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Abstract: The quality of crude oil varies significantly according to its geographical origin. The
efficient identification of the source region of crude oil is pivotal for petroleum trade and process-
ing. However, current methods, such as mass spectrometry and fluorescence spectroscopy, suffer
problems such as complex sample preparation and a long characterization time, which restrict their
efficiency. In this work, by combining terahertz time-domain spectroscopy (THz-TDS) and a machine
learning analysis of the spectra, an efficient workflow for the accurate and fast identification of
crude oil was established. Based on THz-TDS of 83 crude oil samples obtained from six countries,
a machine learning protocol involving the dimension reduction of spectra and classification was
developed to identify the geological origins of crude oil, with an overall accuracy of 96.33%. This
work demonstrates that THz spectra combined with a modern numerical scheme analysis can be
readily employed to categorize crude oil products efficiently.

Keywords: crude oil; terahertz time-domain spectroscopy; principal component analysis; convolution
neural network

1. Introduction

Crude oil is a complex mixture consisting of a variety of compounds [1]. Alongside
liquid hydrocarbons like alkanes, cycloalkanes, and aromatic hydrocarbons, it also contains
compounds containing nitrogen, sulfur, oxygen, and other elements, including hydrogen
sulfide, quinoline, and phenols. Additionally, crude oil contains trace metals such as nickel,
iron, and vanadium [2–4]. The composition and properties of crude oil are greatly influ-
enced by the formation environment, resulting in variations in the quality and commercial
value of crude oil from across the globe [5,6]. Rapid and accurate source identification of
crude oil holds significant importance for crude oil trading and subsequent processing.

The existing methods for crude oil identification mainly include mass spectrome-
try methods such as gas chromatography–mass spectrometry (GC-MS), inductively cou-
pled plasma–mass spectrometry (ICP-MS), Fourier transform–ion cyclotron resonance–
mass spectrometry (FT-ICR MS), atmospheric pressure photoionization Fourier transform–
ion cyclotron resonance mass spectrometry (APPI FT-ICR MS) [7–10], fluorescence spec-
troscopy [11–13], Raman spectroscopy [14,15], X-ray analysis [16,17], and infrared spec-
troscopy [18–20], etc. However, these methodologies exhibit distinct limitations. Mass
spectrometry requires complex sample pretreatment, has a long experimental process, and
yields complex fingerprint spectra [21], making it difficult to achieve classification analysis
of multitudinous samples. Fluorescence spectroscopy fluctuates due to interference from
scattered light, mutual interference between elements, and overlapping peaks. Raman
spectroscopy suffers from weak Raman signal intensity and a low signal-to-noise ratio.
X-ray spectroscopy is hazardous to human health and not extensively applicable. Currently,
the most widely used methods in the field of crude oil detection and identification are
attenuated total reflection infrared spectroscopy (ATR-IR) and Fourier transform attenuated
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total reflection infrared spectroscopy (ATR-FTIR), which are affected by uncertainties such
as interfering molecules like resins in the obtained spectral range [22].

As a subfield of crude oil identification, crude oil classification most widely adopts
the American Petroleum Institute (API) gravity method. Based on API gravity, crude oil
can be classified into three categories: “light”, “medium”, and “heavy”. However, the
use of standardized experiments to obtain data for crude oil analysis cannot be applied
to geographical origin recognition. In order to achieve the faster and more efficient classi-
fication of crude oil, the combination of spectroscopic techniques with chemometrics or
neural networks has attracted more and more scientific interest. As is shown in Table 1,
the most commonly used methods for crude oil classification are a combination of mass
spectrometry, ATR-FTIR, and chemometrics. However, inherent defects are inevitable
in these methods, such as complex sample pretreatment and low sensitivity. In order to
overcome these shortages and expand the application of spectroscopic techniques in the
field of crude oil classification, this study employed terahertz time-domain spectroscopy
(THz-TDS) to measure crude oil samples.

Table 1. Applications of spectroscopic techniques: spectroscopic techniques combined with chemo-
metrics or neural network methods in crude oil classification.

Type of Classification Instrumental
Methods

Chemometric
Methods Neural Networks Ref.

