
Citation: Guan, L.; Dong, J.; Li, Q.;

Huang, J.; Chen, W.; Wang, H. Dark

Light Image-Enhancement Method

Based on Multiple Self-Encoding Prior

Collaborative Constraints. Photonics

2024, 11, 190. https://doi.org/

10.3390/photonics11020190

Received: 20 December 2023

Revised: 8 February 2024

Accepted: 11 February 2024

Published: 19 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

Dark Light Image-Enhancement Method Based on Multiple
Self-Encoding Prior Collaborative Constraints
Lei Guan 1,2, Jiawei Dong 1,2, Qianxi Li 1,2, Jijiang Huang 1,*, Weining Chen 1 and Hao Wang 1,*

1 Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China;
guanlei21@mails.ucas.ac.cn (L.G.); dongjiawei22@mails.ucas.ac.cn (J.D.); liqianxi22@mails.ucas.ac.cn (Q.L.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: huangjijiang@opt.ac.cn (J.H.); wanghao@opt.ac.cn (H.W.)

Abstract: The purpose of dark image enhancement is to restore dark images to visual images
under normal lighting conditions. Due to the ill-posedness of the enhancement process, previous
enhancement algorithms often have overexposure, underexposure, noise increases and artifacts when
dealing with complex and changeable images, and the robustness is poor. This article proposes a
new enhancement approach consisting in constructing a dim light enhancement network with more
robustness and rich detail features through the collaborative constraint of multiple self-coding priors
(CCMP). Specifically, our model consists of two prior modules and an enhancement module. The
former learns the feature distribution of the dark light image under normal exposure as an a priori
term of the enhancement process through multiple specific autoencoders, implicitly measures the
enhancement quality and drives the network to approach the truth value. The latter fits the curve
mapping of the enhancement process as a fidelity term to restore global illumination and local details.
Through experiments, we concluded that the new method proposed in this article can achieve more
excellent quantitative and qualitative results, improve detail contrast, reduce artifacts and noise, and
is suitable for dark light enhancement in multiple scenes.

Keywords: dark light enhancement; self-encoding prior; fidelity term; collaborative constraint

1. Introduction

Currently, digital image processing technologies centered around network frame-
works are gradually shining brightly in various aspects of human life, such as unmanned
driving [1], industrial production [2], video surveillance [3], military applications, remote
sensing monitoring [4] and other fields. However, the application premise of these tech-
nologies is to obtain accurate and clear digital images for recognition and judgment, so
as to carry out a series of downstream tasks of computer vision. However, there are often
some uncontrollable factors in the process of image acquisition, and it is impossible to
obtain images with good imaging quality, especially in the case of poor lighting conditions,
such as cloudy, indoor, night, deep-space, underground and other working environments.
The images obtained by the device may exhibit severe distortion and noise. The image
gray-scale range is narrow and the contrast is low [5], which makes the human eye unable
to obtain effective information. It also affects the recognition and processing of images by
computer vision.

Due to the hardware iteration of computers and the construction of large-scale datasets,
deep learning networks can learn and parameter-fit large-scale datasets through deeper
and more complex network structures [6], but dark light enhancement is different from
other image processing tasks. There is difficulty in obtaining authentic and effective labeled
image datasets in the dark light environment, so it is difficult to fit the feature mapping
based on the paired (normal and dark image) data. Although there are many algorithms
that can perform unsupervised enhancement [7] based on prior knowledge, such as image
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exposure control, color constancy, and color consistency, there are still some limitations to
the enhancement effect. Second, the definition range of dark light environment is relatively
wide. If the images obtained under different dark light environments and different light
intensities are enhanced by pre-trained models, there will inevitably be overexposure,
underexposure, blurring and other phenomena.

