin(tm), (5)

where tm = 2π(m − 1)/(M − 1) and am = b(m − 1)/(M − 1) denote the rotation angle
and the distance from the center, respectively, with b as a constant that is set as 0.48 mm in
the following.

The response function of an optical system H(r, v) is a traditional Fourier transform
system, which is expressed as:

H(r, v) = − i
λ f

T(r) exp
[

iπ
λ f

(
v2 − 2r · v

)]
, (6)

where λ represents the wavelength, f is the focal length of the Fourier transform lens, and
T(r) = exp

(
−r2/2σ2

0
)

is the amplitude function. By substituting Equations (3), (4), and (6)
into Equation (2), we can find the CSD function in the source plane:

W(r1, r2) = exp

(
−

r2
1 + r2

2
2σ2

0

)
µ(r1, r2), (7)

where σ0 denotes the transverse beam waist size and is taken as σ0 = 1.5 mm in the following
simulations. µ(r1, r2) denotes the complex degree of coherence (CDOC), which is calculated
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from the Fourier transform of the intensity distribution of the incoherent source I(v), with
the CDOC of the SCLs being

µ(r1, r2) = 1
λ2 f 2

∫
I(v) exp

[
− i2πv·(r2−r1)

λ f

]
d2v

= C1
M
∑

m=1
cm exp

{
− (r2−r1)

2

2δ2
m

− ikam
f [cos(tm) · (x2 − x1) + sin(tm) · (y2 − y1)]

}
,

(8)

where C1 is a constant factor, k = 2π/λ is the wavenumber, and δm = λ f /πωm denotes
the transverse coherence width of the mth spot of the SCLs. The second-order statistical
characteristics of SCL can be described by the two-point cross-spectral density function in
the source plane:

W(r1, r2) = C1 exp
(
− r2

1+r2
2

2σ2
0

)
×

M
∑

m=1
cm exp

{
− (r2−r1)

2

2δ2
m

− ikam
f [cos(tm) · (x2 − x1) + sin(tm) · (y2 − y1)]

}
,

(9)

where based on Equation (9), a uniform spiral coherent lattice (USCL) with ωm ≡ ω0
and a non-uniform spiral coherent lattice (NUSCL) with ωm =

√
mω0 can be achieved

by manipulating the parameter ωm, with its transverse coherence width being δ0 and
δm = δ0/

√
m.

The paraxial propagation of a coherent lattice is characterized by the generalized
Huygens–Fresnel integral, and the CSD function of the beam after propagating through a
stigmatic ABCD optical system can be calculated from [41,52]:

W(ρ1,ρ2) = 1
(λB)2 exp

[
− ikD

2B
(
ρ2

1 − ρ2
2
)]∫ ∫

W(r1, r2) exp
[
− ikA

2B
(
r2

1 − r2
2
)]

× exp
[

ik
B (r1 · ρ1 − r2 · ρ2)

]
d2r1d2r2,

(10)

where ρ1 and ρ2 are two arbitrary transverse position vectors at the output plane. A, B, C,
and D are the transfer matrix elements of the optical system. The intensity and CDOC of
the SCLs in the output plane are obtained as [53]:

I(ρ) = W(ρ,ρ), (11)

µ(ρ1,ρ2) =
W(ρ1,ρ2)√
I(ρ1)I(ρ2)

, (12)

Assuming that the SCLs pass through a thin lens, the propagation properties can be
studied with the help of the transfer matrix of the optical system between the source plane
and the output plane, which is written as:(

A B
C D

)
=

(
1 z
0 1

)(
1 0

−1/ f1 1

)
=

(
1 − z/ f1 z
−1/ f1 1

)
. (13)

where z is the distance from the focal lens to the output plane.
In the experiment, we can calculate the square modulus of the CDOC using the

following formula. As the light transmitted through the rotating ground glass disk obeys
Gaussian statistics, by applying the Gaussian moment theorem, we can express the square
modulus of the CDOC of the beam in the output plane using the intensity correlation
expression, as follows [53]:

|µ(r1, r2)|2 =
N∑N

n In(r1)In(r2)

∑N
n In(r1)∑N

n In(r2)
− 1, (14)
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Here, N is the number of ensemble realizations and In(r) is an intensity distribution of
the n-th realization.

