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Abstract: A novel preprocessing method based on a modified U-NET is proposed for single interfer-
ence fringes. The framework is constructed by introducing spatial attention and channel attention
modules to optimize performance. In this process, interferometric fringe maps with an added back-
ground intensity, fringe amplitude, and ambient noise are used as the input to the network, which
outputs fringe maps in an ideal state. Simulated and experimental results demonstrated that this
technique can preprocess single interference fringes in ~1 microsecond. The quality of the results was
further evaluated using the root mean square error, peak signal-to-noise ratio, structural similarity,
and equivalent number of views. The proposed method outperformed U-NET, U-NET++, and other
conventional algorithms as measured by each of these metrics. In addition, the model produced high-
quality normalized fringes by combining objective data with visual effects, significantly improving
the accuracy of the phase solutions for single interference fringes.

Keywords: fringe pretreatment; filter normalization; U-NET

1. Introduction

Interferometry is an active area of research in which the processing of fringe maps is
essential to recovering hidden three-dimensional surface shapes [1]. However, when phase
demodulation is performed on single interference fringes, the background intensity, fringe
amplitude, and ambient noise present at the time of data acquisition can affect the contrast
of fringes and ultimately the accuracy of phase reconstruction. As such, a variety of single
interferometry techniques have been introduced in recent years to address this issue [2–6].
These methods require only one interferometric fringe map for phase extraction and are
primarily applied to dynamic measurements requiring high real-time performance. This
includes the Fourier transform [2,3], regularized phase tracking [4], and Hilbert transform
methods [5,6]. In the case of single interference fringes, a lack of contrast can cause serious
distortions in the resulting phase distribution. As such, filtering ambient noise, normalizing
the background intensity and the fringe amplitude are necessary preprocessing steps when
reconstructing the phase of single interference fringe data [7–9].

These techniques have been implemented in several previous studies. For example,
Quiroga [10] proposed an orthogonal projection algorithm used for background suppres-
sion and modulation normalization. Ochoa [11] developed a process for normalizing
and denoising fringe maps using directional derivatives. Bernini [12] proposed a tech-
nique based on 2D empirical modal decomposition and Hilbert transforms for the nor-
malization of striped images. Tien [13] developed a fringe normalization algorithm using
Zernike polynomial fitting to eliminate unwanted intensity in interferograms, suppressing
background pixels and high frequency noise while improving contrast through normal-
ization. Sharma [14] introduced a fringe normalization and denoising process based on
Kalman filtering to fit background and modulation terms using a raster scan. Leijie [15] pro-
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posed a fringe map orthogonalization method based on a series of GANs, which achieved
phase demodulation of single interference fringes with high accuracy.

In response to the above analysis, this paper proposes a preprocessing method for
single interference fringes, in order to quickly and easily realize the denoising and normal-
ization of single interferometric fringe patterns, and to lay the foundation for the subsequent
phase solution of single interferometric fringe patterns, in which denoising and normaliza-
tion are achieved using an improved U-NET framework. The algorithm was trained by first
determining the form of the background and fringe structures. Gaussian noise and corre-
sponding interference fringes were then added under ideal conditions to establish sample
pairs. Four different evaluation metrics, including root the mean square error (RMSE), peak
signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and equivalent
number of looks (ENL) were utilized to verify the feasibility of this process. Finally, the
proposed method was further assessed using a series of experimentally acquired single
interference fringes.

2. Method
2.1. Interference Fringe Model

Interference in fringes can be expressed mathematically as:

I(x, y) = A(x, y) + B(x, y) cos[φ(x, y)] + N(x, y), (1)

where A(x, y) is the background intensity in a fringe map, B(x, y) is the fringe amplitude,
ϕ(x, y) is a phase term associated with a measured physical quantity, and N(x, y) is addi-
tional noise. Normalizing the background and fringe amplitude, while filtering additional
noise, allows for the interference (after preprocessing) to be represented as

I(x, y) = 1 + cos[φ(x, y)]. (2)

The modulated and background intensity can be determined from a comparative
analysis to be in the form of a Gaussian function given by:

f (x, y) = a exp

(
−
(
(x − x0)

2

2σ2
x

+
(y − y0)

2

2σ2
y

))
, (3)

where (x, y) is a spatial coordinate, x0, y0 is a center point coordinate, a is the magnitude,
and σx, σy denote the variance.