In various aspects, such as denoising, deblurring and brightness adjustment, efforts
are made to improve image quality and enhance low-light images. This article proposes a
collaborative constraint dark light enhancement algorithm based on multiple self-coding
priors (CCMP). Compared with most self-supervised algorithms that learn the mapping of
truth values to the original image, this algorithm cleverly utilizes multiple priors to obtain
the essential features of the image, reduces the dependence on the dataset, improves the
robustness of the algorithm, and adapts to more complex dark environments. Compared
with unsupervised algorithms that rely solely on multiple loss functions for enhancement,
this algorithm guides the direction of enhancement through prior terms, constrains image
enhancement changes through fidelity terms, and balances the feature relationships of
color, texture, saturation, etc. in the enhanced image, achieving better visual effects.

The complete enhancement process is shown in Figure 1. First, the deep nonlinear
features of the image are mined through specific multiple self-coding network structures as
prior constraints for subsequent enhancement networks. Second, in the enhanced network
module, the global detailed color features of the image are extracted, and a new image loss
evaluation function is designed as a fidelity term to balance the multi-dimensional features
of the image. Finally, a collaborative constraint approach is used to achieve both subjective
and objective optimization. The main contributions of this paper are as follows:

1. By using an autoencoder based on an LBP (local binary pattern) to learn the detailed
texture features of dark light images, the interference of brightness color information
in the enhancement process is suppressed.

2. The mask self-encoder based on the MCMC(Markov chain Monte Carlo) algorithm
is used to effectively capture the important features in the data. The unsupervised
feature learning method improves the robustness and adaptability of the enhancement
process, and effectively filters the noise while reconstructing the image.

3. The image difference evaluation function is designed as the loss function of the data
and multiple autoencoder networks are combined in the enhancement network as
a priori terms to constrain the enhancement process, and the losses based on image
structural analysis and image difference are combined to guide the enhancement
process of the dark light image to improve the enhancement effect and robustness.
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Figure 1. (a) This is a method of processing low-light images through semantic contrastive learning,
which is divided into three parts: enhancement, contrastive learning and semantic segmentation.
(b) This is a dark light enhancement network based on multiple prior collaborative constraints newly
designed in this article. The blue box is used to enhance the network data flow, and the red box is
not input into the network, but rather is only used to display the data processing method. Through
the prior acquisition of LBP manipulation and MCMC mask prior, the information is obtained,
and the differentiated loss is designed to constrain and enhance the loss of multiple pieces of prior
information. The smooth loss acts on the enhanced network together to achieve a better image
enhancement effect.

2. Related work

Up to now, the mainstream algorithms used for processing low-light images can be
divided into three categories: traditional methods for grayscale and contrast, methods
based on Retinex theory, and various variant network-enhancement frameworks based on
deep learning.

• Traditional enhancement methods:

The method based on grayscale transformation is to map and optimize the grayscale
values of each point in the image through fixed formulas and adjustment coefficients.
The specific methods are piecewise, linear, nonlinear logarithmic function and gamma
transformation. However, no matter what kind of solution, parameter optimization can
only be based on experience or a large number of manual participations; it lacks an adaptive
mechanism, and in the process of image enhancement, the overall gray distribution is not
considered, which makes it easy to lose details and causes limited enhancement ability.

The dark light enhancement method based on Retinex theory is based on the Retinex
theory proposed by Land [8]. To enhance the color consistency of the image, it is first
decomposed before fusing it to enhance the low-light image. The algorithm based on this
principle has been continuously improved. From the single-scale Retinex algorithm [9], to
the multi-scale [10–12] weighted average MSR algorithm, and then to the color-recovery
multi-scale MSRCR algorithm [13,14], some of the algorithm improvements have achieved
breakthroughs in local and global dynamic compression, the enhancement of regional
contrast, and the adjustment of color distortion. However, based on this theory, various
methods still have problems such as a long processing time, limited model capacity, the
inadaptability of hand-made constraints, the inability to process in batches quickly, glow
appearing in shadow transitions in high-dynamic images and inferior color retention.
Therefore, the results may produce strong noise, inappropriate exposure, insufficient
details and unsaturated colors.
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• Deep-learning methods:

In the enhanced networks, CNN is the most widely used framework, and most of
them use multi-feature complementary fusion to optimize images. For example, the CNN
network is used to settle the blind enhancement problem by using two-branch exposure
fusion [15], the LLCNN of enhanced images is generated by using multi-level features [16],
and the GLADNet of low-light images with incomplete global illumination is solved by
using illumination prediction and original input-reconstruction details [17]. Jiang et al. [18]
proposed the R2RNet low-illumination network, and Li et al. [19] proposed a dual-attention
mechanism model for extracting local features to upgrade image quality.