As discussed in the following section of the paper, we set cm = 1 to simplify our simu-
lations, but this is still a useful parameter for the flexible and programmable construction
of the partially coherent optical array.

3. Results and Discussion

In this section, we not only theoretically simulated the evolutionary characteristics
of normalized intensity distributions and the square modulus of CDOC distributions of
SCLs during propagation using the proposed method in the article, but also verified the
feasibility of our method in experiments.

Figure 1 shows the normalized intensity distribution I(v)/I(v)max of the incoherent
light, the square modulus, and its phase of the CDOC of USCLs in the source plane with
δ0 = 1 mm, for different spot numbers M. The incoherent spiral intensity from a discrete
distribution gradually turns into a continuous structure, with the increase in the total
spots of number M (see Figure 1(a1–d1)). Amazingly, the square modulus of the CDOC
distribution in the source plane also shows a spiral shape, and the spiral shape of the
CDOC distribution in the source plane becomes continuous as the number of spots M
increases for USCLs (see Figure 1(a2–d2)), with its phase consisting of singularity arrays
(see Figure 1(a3–d3)) and gradually turning into a continuous shape as M increases. The
generation of phase singularities in this article is caused by correlated singularities which
are caused by the discontinuity of the light field distribution. This can be seen from
Equation (8) in the article. Equation (8) for CDOC distribution is a ∑ sum form, resulting
in discontinuity. This is different from the fact that the phase singularity of a typical vortex
beam is caused by the generation of the vortex phase. From the figure, we can see that the
phase distribution of CDOC of USCLs gradually becomes clear with M increases and we
can manipulate the number of phase singularities and distributions by adjusting the total
number of M spots.
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Figure 2 show the normalized intensity distribution I(v)/I(v)max of the incoherent
light, the square modulus, and its phase of the CDOC of NUSCLs in the source plane with
δ0 = 1 mm, for different spot numbers M; a much more continuous shape can be achieved by
manipulating the beam waist size ωm, showing a great difference between the USCLs and
NUSCLs. The incoherent spiral intensity from a discrete distribution gradually turns into a