Characteristics of trace elements ICP-MS, GS-MS CA 1 - [9]
API gravity FT-ICR MS - - [10]
API gravity ATR-FTIR PCA, PLS-DA 2 - [19]

Fuel and crude oil types GS-MS COW-PCA-LDA 3 - [21]
Origin of crude oils ATR-FTIR PCA, SIMCA 4 - [23]

Geographical origin GS-MS - Kohonen
self-organizing maps [24]

Well and geographical origin APPI FT-ICR MS PCA, HCA 5 - [25]
Certified reference materials GC-MS MPCA 6, PARAFAC 7 - [26]

1 CA: cluster analysis. 2 PLS-DA: partial least squares-discriminant analysis. 3 COW-PCA-LDA: correlation opti-
mized warping plus principal component analysis plus linear discriminant analysis. 4 SIMCA: soft independent
modeling of class analogies. 5 HCA: hierarchical clustering. 6 MPCA: multi-way principal components analysis.
7 PARAFAC: principal factors analysis.

THz-TDS is a spectral measurement technique based on ultrafast femtosecond laser
pulses [27]. Due to the high transmittance of THz waves in crude oil, it can measure
the amplitude attenuation and time delay of the incident terahertz pulse without sample
pretreatment, making it operationally simple. Additionally, the THz-TDS can be applied to
analyze the compound structures and intermolecular interaction among organic molecules
(such as hydrogen bonding, Van der Waals forces, dipole rotation, and vibrational tran-
sitions) [28–31]. It has been demonstrated that THz-TDS is applicable in qualitative and
quantitative analysis of the crude oil properties [32,33], but its application in crude oil
classification has not yet been explored.

THz-TDS with a frequency range from 0.2 to 2.5 THz was employed in this study
to measure the terahertz time-domain spectra of 83 types of crude oil from six countries:
Angola, Brazil, Saudi Arabia, Russia, Congo, and Iran. The refractive index spectra and
absorption coefficient spectra of these crude oils were extracted and subjected to principal
component analysis (PCA). Subsequently, the principal component of the refractive index
spectra and absorption coefficient spectra were input into a convolutional neural network
(CNN) to classify crude oils of different origins. The method of THz-TDS combined with
PCA and CNN shows the new application of THz-TDS combined with machine learning in
crude oil origin classification, which provides a new solution for the on-site classification of
crude oil origin.
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2. Experiment
2.1. Spectral Acquisition

The TDS-1008 system (BATOP GmbH, Jena, Germany, Figure S1), driven by a Mai Tai
femtosecond laser (Spectra-Physics, Milpitas, CA, USA, with a wavelength of 780–980 nm,
a pulse width of 80 fs, and an output power of 1.5–2.5 W) was used to conduct the THz-TDS
measurements. The time domain signals were Fourier transformed to the frequency range
of 0.2–2.5 THz, with a signal-to-noise ratio higher than 65 dB. The poly-4-methyl-1-pentene
(TPX) cell adopted in the experiment had dimensions of 46 mm × 46 mm × 3 mm (length,
width, and thickness, respectively). Every sample in the cell was placed into the THz-TDS
chamber for measurement, and then when switching to a new sample, the previous sample
was taken out, and the cell was cleaned and dried, and then injected with a new sample.
The number of crude oil samples from different countries measured in the experiment is
shown in Figure 1.
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In addition, the refractive index and absorption coefficient of the sample are
given by [34,35]

n(ω) =

[
φ(ω)c

ωd

]
+ 1 (1)

α(ω) =
2
d

ln

[
4n(ω)

ρ(ω)[n(ω) + 1]2

]
(2)

where ω is the angular frequency; c is the velocity of light in vacuum; d is the sample
thickness; and φ(ω) and ρ(ω) are the phase difference and amplitude ratio between the
reference signal and the sample signal, respectively.