At the same time, it is also a common idea to apply the Retinex algorithm to deep
learning [20–22]. Liang et al. [23] used the Retinex network model to learn the mapping
curve between low-light images and normal images. Liu [24] proposed a lightweight
low-illumination RUAS model constructed using Retinex rules, which does not require
any pairwise or non-paired supervision during the search process, and is lighter and more
flexible than the previous architecture.

In addition, there are some enhancement methods for dark light images. Ren et al. [25]
combined image perception and generative adversarial networks in the network, and the
generated image visual quality was better than that achieved with an algorithm of the same
level. Fan et al. [26] proposed a new deep network-integrating semantic segmentation for
low-light image enhancement. Using semantic prior and signal structures, the illumination
distribution and moderate noise were successfully processed, and good visual quality was
achieved. Liu [27] designed a new event and image fusion transform (EIFT) module for
event and image fusion, and a guided dual-branch (EGDB) module for weak light enhance-
ment. Wang et al. [28] designed two independent networks to learn the characteristics of
lighting and noise in images, which are interrelated to play a role in image optimization.

In summary, building various network models for optimizing low-light images is the
mainstream approach. However, mainstream deep-learning methods rely on large datasets,
the models have massive parameters, and they cannot achieve real-time enhancement
requirements. Moreover, most of the enhancement models are only used for specific
scenarios, only to adjust the image brightness, and lack the ability to denoise and deblur.
Therefore, it is necessary to continuously optimize and improve the enhancement methods
for low-light images.

• Prior learning based on mask auto-encoder:

When the traditional autoencoder learns the prior information of the image, because
the compression and decompression process cannot accurately reconstruct the details and
complexity of the image, it is unmanageable to deal with the complex image structure, and
it is prone to overfitting the potential distribution characteristics of lost images. At the same
time, the autoencoder is usually a learning method based on local features, which decodes
and reconstructs according to the low-dimensional representation of the code. This may
lead to poor performance of autoencoders in learning global structural information and an
inability to capture the overall layout and semantic features of the target data. Kaiming He
et al. [29] first proposed a mask autoencoder network in 2021. The asymmetric encoder and
decoder design and a self-supervised pre-training model with a higher mask rate (75%) are
used to mask the original image data. The image region of interest can be focused, so that
the model can better capture key image features and structures.

Since then, the mask-based autoencoder network has shown impressive results in tasks
such as noise reduction and super-resolution reconstruction, and many improved variants
have been derived. CAE [30] improves two aspects of better representation learning; one
is to separate the ‘representation learning‘ and ‘pretext task‘ as far as possible, and the
other is to use a representation space to predict the masked patch. It utilizes the principle
of perceptual similarity to improve image transfer performance [31]. Paper [32] used the
masked image to directly return the HOG feature in the feature space to achieve network
training. It does not depend on data augmentation, nor does it require tokenization, and
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more importantly, it can be extended to large models. MSN [33] matches the representation
of an image view containing a random mask with the unobstructed original image. On the
basis of the Siamese Network, the mask patch strategy is used and prototype supervision
is added. However, how to determine the optimal mask strategy, mask size and mask
position is still a problem that needs further study.