2.2. The DN-U-NET Network Model

U-NETs [16] are improved fully convolutional neural networks designed to solve
problems in medical image segmentation. They exhibit several robust properties that have
led to an increasing number of applications in a wide variety of tasks. The purpose of this
paper is to achieve pre-processing, in the form of denoising and normalization, for single
interferometric fringes using an improved U-NET neural network. The proposed model is
thus termed a denoising and normalization U-NET (DN-U-NET).

This process involved the use of an attention mechanism [17], a technique that em-
phasizes key information by assigning different weights to individual features to improve
model accuracy. Attention mechanisms have been widely used in various deep learning
tasks, such as computer vision and natural language processing. The convolutional block
attention module (CBAM [18]) divides this attention step into two separate components,
a channel attention module and a spatial attention module, which not only preserves
parameters and computational power, but also facilitates integration into existing network
architectures as a plug-and-play module. This inclusion typically improves extraction
accuracy and network generalizability. The bottleneck attention module (BAM [19]) was
developed by the same group that proposed CBAM. While these frameworks are similar,
the CBAM module can be described as a series connection of channel attention and spatial
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attention modules. In contrast, the BAM module can be viewed as a parallel connection
(see Figures 1 and 2). The DN-U-NET network structure is shown in Figure 3, where the
input consists of interference fringes with a certain background intensity, fringe amplitude,
and added ambient noise. The output includes corresponding interference fringes in an
ideal state.
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2.3. Dataset and Environment Configuration

The included dataset consists of two parts: interferometric fringes with an added
background intensity (i.e., fringe amplitude and ambient noise), and the corresponding
fringes in an ideal state. The Zernike polynomials are a set of complete orthogonal bases
in the unit-circle domain constructed by the Dutch scientist F. Zernike in 1934 during his
research on phase contrast microscopy, and their use as a basis function for phase fitting
can correspond well with the classical phase differences of optical systems and provide
the necessary conditions for subsequent studies. Random phases were generated using
Zernike polynomials as follows:

ϕ(x, y) = π
n

∑
i=1

aiZi, (4)

where ai represents Zernike polynomial coefficients (i = 1, 2, 3, . . . , n). In the simulation,
in order to be able to post-simulate phase data that are closer to the practical application,
the values of the Zernike polynomial coefficients are kept consistent with those of the
experimental data from the Zygo interferometer. These coefficients were generated using a
random function, with a range of values shown in Table 1.
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Table 1. The range of Zernike polynomial data.

Zernike
Coefficient a1 a2–a3 a4–a6 a7–a36

Value Range/λ 0 [−3, 3] [−0.1, 0.1] [−0.01, 0.01]

A total of 12,000 pairs of input and ideal stripe maps were generated using a simulation,
with sizes of 256 × 256 pixels. These images were input to the network and used for training,
with a 5:1 ratio of samples in the training and test sets. The TensorFlow framework was
implemented using Python on a PC with an Intel(R) Xeon(R) Gold 5218R CPU @ 2.10 GHz.
Calculations were accelerated using an NVIDIA GeForce RTX 3080. Weighting parameters
were optimized using the Adam optimizer, with a learning rate set to a fixed value of 0.0001.
A total of 500 iterations were performed, with a training time of ~40 h required to identify
ideal weights. The corresponding loss function, minimized as part of the training process,
could be expressed mathematically as:

ℜ(x, y) =
1
n

n

∑
i=1

( fi(x, y)− gi(x, y))
2

, (5)

where fi(x, y) is a fringe map generated by the network, gi(x, y) is a truth value, and n is
the minimum number of input data batches.

2.4. Evaluation Indicators

Four numerical metrics were selected to evaluate the results and quantify deviations
from true values, both before and after denoising and normalization. This included the
root mean square error (RMSE), peak signal-to-noise ratio (PSNR), structural similarity
index measure (SSIM), and equivalent number of looks (ENL).