Photonics 2024, 11, 133 6 of 12

continuous structure by manipulating the beam waist size ωm and the total spots of number
M (see Figure 1(a1–d1) and Figure 2(a1–d1)). The square modulus of the CDOC distribution
in the source plane also shows a spiral shape in the source plane which is similar to the
USCLs; the spiral shape of the CDOC distribution in the source plane becomes continuous
as the number of spots M increases for NUSCLs, compared with the USCLs, and the square
modulus of the CDOC distribution of NUSCLs has fewer side lobes (see Figure 1(a2–d2)
and Figure 2(a2–d2)), with its phase consisting of singularity arrays, and gradually turns
into a continuous shape as M increases. The phase singularities show a clearer distribution
than USCLs (see Figure 1(a3–d3) and Figure 2(a3–d3)). The phase distribution of CDOC of
NUSCLs gradually becomes clear with M increases, which is similar to USCLs, but phase
distributions of the CDOC of NUSCLs are clearer and more compact compared with the
USCLs. Additionally, one can not only introduce phase singularities through a vortex
phase [54,55] but also through constructing coherent lattices appropriately, and its phase
distribution can be manipulated by the beam parameters, e.g., the spots number M and the
beam waist size ωm, flexibly. The spiral coherent lattices are only an example of our flexible
construction of the partially coherent optical array. Through our method, various optical
coherent arrays can be obtained.
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The density plots of the normalized intensity and its square modulus of the CDOC of
the SCLs after propagation through a thin lens with a focal length of f1 = 400 mm are shown
in Figure 3. The figure shows that the SCLs gradually evolve from a Gaussian distribution
to an SCL structure during propagation (see Figure 3(a1–d1,a3–d3)). The evolution of
the intensity distribution of the SCLs is similar to the exponential phase beams, with the
intensity distribution changing from a symmetric distribution to an asymmetric distribution
gradually during propagation. The physical mechanism can be explained by the symmetry-
breaking structure of the phase distribution, i.e., the original axial symmetry of the beam in
the focal plane is disrupted by the introduced nonuniform spiral phase. Not only does the
center of gravity of the intensity shift, but the energy flux distribution in the focal plane also
changes significantly [56,57]. The SCLs have a similar phase distribution to the exponential
phase beams, with the phase of the CSD function consisting of the offset superposition phase
terms (see Equation (9)). Therefore, discrete (or uniform) and continuous (or nonuniform)
exponential phase-like beams can be achieved by modulating the SCLs. The corresponding
square modulus of the CDOC is plotted in Figure 3(a2–d2,a4–d4). We found that the square
modulus of the CDOC of USCLs in the source plane has a shape similar to a windmill, and
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the square modulus of the CDOC in windmill shape rotates during propagation, which
is interesting. Compared with the USCLs, the square modulus of the CDOC of NUSCLs
shows fewer sidelobes, although the square modulus of the CDOC will rotate during
propagation, too. The distribution of the square modulus of the CDOC of SCLs evolves
from a spiral shape to a Gaussian distribution, and rotation occurs during propagation,
with the sidelobes gradually degrading. Compared to the USCLs, the square modulus
of the CDOC of an NUSCLs has a pure background, which is helpful when used as the
freedom to load information. Two types of spiral coherent lattices have been studied, which
included USCLs and NUSCLs, and their arrangement is the same, but there is a difference
in the size of the light spot. It should be noted that the SCLs are only an example proposed
for our method, and various coherent lattice structures can be generated by this flexible
and programmable method.
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and (a2–d2) and (a4–d4), the square modulus of the CDOC of the focused USCLs and NUSCLs, at
several propagation distances z, with δ0 = 1 mm and M = 30.

The density plots of the normalized intensity distribution of the SCLs with different
transverse coherence widths in the focal plane after passing through a thin lens with a
focal length of f1 = 400 mm are shown in Figure 4. Uniform (see Figure 4(a1–d1)) and
nonuniform (see Figure 4(a2–d2)) lattice distributions in the focal plane can be observed
gradually with the increase in the transverse coherence width. Additionally, the focal plane
intensity distribution of the NUSCLs is more uniform than that of the USCLs with a lower
transverse coherence width (see Figure 4(a1,a2)). These phenomena can be explained based
on Equation (9). The distribution of the CDOC is determined by the Gaussian term and the
Schell-mode term, in contrast to that of the USCLs, and the NUSCLs with the Schell-model
terms are modulated by the parameter m, i.e., Schell-model terms decrease with the increase
in m, and the phase term is the same as that of the USCLs. The influence of the Gaussian
amplitude of the CDOC is small when utilizing the modulation parameter m with a lower
transverse coherence width. A clear lattice distribution of the SCLs can be observed (see
Figure 4(d1,d2)), with a higher transverse coherence width because the Gaussian terms
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play a main role in the CDOC functions. The influence of the modulation parameter m
is smaller with a higher transverse coherence width. This proves that we can not only
manipulate its spatial coherence structure to achieve beam shaping, but also adjust its
transverse coherence width to achieve beam shaping for the partially coherent optical array
that we have constructed. And this undoubtedly increases the flexibility of regulation.
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To prove the feasibility of our approach, we utilized the experimental schematic shown
in Figure 5. A linear polarized laser beam with a wavelength of λ= 532 nm from a Nd:YAG
laser is expanded by a beam expander (BE), and modulated by a spatial light modulator
(SLM) with a computer-generated hologram (CGH). Figure 5 illustrates the CGH used to
generate the SCLs after passing through a beam splitter (BS). The generated beam from
the SLM is then emitted to dynamic scattering, e.g., a rotating ground glass disk (RGGD),
producing an incoherent light field, after being collimated and filtered by the thin lens L2
( f2 =150 mm) and Gaussian amplitude filter (GAF). This generates the SCLs source, and
the distance from the RGGD to the thin lens L2 is 15 cm. The transverse coherence width
can be adjusted utilizing the distance from the thin lens L1 to RGGD. A neutral density filter
(NDF) is used to adjust the amplitude of the laser beam. The generated SCLs are then split
into two parts, with the transmitted part passing through a 4 f image system, consisting of
thin lenses L3 and L4 with a focal length of f3 = f4 = f = 150 mm, and are then recorded
by a charge-coupled device (CCD1). The reflected part is focused by a thin lens L5 and
then received by a charge-coupled device (CCD2) which is located at a distance z from the
thin lens L5. The recorded frames from the CCDs are used to measure the intensity and
the square modulus of the CDOC in the source plane and propagated plane, respectively.
For the measurement of the square modulus of the CDOC of the partially coherent optical
array, we can refer to Equation (14).