3. Materials and Methods

As shown in Figure 2, the CCMP algorithm uses the U-net network combined with a
mixed-attention mechanism. The data feature captured by the dual-specific autoencoder
network is used as a prior term, and then the regularization prior term is used to constrain
the enhancement process of the guided dark-light image.
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3.1. Self-Encoding Prior Based on Image LBP Processing

The prior term [34,35] is part of the constraint on the model based on prior knowledge
or prior assumptions. By introducing an a priori term, the model can be regularized when
data are insufficient, reducing the risk of overfitting, and guiding the model to learn in a
more reasonable and reliable direction. Therefore, the information obtained by the prior
term will directly affect the subsequent dark light enhancement process.

The current dark light enhancement network mostly processes the dark light image
directly. In order to accurately obtain the image texture, detail and contour information,
and suppress the influence of color and brightness in the original dark light image on
the enhancement process, this paper obtains the prior process. By using a local binary
pattern [36], the texture details of the image can be obtained by comparing the pixel values
of adjacent small areas. The LBP process is as follows:

First, transforming an image from color to gray can effectively avert the influence
of color. For the obtained gray image, I(x, y) is used to represent the pixel value at the
coordinate (x, y) in the image, and the target point grayscale value c = I(x, y) is compared
with the surrounding k pixels. The formula is as follows:

Pk =

{
1, i f I(xk, yk) ≥ c
0, i f I(xk, yk) < c

. (1)
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The calculated Pk is arranged in order to obtain the LBP value as follows:

LBP(x, y) = P7P6P5P4P3P2P1P0. (2)

The histogram is constructed by calculating the LBP value of all pixels, and the feature
vector is obtained by normalization. The feature vector with local invariance and robustness
to gray level change, illumination change and noise is obtained.

3.2. Mask Autoencoder Prior Based on Markov Monte Carlo Method

In this paper, a masked autoencoder based on the Markov chain Monte Carlo (MCMC)
method [37,38] is proposed. The essence of the Monte Carlo method is to use randomness
to solve the problem of certainty. Monte Carlo sampling utilizes the probability density
function f (x) of a known distribution to generate a sample x that obeys this distribution.
Because the data are discrete, it is the same for color image data. We assume that x is
uniformly distributed between [a, b] and p(x, i ) = 1/(b − a). By introducing the Monte
Carlo integral formula with probability distribution, we can obtain the following:

b∫
a

f (x)dx =
1
n

n−1

∑
i=0

f (xi)

1/(b − a)
=

b − a
n

n−1

∑
i=0

f (xi). (3)

As the probability distribution is not a common distribution, generally accept–reject
sampling is used to obtain the distribution of the sample. However, using the Monte Carlo
method, it is difficult to simulate high-dimensional distribution. The dataset in this paper
contains images collected in a dark light environment, and more potential information
is hidden in a high-dimensional space. Therefore, this paper solves the defects of the
Monte Carlo algorithm (MCMC) in high-dimensional data of dark light images by using
the Markov chain.

In the Markov chain [39] model state transition matrix, no matter from which ini-
tial probability distribution, substituted into the state transition matrix, the final state
probability distribution tends to the same stable probability distribution, so the Markov
chain sampling can obtain the corresponding sample set, which conforms to the stationary
distribution, and then the Monte Carlo simulation is summed. Suppose that after n rounds,
the Markov chain converges to our stationary distribution 1 as follows:

πn(x) = πn+1(x) = πn+2(x) = · · · = π(x). (4)

For each distribution πi(x),

πi(x) = πi−1(x)P = πi−2(x)P2 = · · · = π(x)Pi. (5)

After n times, the sampling set conforms to the sample set corresponding to the
stationary distribution, and then the Monte Carlo simulation is summed.

In this paper, the process of the Markov Monte Carlo method mask for dark light
images is as follows. First, the mask M is initialized, and the energy function is defined,
where E(I, M) represents the energy function in image I, which is used to measure the
difference between the image and the mask. The energy function formula is as follows:

E(I, M) = ∑|I − I × M|, (6)

Among them, I is the original image, M is equal to the mask, and I·M is the obtained
mask graph. The symbol ∑ represents the sum of all elements.

When designing the transition probability function, T(M → M′) represents the transi-
tion probability from the current mask state M to the new mask state M′.