The RMSE represents the extent to which measured data deviate from true data, with
smaller values indicating a higher accuracy. This term can be expressed mathematically as

RMSE =

√
∑ ∑[R(x, y)− G(x, y)]2

x × y
, (6)
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where x and y denote the width and height of a fringe map, respectively, R(x, y) represents
preprocessed data before or after, and G(x, y) are true value data.

The PSNR captures differences between corresponding pixels in a preprocessed image
and a true value image, represented as

PSNR = 10 × log10

(
(2n − 1)2

MSE

)
, (7)

where 2n−1 represents the maximum gray value of a pixel in an image (n = 8). The MSE
can be expressed as

MSE =
∑ ∑[R(x, y)− G(x, y)]2

x × y
. (8)

The SSIM is used to evaluate the similarity of two images and is given by

SSIM(u, v) =
(2µuµv + C1)(2δuv + C2)

(µ2
uµ2

v + C1)(δ2
u + δ2

v + C2)
, (9)

where u, v are two localized windows of size W × W in the true value data and the data
before and after preprocessing, respectively. The terms µu, µv are the averages of pixel
gray values in the two windows, respectively, while δuv is the variance and C1 and C2,
respectively, describe the covariance of the two windows.

ENL provides a measure of the smoothness of a homogeneous region and can be
expressed as

ENL =
µ2

i
σ2

i
, (10)

where µi, σi denote the mean and standard deviation of pixel values in an image, respectively.

3. Simulation and Analysis

Six different sets of fringes were processed using DN-U-NET, as shown in Figure 4.
Specifically, Figure 4a shows fringe samples in an ideal state, in which the background
intensity and fringe amplitude are constant. Figure 4b shows fringes before processing, in
which the background intensity and fringe amplitude (in the form of a Gaussian function)
were added along with Gaussian noise. Figure 4c displays corresponding results after
processing with DN-U-NET. Visual inspection suggests that the processed fringes exhibit
improved contrast while noise was suppressed significantly, producing results that are
more similar to the ideal fringes.

The proposed DN-U-NET was compared with existing algorithms, including a U-NET,
UNET++ [20], R2-UNET [21], Attention_U-NET [22], and U-NET3+ [23]. The training of
each neural network model was conducted using the same dataset and methodology as that
of the proposed network. Figure 5 shows a series of interference fringes in an ideal state,
with added background intensity, corresponding fringe amplitude, and ambient noise.
A comparison of denoising and normalization results is also provided for several models.
Visual inspection suggests that several of these techniques significantly enhanced fringe
contrast and provided significant suppression of noise. The metrics described above were
used to quantify the effectiveness of fringe denoising and normalization, for comparison
with conventional algorithms. Table 2 provides a comparative analysis of interference
fringe denoising and normalization results from different models, with bold font denoting
the best (highest or lowest) values. It is evident that several algorithms achieved signifi-
cant improvements across each evaluation index compared with the original noisy image.
The processing times of several different networks for a single interference fringe are all
1 microsecond. Notably, the proposed DN-U-NET produced improvements of 0.2986
(RMSE), 0.5712 dB (PSNR), and 0.0009 (SSIM) compared with the standard U-NET algo-
rithm.A global ENL evaluation further demonstrated an increase of 0.0071. The proposed
DN-U-NET network performs the best for all four evaluation metrics. For the indicator of
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the RMSE, comparing with the before processing, it is improved from 96.0986 to 4.3928,
which is a very obvious improvement. Comparing with U-NET++, it is improved from
5.0276 to 4.3928, which is an improvement of up to 12.6%, and in the indicator of PSNR, com-
paring with the before processing, it is improved from 8.4765 dB to 35.2760 dB, which is an
improvement of 26.7998 dB, and comparing to U-NET++, from 34.1035 dB to 35.2760 dB, an
improvement of 1.1725 dB.
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Table 2. A comparison of the denoising and normalization effects produced by different network
models.