2.2. Principal Component Analysis (PCA)

PCA is a multivariate statistical analysis method that has been widely applied to deal
with multivariable data, as it is capable of reducing the dimensionality of the data [33].
PCA transforms the original data into a set of linearly independent representations of
each dimension via linear transformation, while retaining as much information present in
the original dataset as possible [21]. By applying linear transformation, the original data
variables are converted into a new set of variables known as principal components (PCs).
Each principal component (PC) contains two types of information: scores and loadings.
Scores represent the projection values of the original data on each PC, while loadings
represent the weight information between the original variables and each PC [36,37].
The variance contribution rate is used to measure the importance of PCs, indicating the
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proportion of variance accounted for by a particular PC. The calculation formula for the
variance contribution rate Ri is as follows:

Ri =
λi

∑
p
k=1 λk

, i = 1, 2, . . . , p (3)

where Ri represents the eigenvalues (i.e., variances) obtained through eigenvalue decom-
position of the covariance matrix of the original data and i indicates the i-th PC. PCs with
higher variance contribution rates have a greater degree of explanation for the original data.
The cumulative variance contribution rate CRi refers to the proportion of the total variance
of the first i PCs, given by

CRi =
∑i

k=1 λk

∑
p
k=1 λk

, i = 1, 2, 3, . . . , p. (4)

2.3. Convolutional Neural Networks (CNNs)

CNNs, as one of the representative algorithms in deep learning, have been involved
in remarkable achievements in various fields such as image recognition [38] and spectral
recognition [39,40]. CNNs typically consist of convolutional layers, pooling layers, and fully
connected layers. Generally, non-linear activation functions are added between the convolu-
tional and pooling layers in CNNs to process the linear output data from the convolutional
layers non-linearly, thereby enhancing the network’s representational capacity.

The two-dimensional CNN structure used in this study is illustrated in Figure 2. It com-
prises an input layer, two convolutional layers, two pooling layers, two fully connected layers,
a SoftMax layer, and an output layer. The activation function applied in each convolutional
layer is the exponential linear unit (ELU). This definition is shown in Equation (5):

ELU(x) =
{

α(ex − 1), x < 0
x, x ≥ 0

(5)

where α is an adjustable parameter, usually with a value of 1.
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Figure 2. CNN structural framework.

The first convolutional layer consists of 6 convolutional kernels (or filters), while the
second convolutional layer consists of 4 convolutional kernels. Both layers have a kernel
size of 2 × 1 and a stride of 1. The input layer has a matrix size of 11 × 1 × 1, and the
pooling layer has a matrix size of 2 × 1 and a stride of 1. The cross-entropy loss function
(also known as the SoftMax function) is introduced to convert the model output into a
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classification probability, which measures the discrepancy between the output q and the
true labels p for each class, and is given by

Loss = −
m

∑
j=1

pjlog
(
qj
)

(6)

where m is the number of categories.
The Adam optimizer with an initial learning rate of 0.001 and a learning rate decay

factor of 0.1 was used to train the model, and the trainable parameters were updated by
minimizing the cross-entropy loss function in the training phase. The maximum number
of iterations was set to 450, and at iteration 400, the learning rate was reduced to 0.0001.
Furthermore, an L2 regularization parameter with a value of 0.0001 was introduced.

3. Results and Discussion
3.1. Terahertz Spectra of Different Origin Crude Oils

In Table S1, the origins and names of all crude oil samples are presented, along
with their assigned numbers. Figure 3a,b displays the spectra of a subset of samples
(two samples per origin) in the time and frequency domain, respectively. The complete
THz spectroscopy for the crude oil samples is exhibited in Figures S2 and S3. In the figures,
the solid black line represents the reference signal, while each color corresponds to a specific
origin. The reference signal is the terahertz time-domain waveform of a terahertz wave
passing through an empty sample cell. Solid and dashed lines of the same color distinguish
different samples from the same origin.
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Figure 3a shows the time delays and amplitude attenuations of the signals from
different crude oil samples. The time delay and amplitude magnitude of the sample signals
are influenced by the asphaltene content in the crude oil [22]. A lower asphaltene content
results in a reduced time delay and amplitude attenuation transmitted terahertz pulse. The
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water content in the crude oil is another factor influencing the time delay and amplitude
magnitude of terahertz waves [32]. Increased water content in the crude oil leads to greater
time delay and amplitude attenuation in transmitted terahertz waves. Furthermore, the
time delay and amplitude attenuation of the transmitted terahertz wave also fluctuate
due to the complexity of crude oil composition and the presence of trace metals, sulfur,
and nitrogen [40]. As shown in Figure 3b–d, the spectral features of different crude oil
samples differ greatly in the range of 0.2–2.5 THz. Therefore, spectral data in the range of
0.2–2.5 THz were subjected to principal component analysis.