T(M → M′) = min(1, e(Ei(M)−Ei(M′))). (7)
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where M denotes the current mask state, M′ denotes the new mask state, and the current
mask energy and future mask energy are Ei(M) and Ei(M′), respectively. The transfer
probability function obtains changes in energy before and after flipping, and the difference
is indexed to obtain a transition probability. According to the energy difference, we chose
the smaller value between the minimum value and 1.0 as the transition probability to
ensure that the transition probability range is within [0,1].

In N iterations, the position j of the mask is randomly selected to calculate the current
energy: Ej(M) = E(I, M). By flipping the mask position j, a new mask state M′ is obtained.
Then, the energy after flipping is calculated as Ej(M′) = E(I, M′), the transition probability
is calculated, and the flip operation is accepted as follows:

α = min(1, e(Ej(M′)=E(I,M′))). (8)

i f
{

r > α, M = M
r < α, M = M′ . (9)

3.3. Loss Function
3.3.1. Loss of Image Local Contrast Difference

The details, textures and potential features of the original images learned by multiple
specific autoencoder networks guide the image enhancement as the first validation and
fidelity items in the enhancement network. For the prior image information, gray processing
is performed first:

G(i,j) = 0.2989 × IR
(i,j) + 0.5870 × IG

(i,j) + 0.1140 × IB
(i,j), (10)

where IR
(i,j), IG

(i,j), IB
(i,j) are the brightness values of the corresponding coordinate points in

the red, green and blue channels of the image, respectively. The gradients in the X and Y
directions are respectively calculated as follows:

RX
(i,j) = [G(i−1, j+1) + 2G(i, j+1) + G(i+1, j+1)]− [G(i−1, j−1) + 2G(i, j−1) + G(i+1, j−1)], (11)

RY
(i,j) = [G(i−1, j−1) + 2G(i−1, j) + G(i−1, j+1)]− [G(i+1, j−1) + 2G(i+1, j) + G(i+1, j+1)]. (12)

The image difference measure is calculated as follows:

↕D =
1

W(i,j)H(i,j)

W(i,j)

∑
i=1

H(i,j)

∑
j=1

√
{
√
(RX

en)
2
+ (RY

en)
2 −

√
(RX

gt)
2
+ (RY

gt)
2}

2

, (13)

where G(i,j) is a grayscale image, and RX
(i,j) and RY

(i,j) denote the gradients in the X and

Y directions, respectively. RX
en is the gradient of the dark light enhanced image in the X

direction, and RX
gt is the gradient of normal image in the X direction. ↕D is the loss of the

image local contrast difference.

3.3.2. Image Structural Loss and Minimum Absolute Deviation Loss

To smooth the image, this article adds the total variation loss ↕S:

↕S =
1

W(i,j)H(i,j)

W(i,j)

∑
i=1

H(i,j)

∑
j=1

{[( ∑
R⊂σ

∣∣∣RX
(i,j)

∣∣∣)/3]
2
− [( ∑

R⊂σ

∣∣∣RY
(i,j)

∣∣∣)/3]
2
}, σ = {r, g, b}, (14)

∑
R⊂σ

∣∣∣RX
(i,j)

∣∣∣ represent the sum of the gradients of the red, green and blue channels in

the X direction. ∑
R⊂σ

∣∣∣RY
(i,j)

∣∣∣ represent the sum of the gradients of the red, green and blue

channels in the Y direction. ↕S is the image structural loss.
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Absolute deviation loss is a commonly used loss function for calculating the loss
before and after image enhancement:

↕1 =
n

∑
i=1

(Yi − Xi)
2. (15)

where Xi is the original value and Yi is the target value.

3.3.3. Image Integrity Loss

In a dark light enhanced network, two learned prior models are used as constraint
functions, and a weighted sum is performed together with the defined local contrast
difference measurement and structural loss of the image to obtain the total image loss, as
shown in Formula (16):

↕T = η ∗ ↕prior(LBP)
D + ∂ ∗ ↕prior(MCMC)

D + µ ∗ ↕1 + λ ∗ ↕S (16)

η, ∂, µ, λ represent weighting factors for the LBP prior loss ↕prior(LBP)
D , MCMC prior loss

↕prior(MCMC)
D , minimum absolute deviation loss ↕1 and image structural loss ↕S, respectively.

