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Abstract: The generation of second-order sidebands and its associated group delay is an important
subject in optical storage and switch. In this work, the efficiency of second-order sideband generation
in a coupled optomechanical cavity system with a cubic nonlinear harmonic oscillator is theoretically
investigated. It is found that the efficiency of second-order sideband generation can be effectively
enhanced with the decrease in decay rate of optomechanical cavity, the increase in coupling strength
between two cavities and the power of probe field. The slow light effect (i.e., positive group delay) is
also observed in the proposed optomechanical cavity system, and can be controlled with the power
of control field.

Keywords: optomechanical cavity; cubic nonlinear harmonic oscillator; second-order sidebands;
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1. Introduction

Cavity optomechanics is an important field that combines optics and mechanics. It
focuses on the interaction between the light in a resonant cavity and the cavity mirror for
mechanical vibration through the radiation pressure of light [1]. This interaction can be
used on macroscopic gravitational wave detectors or microscopic scanning electron mi-
croscopy cantilevers. Due to its important research value in quantum communication and
quantum computing [2] and ultrasensitive force measurement [3], cavity optomechanics
has received considerable attention. Recent experiments have proved the possibility of
cooling the mechanical oscillator to the quantum ground state in a cavity optomechanical
system [4,5], which enables us to explore many nonlinear optical phenomena in optome-
chanical systems [6–8], such as the non-classical correlations between phonons and single
photons [9], entanglement between mechanical and optical resonators [10,11], parametric
normal-mode splitting [12–14], and mechanical compression state below zero point fluc-
tuation [15–17]. In addition, electromagnetic induced transparency (EIT) effect has been
widely discussed in quantum optics. It refers to the phenomenon that a medium composed
of three-level or multi-level atoms becomes transparent to weak detection fields under the
action of a strong driving electromagnetic field [18–21]. EIT has potential applications in
enhancing nonlinearity [22], realizing fast light and slow light [23], quantum storage [24],
and light switching [25]. The optomechanically induced transparency (OMIT), an analogue
of EIT, can be reached in cavity optomechanical systems [19,26,27]. The basic mechanism of
OMIT is the dissipative interference between the detection field photons and the upconver-
sion sideband photons generated by the anti-Stokes process in the cavity optomechanical
system, thus resulting in an adjustable transparent window of the detection light in the
resonance region that should have been strongly absorbed.

The slow light effect based on OMIT has attracted considerable attention in recent
years [20,28–32], which resulted in the anomalous dispersion of the system at the trans-
parent window. OMIT has become a very important path for delaying, slowing down,
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and storing light signals. The second-order or higher-order sidebands can be generated
in the cavity optomechanical system through the quantum operation of OMIT [33–35].
The generation of second-order sidebands [35] is a classic optical nonlinear phenomenon.
When the control field and detection field are incident on an optomechanical system, the
optomechanical interaction generates photons at the second-order sidebands. It has been
demonstrated that the generation of the second-order sideband can improve the accuracy
in charge and micro mass measurements [36–38].

However, most studies on the OMIT and second-order sidebands in cavity optome-
chanical systems are conducted with linear mechanical oscillators [19,27,33,37,39]. The
neglect of the nonlinearity of mechanical oscillators can be attributed to its inherent weak
nonlinearity. The cubic nonlinearity and Duffing quartic nonlinearity (i.e., fourth-order
nonlinearity) are two typical nonlinearities of mechanical oscillators [40–42]. In recent
years, it has been demonstrated that the weak nonlinear strength of mechanical oscillators
can be significantly enhanced, for example, by engineering the material and geometrical
effects of mechanical oscillators [43], introducing the electrostatic actuation [43], coupling
with a low-dimensional auxiliary system [44], and using the chemical bonding force [42].
The enhanced nonlinearity of mechanical oscillators provides the opportunity to study var-
ious interesting phenomena in cavity optomechanical systems with nonlinear mechanical
oscillators [6,41,45–49]. For example, Lü et al. found that strong steady-state mechanical
squeezing can be achieved in a cavity optomechanical system with the Duffing nonlin-
earity or cubic nonlinearity [41]. The normal mode splitting [47], OMIT [6,48], and the
stationary optomechanical entanglement [50] in a cavity optomechanical system with a
cubic nonlinear movable mirror were also investigated in recent years. It was found that
the introduction of cubic nonlinearity in the cavity optomechanical system results in an
asymmetric line shape of the OMIT window [6]. The cubic or quartic nonlinearity of
a mechanical oscillator in a cavity optomechanical system can be precisely measured by
monitoring the phase shift of the optical field interacted with the anharmonic oscillator [51].