3.2. PCA-CNN Classification Model

In this study, PCA was adopted to investigate the refractive index spectrum and
absorption coefficient spectrum of crude oil. The matrix was of the scale 83 × 1150 for
both spectra, in which each row represented a sample and each column represented data
points at various frequencies. PCs with a variance contribution rate exceeding 0.03%
and the cumulative variance contribution rate of the total PCs more than 99.92% were
chosen as the variables for the analysis. The variance contribution rates and cumulative
variance contribution rates of the principal components of the refractive index spectra and
absorption coefficient spectra are shown in Tables 2 and 3, respectively.

Table 2. Variance contribution rate and cumulative variance contribution rate of the first three PCs of
the refractive index spectra.

Principal Component Variance Contribution Rate/% Cumulative Variance
Contribution Rate/%

PC 1 99.688 99.688
PC 2 0.258 99.946
PC 3 0.033 99.979

Table 3. Variance contribution rate and cumulative variance contribution rate of the first eight PCs of
the absorption coefficient spectra.

Principal Component Variance Contribution Rate/% Cumulative Variance
Contribution Rate/%

PC 1 74.485 74.485
PC 2 22.301 96.786
PC 3 2.069 98.855
PC 4 0.647 99.503
PC 5 0.239 99.742
PC 6 0.099 99.841
PC 7 0.052 99.893
PC 8 0.035 99.928

By using PCA, the 2300 original spectral data including 1150 variables of the refractive
index and absorption coefficient spectra separately were reduced to 11 variables including
the first three PCs of the refractive index spectra and the first eight PCs of the absorption
coefficient spectra. To eliminate the impact of differences in range of values between
variables, the first three PCs of the extracted refractive index spectra and the first eight
PCs of the absorption coefficient spectra were normalized. Subsequently, these normalized
components were fed into a CNN for training and testing and the normalization formula is
as follows:

Xnorm =
X − Xmin

Xmax − Xmin
(7)

where X is the absolute value, Xmin is the minimum value, and Xmax is the maximum value
of the dataset.
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For countries for which the number of crude oil samples was less than or equal to 10,
one sample was randomly chosen for testing, while the remaining samples were the
training set. For countries with more than 10 crude oil samples, the training and test sets
were divided at a ratio of 4:1. The k-fold cross-validation with k = 5 was implemented
to validate the model. In this study, the training set data were divided into five mutually
exclusive subsets utilizing fivefold cross-validation, among which one was selected for
model verification and the remaining four were used for training in each iteration. This
process was repeated five times, with a different subset acting as the validation set each
time. The average classification accuracy of the five iterations was 97.14%. The confusion
matrix of the test set, depicted in Figure 4, serves as a visual comparison between the
actual category and the model prediction category. The figure reveals that only one sample
was misclassified. The experiment was carried out 20 times and the average classification
accuracy was 96.33%.
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4. Conclusions

A methodology is proposed for categorizing the source of crude oil by employing THz
spectroscopy in conjunction with PCA and CNN. To establish a THz spectroscopy dataset,
THz-TDS technology was adopted to measure the spectra of 83 distinct crude oil samples
from six countries. The PCA technique was then employed to reduce dimensionality and
extract features from the refractive index spectra and absorption coefficient spectra of
the crude oil samples, resulting in a combined PC dataset. Subsequently, a CNN was
utilized for feature learning and classification recognition of the combined PC data. The
experimental results demonstrate that the proposed approach, which combined THz-TDS,
PCA, and a CNN, achieved a classification accuracy of 96.33% for distinguishing crude
oil from different origins. This accomplishment confirms the feasibility and promising
prospects of this method in the field of crude oil classification, extending the existing
classification methods of crude oil.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/photonics11020155/s1. Figure S1: Schematic diagram of trans-
mission THz-TDS setup. M1, M2, and M3 are reflectors; L1 and L2 are lenses; and OPM1, OPM2,
OPM3, and OPM4 are off-axis parabolic mirrors. Table S1: Country, name, and number of crude oil
samples. Figure S2: (a1)–(a12) THz time-domain spectra of crude oils; (b1)–(b12) THz frequency-
domain spectra of crude oils. Figure S3: (a1)–(a6) The refractive index spectra of crude oils; (b1)–(b6)
the absorption coefficient spectra of crude oils.

https://www.mdpi.com/article/10.3390/photonics11020155/s1
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