↕T is the sum of losses in the process of enhancing low-light images.

4. Experiment
4.1. Implementation Details and Datasets

The publicly available datasets used for testing this algorithm included LOL, LIME,
and DarkFace (the last two are both reference-free datasets). The evaluation indicators were
divided into two parts: objective image indicators and subjective visual indicators. Among
them, multiple self-encoding prior networks based on the LBP algorithm and MCMC
algorithm were pre-trained. Then, the hyperparameter adjustment of multiple loss in the
network was enhanced. The experimental hardware configuration was a PC with an Intel
Xeon 4212R 2.40 GHz CPU, 128 GB RAM and an NVIDIA Quadro RTX 500 24GB GPU. The
equipment comes from HP company in Beijing, China.

4.2. Ablation Experiment

This paper compares the performance of no prior network, LBP prior network, MCMC
prior network and double prior network in the process of dark light image enhancement.
LPIPS (learned perceptual image patch similarity), PSNR (peak signal to noise ratio) and
SSIM (structural similarity index) are used as evaluation indexes to measure the difference
of color, structure and detail. The higher the PSNR and SSIM values, the smaller the LPIPS
value, and the better the image quality. The quantitative indicators on the LOL dataset are
shown in Table 1.

Table 1. Image indexes of enhanced networks combined with different prior information.

Method No Prior MCMC Prior LBP Prior Double Priors

LPIPS 0.1877 0.1535 0.1428 0.1302
SSIM 0.7766 0.7998 0.7764 0.8122

PSNR(dB) 15.95 17.20 17.56 20.42

From Table 1, we can see that the enhancement effect of multiple prior collaborative
constraints on dark light images is very obvious. Under the constraint of a single piece of
prior information, the LPLPS value of the image-enhancement network decreases signifi-
cantly, the SSIM is closer to 1 and the PSNR value is improved. The objective indicators
are close to the better image, and the enhancement effect is more obvious under the col-
laborative constraint of double prior information. The enhancement effect of dark light
enhancement networks with different priors on the LOL dataset is shown in Figure 3. Based
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on the analysis of subjective visual perception variables such as detail clarity, contrast, color
naturalness, brightness, etc., the results of the non-prior enhancement network have serious
color distortion and large areas of artifacts. The enhancement network combined with the
MCMC prior or LBP prior has improved in color and detail compared to the non-prior
enhancement, but the results are still unsatisfactory. The image quality based on the MCMC
prior are blurred in Figure 3h, and the image quality based on the LBP prior is too dark in
the details of Figure 3d. Under a double prior co-constraint, the enhanced image is sharper
in detail, with artifacts and noise interference suppressed, more natural colors, and is closer
to the true value, as shown in Figure 3j.
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Figure 3. Detailed comparison results of dark light enhancement networks with different prior
information on dark-light images of the LOL dataset. Among them, images (b–e) represent the
different enhancement effects of image (a), while (g–j) represent the different enhancement effects
of image (f). The four enhancement methods are in order: no prior enhancement, MCMC prior
enhancement, LBP prior enhancement, and dual prior collaborative enhancement.

Information entropy can quantitatively enhance a network‘s ability to compress data
and learn potential missing information. A higher information entropy indicates that the
random variable has more possibilities or more potential states, which represents the diver-
sity of the optimized image. The 15 images of the LOL test set were enhanced with different
prior information, and the information entropy of each image was calculated as shown
in Figure 4. The image information entropy of the enhancement network without prior
information is generally small. Most of the image information entropy in the enhancement
results combined with the LBP prior or MCMC prior is better than that of the network
without prior information, while the double-prior collaborative constraint network for dark
light images performs well in the calculation of image information entropy.