Figure 6 shows our experimental results of the normalized intensity distribution
and the square modulus of the CDOC of the USCLs and NUSCLs at several propagation
distances z with M = 30 and δ0 = 1 mm. By using CCD camera, we obtained its intensity
distribution, and by performing calculations on the intensity correlation, we obtained the
square modulus of the CDOC of the SCLs. Consistent with our theoretical simulation, the
intensity distribution of SCLs gradually evolves from a Gaussian distribution to a coherent
lattice during propagation, and the square modulus of the CDOC gradually rotates during
propagation and eventually evolves into a Gaussian distribution when reaching the far
field. Usually, we approximate the focal plane after it has been focused by a lens as a
far-field plane. The results of the measurements are in good agreement with the simulation
results shown in Figure 3, whether for intensity distribution or the square modulus of the
CDOC distribution. This also confirms the correctness of our method.
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Figure 7 shows the experimental measurement of the intensity distribution of the
USCLs and NUSCLs in the focal plane. Various intensity distributions, e.g., Gaussian,
Gaussian-like, discrete or continuous spiral-like, and uniform or nonuniform coherence
lattice distributions in the focal plane can be generated by manipulating the transverse
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coherence width and the initial coherence structure. The experimental results of Figure 7
correspond well with the theoretical simulation of Figure 4.
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Figure 7. Experimental measurements of (a1–d1), the normalized intensity distribution of the USCLs,
and (a2–d2), the NUSCLs in the focal plane, for different transverse coherence widths δ0 with M = 30.

4. Conclusions

In summary, we propose a programmable method for the flexible construction of an
optical array, with a variety of manipulated parameters, e.g., the amplitude or the size of
individual light spots, the number of light spots, the relative position of the light spots,
etc. Two types of spiral coherent lattices, USCLs and NUSCLs, have been studied to verify
the feasibility of our method. SCLs and their propagation properties are investigated
as an example, both theoretically and experimentally. The intensity of the SCLs evolves
from a Gaussian distribution to coherent lattices. Additionally, one can obtain Gaussian,
Gaussian-like, and various coherence lattices by manipulating the transverse coherence
width and the parameters of the lattice structures. In addition, the distribution of the square
modulus of the CDOC of SCLs evolves from a spiral shape to a Gaussian distribution,
and rotation occurs during propagation. Surprisingly, the phase of the CDOC of the SCLs
exhibits phase singularities in the source plane, which can be used for the construction of
optical vortex beams. Our method provides powerful, convenient, and economical tools
for applications such as multiparticle capture and manipulation, material processing, and
free-space optical communications, and has great significance for extending the theory and
application of light beams.
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