Method
RMSE PSNR SSIM ENL

Before After Before After Before After Label Before After

U-NET

96.0986

4.6914

8.4765

34.7048

0.3857

0.9888

1.0845 0.7979

1.0728
U-NET++ 5.0276 34.1035 0.9869 1.0783
R2_U-NET 4.5779 34.9174 0.9895 1.0780

Attention_U-NET 4.5777 34.9178 0.9895 1.0779
U-NET3+ 4.9441 34.2490 0.9873 1.0789

DN-U-NET 4.3928 35.2760 0.9897 1.0799

The validity and stability of the proposed method were further verified through the
addition of background intensity and fringe amplitude. These signals were added to the
label fringes shown in Figure 5a and assumed the form of a Gaussian function and Gaussian
noise with a mean of 0. Fringes with standard deviation levels of 0, 0.05, 0.07, 0.09, 0.12, and
0.15 are shown in Figure 6a–f, respectively. The DN-U-NET was also used to perform the
pre-processing operations of denoising and normalization at varying noise intensities, as
shown in Figure 6g–l. A visual inspection suggests that these processed interference fringes
exhibit significantly improved contrast, as noise has been effectively suppressed. These
results were also quantitatively analyzed, as described below. Specifically, Table 3 provides
a comparative analysis of the denoising and normalization effects produced by the DN-U-
NET. It is evident that the processed images have improved significantly, as measured by
RMSE, PSNR, SSIM, and ENL. Notably, at a noise level of 0.15, these evaluation metrics
have a decreased but remain at a desirable value. This outcome provides more evidence
for the effectiveness and stability of the proposed technique for denoising and normalizing
interference fringes, even at high noise levels.
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Figure 6. A comparison of fringe patterns before and after processing at different noise levels.
(a) Before processing (noise level = 0). (b) Before processing (noise level = 0.05). (c) Before processing
(noise level = 0.07). (d) Before processing (noise level = 0.09). (e) Before processing (noise level = 0.12).
(f) Before processing (noise level = 0.15). (g) After processing (noise level = 0). (h) After processing
(noise level = 0.05). (i) After processing (noise level = 0.07). (j) After processing (noise level = 0.09).
(k) After processing (noise level = 0.12). (l) After processing (noise level = 0.15).

The effectiveness of the proposed processing method was further verified by solving
for the phase of single interference fringes using a technique proposed in the literature [24].
The accuracy of the phase before and after this single processing step was then compared
to provide an evaluation of performance. A single interference fringe in an ideal state
is shown in Figure 7a, while Figure 7b shows a corresponding label phase with PV and
RMS values of 0.1334 λ and 0.0289 λ, respectively. Figure 7c shows a single fringe before
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processing, while Figure 7d shows the corresponding phase after processing, with PV and
RMS values of 0.0448 λ and 0.0105 λ, respectively. Figure 7e shows the error between the
solved phase acquired before processing and the label phase, with residual PV and RMS
values of 0.1174 λ and 0.0254 λ, respectively. Figure 7f displays a single interference fringe
after processing, with Figure 7g providing the corresponding phase after processing, with
PV and RMS values of 0950 λ and 0.0221 λ, respectively. Figure 7h provides the phase error
between the processed phase and label phase, with residual PV and RMS values of 0.0566 λ

and 0.0111 λ, respectively. A comparison of the reconstructed phase accuracy before and
after processing demonstrated that residual PV improved from 0.1174 λ to 0.0566 λ, while
residual RMS improved from 0.0254 λ to 0.0111 λ. Simulated results also indicated the
method proposed in this paper could improve fringe contrast while suppressing fringe
noise, significantly improving the accuracy of single interference fringe phase, which
furthered validated the effectiveness and necessity of the technique proposed in this paper.

Table 3. A quantitative comparison of denoising and normalization effects at varying noise levels.