4.3. Referenced Quality Assessment

This article uses the public dataset LOL to quantitatively evaluate various methods.
These images have corresponding dark and true values. Therefore, the LOL dataset has
more noise, the enhancement process is more complex, and the comparison of enhanced
effects is more obvious. This article comprehensively evaluates the enhancement effect of
images through PSNR, SSIM, NIQE (natural image quality evaluator) and LPIPS values.
The performance of various dim-light enhancement algorithms on the LOL dataset is shown
in Table 2. The test results of our algorithm on PSNR and SSIM are significantly better
than those of other methods, and it also has a good ranking in the evaluation of LPIPS and
NIQE indicators. Therefore, the enhancement approach proposed in this article is feasible
and effective, and the comprehensive evaluation of objective indicators is superior to most
existing methods.
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Table 2. Test results of various algorithms on the unified LOL dataset.

Method PSNR (dB) SSIM LPIPS (alex) LPIPS (vgg) NIQE

DALE 17.39 0.750 0.0832 0.1243 15.054
DRBN 16.42 0.751 0.1197 0.2215 12.845
DSLR 14.79 0.607 0.0861 0.1768 9.919

EnlightenGAN 17.50 0.666 0.1300 0.1743 10.001
RUAS 15.32 0.613 0.1440 0.2310 10.889
SGM 17.23 0.763 0.2820 0.3452 13.209

ZeroDCE 14.12 0.583 0.1362 0.1776 12.152
ZeroDCE++ 14.37 0.589 0.1313 0.1689 11.876

KinD 16.44 0.789 0.1413 0.1695 9.658
KinD++ 16.58 0.766 0.1590 0.1807 10.685

Ours 20.42 0.8122 0.1302 0.1665 10.922

The algorithm in this article has excellent performance in image enhancement quality,
but in practical applications, processing time is also an effective reference for measuring
the quality of the algorithm. In the collaborative constraint network based on multiple self-
coding priors proposed in this article, although the model is relatively complex, all multiple
priors are pre-trained models, which can be used as loadings to directly constrain and
guide the enhancement process in the enhancement network, thus greatly saving training
time. Because the training time is limited by the dataset and the number of cycles, it is
not easy to effectively compare with other algorithms. This article is based on the models
trained by various algorithms, and tests the enhancement speed on the LOL dataset’s
test set (15 dim light images of 600 × 400). The test results are shown in Figure 5. The
algorithm in this article has a processing time that exceeds most algorithms due to the
limitation of model complexity. However, compared with other algorithms, the processing
time difference of a single image is less than 0.2 s, which basically meets the real-time
enhancement requirements and further improves the enhancement effect, fully proving the
feasibility and superiority of the algorithm proposed in this paper.
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The visual experience is shown in Figure 6. The objective evaluation indicators and
intuitive visual perception are not completely unified. On the LOL dataset, the best ranked
KinD algorithm in NIQE showed overall darkening, and changed the attributes of the
image itself. For example, the shadow behind the rabbit doll image in Figure 6 was
weakened, and the enhancement results of the DALE algorithm, which ranked first in the
LPIPS metrics, were not satisfactory in terms of color. Due to the interference of noise and
inconsistent exposure levels, most algorithms encounter problems such as color distortion,
underexposure and blurred details during enhancement. However, the CCMP method
proposed in this article does not exhibit distortion, overexposure or darkening in color
brightness, and maintains good details and textures.