Noise
Level

RMSE PSNR SSIM ENL
Before After Before After Before After Label Before After

0 94.6761 3.7286 8.6060 36.6999 0.4665 0.9880

1.0845

0.8186 1.0670
0.05 95.1219 3.7145 8.5652 36.7329 0.4459 0.9907 0.8361 1.0701
0.07 95.4267 3.0072 8.5374 38.5675 0.4210 0.9935 0.8209 1.0735
0.09 95.8054 4.1439 8.5030 35.7826 0.3968 0.9895 0.8059 1.0785
0.12 96.4116 3.8796 8.4482 36.3551 0.3678 0.9910 0.7723 1.0866
0.15 96.9670 6.2108 8.3983 32.2678 0.3428 0.9800 0.7351 1.1135
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4. Experimental Analysis

In addition to the use of simulated fringes, DN-U-NET performance was evaluated
with a series of experimentally collected fringe maps, as shown in Figure 8a. The original
interference fringe pattern was collected using a ZYGO-Verifire PE Fischer-type phase-
shifting interferometer, using different networks, the Zygo original interference fringes are
processed, respectively, and the processing results are shown in Figure 8. Through visual
observation, several models can significantly enhance their stripe contrast and significantly
suppress noise when processing the Zygo original interference fringe. In order to compare
the effect before and after processing, the results of several different models are compared
with the gray scale distribution curve of the 128th line before and after processing, and
the comparison results are shown in Figure 9. In addition, the processing results of the
U-NET network are compared with the processing results of the DN-U-NET proposed in
this paper, and the comparison results are shown in Figure 10, which shows that the gray
level distribution of the interference fringes after the processing of the model proposed in
this paper is smoother and more average.
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The original interference fringe pattern was collected using a ZYGO-Verifire PE Fischer-
type phase-shifting interferometer with different plane mirrors serving as the measurement
sample. It is evident that the contrast is poor and obvious noise is present. The fringes
shown in Figure 11a were then processed using the proposed technique, the results of which
are shown in Figure 11b. A visual inspection suggests the contrast has been enhanced while
the ambient noise has been suppressed significantly. Figure 12 provides a comparison of
gray level distribution curves for the 128th line in the two fringe maps shown in Figure 11a,b,
which are evidently smoother after preprocessing. Notably, this process requires only a
single microsecond (10−6 s) of runtime for each interference fringe.

Figure 13b shows the original interference fringe acquired with the interferometer,
while Figure 13e displays the interference fringe after processing using the method pro-
posed in this paper. The measured phase distribution was then compared with the phase
acquired using a four-step phase-shifting technique, which served as the reference phase
(see Figure 13a). This process produced PV and RMS values of 0.1381 λ and 0.0300 λ, respec-
tively. Figure 13c shows the corresponding phase distribution before processing, with PV
and RMS values of 0.0670 λ and 0.0110 λ, respectively. Figure 13e displays the phase error
between the solved phase (before processing) and the reference phase, with residual PV
and RMS values of 0.1200 λ and 0.0267 λ, respectively. Figure 13f shows the corresponding
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phase solved after processing, with a PV and RMS of 0.1110 λ and 0.0241 λ, respectively.
Figure 13g shows the error between the solved phase (after processing) and the reference
phase, with a residual PV and RMS of 0.0856 λ and 0.0121 λ, respectively. A comparison of
the reconstructed phase accuracy before and after processing indicated that residual PV
improved from 0.1200λ to 0.0856λ, while residual RMS improved from 0.0300 λ to 0.0121 λ.
These experimental results also demonstrate that the method proposed in this paper can
significantly improve phase reconstruction accuracy while improving the fringe contrast.
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5. Conclusions

In this study, a neural network-based preprocessing model (DN-U-NET) was proposed
for single interference fringes. This technique was applied to determine the form of fringe
amplitude and background intensity structures, as well as generate fringe maps with an
added background intensity, additional amplitude, and ambient noise. The simulated
interferometric fringes were generated in an ideal state using Zernike polynomials. The net-
work was then constructed, trained, and tested using the synthetic dataset. Experimental
results demonstrated that this technique can efficiently achieve denoising and normal-
ization of single interference fringes, significantly improving contrast while producing
high-quality normalized fringes. The reconstructed phase accuracy was also improved for
single interference fringes.
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