4.4. Quality Assessment without Reference

With the purpose is to verify the robustness of the method proposed, an enhancement
test was conducted on a reference free public dataset. The visual performance on the
reference dataset LIME is shown in Figure 7. It can be seen that most algorithms have
poor robustness for images with different color tones and brightness levels. The images
enhanced by the DALE, SGM and ZeroDCE algorithms generally exhibit underexposure,
while the DLSR algorithm and RUAS algorithm exhibit bright blocks and derived regions.
When enhancing the alien image, due to the high dynamic range characteristics and high
contrast between light and dark, most algorithms experienced color imbalance during the
enhancement process. Our algorithm (CCMP) has shown a great enhancement effect in both
the overall color naturalness and details, while maintaining the original image properties
in images with enhanced brightness. It can efficiently export high-quality images while
suppressing noise and preserving details. Therefore, it can be proven that the more robust
implicit priors learned through multiple self-coding modules have unique advantages in
detail restoration, which testifies to the superiority of our collaborative constraint method.
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The CCMP algorithm was also compared on another publicly available dataset, the
DarkFace dataset. As shown in Figure 8, on the DarkFace dataset, the enhanced images of
the DALE, DLSR and ZeroDCE algorithms are all very dark, while the exported results of
the DLSR, EnlightenGAN and RUAS algorithms show color deviation. After enhancement,
our algorithm (CCMP) maintains the original color structure and has good clarity and de-
tails. Accordingly, the algorithm (CCMP) has certain advantages in enhancing performance
in multi-scene dark environments.
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4.5. Experimental Discussion

Through the above tests, the superiority of the CCMP algorithm can be fully demon-
strated through subjective visual perception and objective evaluation indicators. First,
compared with the supervised network model representative algorithm DRBN (recursive
band learning), the CCMP algorithm has a great enhancement effect, and the algorithm
weakens the impact of the training process on the paired dataset. When trained on the
same dataset and applied to different conditions of dark light images, the CCMP algorithm
shows higher adaptability. This is because its unique multiple priors play a guiding role
in the processing. Second, when comparing our algorithm with the classic unsupervised
real-time enhancement algorithm represented by the Zero-DCE algorithm, the Zero-DCE
algorithm is different from traditional deep learning algorithms that use large-scale network
parameters for feature extraction. Instead, it uses several custom loss functions and neural
networks to fit the brightness mapping curve, which is closer to mathematical calculations.
However, due to sacrificing model complexity for processing speed, the Zero-DCE algo-
rithm performed poorly on various datasets in Figures 5–7. However, although the CCMP
algorithm increases the model complexity, it performs better in image processing with a
wider range of effects. The processing time for a single image is only less than 0.2 s, and
as the hardware level continues to improve, the time difference will further narrow. In
addition, as for the EnlightenGAN algorithm, which is a deep-network model, although it
does not rely on paired training data, EnlightenGAN uses generative adversarial networks
to establish non paired mappings. Compared with the multiple prior information of the
CCMP algorithm as guidance constraints, EnlightenGAN has greater randomness and lacks
stability. Moreover, the multiple fidelity terms of CCMP also play a good balancing role,
and the processing effect usually does not show significant deviations. In Figure 6, it can
be seen that there is a significant deviation in EnlightenGAN, while the CCMP algorithm
tends towards ideal truth values.

In summary, the CCMP algorithm demonstrates good adaptability to different envi-
ronments due to its unique multiple prior information guidance. Additionally, multiple
image-difference losses are designed as fidelity terms to ensure that the color, contrast and
detail texture of the image do not deviate significantly from the ideal truth value, thus
improving the stability of the algorithm. Additionally, directly loading prior information
through pre-training saves processing time and does not slow down the processing speed
due to the complexity of the model. Therefore, it confirms that the CCMP algorithm is
innovative and progressive.
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5. Conclusions

Aiming at the complex and changeable dark light environment, this article proposes
a new approach for improving and optimizing images, which uses multiple specific au-
toencoder networks to mine implicit prior information from the original data, and uses the
learned prior information in the form of collaborative constraints to guide the dark light
image in the enhancement network. This includes features such as rich detail texture.

Experimental results on various low-light datasets evidence that our method outper-
forms many mainstream methods according to both subjective and objective indicators.
Additionally, the structure of multiple prior information collaborative constraints can
lead to better image quality improvement. Our future work will explore more effective
prior learning methods under the premise of controlling the size of the model and ob-
taining additional feature information of the image, and try to add more enhancement
constraint functions that meet the needs of the human eye to further optimize the effect of
image enhancement.
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