In a conventional cavity optomechanical system, the mechanical oscillator is usually
treated as a harmonic oscillator and has a quadratic potential, which is a quadratic function
of the position. Here, in this work, the cubic nonlinearity of a mechanical oscillator is
considered in the cavity optomechanical system. In this case, in addition to the quadratic
potential term, this mechanical oscillator has a cubic potential term. This work studied the
generation of second-order sidebands in a coupled optomechanical cavity system with a
cubic nonlinear harmonic oscillator. The effect of the mechanical nonlinearity strength, the
cavity decay rate, the coupling strength between two cavities, and the power of the control
and probe field on the efficiency of the second-order upper sideband are investigated. In
addition, the group delay of the second-order sidebands is also discussed.

The remainder of this paper is structured as follows. In Section 2, we describe the
proposed coupled optomechanical cavity system with a cubic nonlinear harmonic oscillator,
and give the expressions of the steady-state solutions and coefficient of the second-order
upper sideband in the proposed coupled optomechanical cavity system. The effects of
various parameters (e.g., mechanical nonlinearity strength and cavity decay rate) on the
efficiency of the second-order upper sideband are discussed in Section 3. Finally, the results
are summarized in Section 4.

2. Theoretical Model

The schematic diagram of the proposed coupled optomechanical cavity system with
a cubic nonlinear harmonic oscillator is shown in Figure 1. The optomechanical cavity
system studied in this work consists of an optical cavity a with a mechanical oscillator and
an optical cavity b. The frequencies of the two cavities a and b are ωa and ωb, respectively.
The decay rate of cavity a is κa, and κb is the decay rate of optical cavity b. The two cavities a
and b are coupled to each other with the coupling strength J. The left side of the cavity a is a
fixed mirror which is partially transparent. The right side of the cavity a is a movable mirror
which is fully reflective, and the right mirror is a cubic nonlinear mechanical oscillator.
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The nonlinear mechanical oscillator has the effective mass m and resonant frequency ωm.
A strong control field with frequency ωc and amplitude εc, and a weak probe field with
frequency ωp and amplitude εp are projected into the optical cavity a through the fixed
mirror on the left side. The strong control field is adopted to drive the coupling between
the cavity field and the mechanical oscillator, while the weak probe field is used to detect
the system response.

𝐽 𝑞

Fixed Movable

FixedFixed

𝑎

𝑏

Figure 1. Schematic diagram of the proposed coupled optomechanical cavity system with a cubic
nonlinear harmonic oscillator.

The Hamiltonian of the proposed cavity optomechanical system is given by

H =h̄ωa â† â + h̄ωb b̂† b̂ + h̄J
(

â† b̂ + b̂† â
)
+ h̄gâ† âq̂ +

p̂2

2m
+

1
2

mω2
m q̂2 +

1
3

αq̂3

+ ih̄εc

(
â†e−iωct − âeiωct

)
+ ih̄εp

(
â†e−iωpt − âeiωpt

)
,

(1)

where â and â† (b̂ and b̂†) represent the annihilation operator and creation operator of the
cavity a (cavity b), respectively. g denotes the optomechanical coupling constant. q̂ and p̂
describe the displacement operator and momentum operator of the mechanical oscillator
with a damping rate γm, which has the relationship of [q̂, p̂] = ih̄. The amplitudes of the
control field and the probe field are εc =

√
2κa℘c/h̄ωc and εp =

√
2κa℘p/h̄ωp, respectively.

Here, ℘c is the power of the control field, and ℘p is the power of the probe field.
The first and second terms of the Hamiltonian in Equation (1) describes the cavity

photon modes in cavity a and b, respectively. The third (fourth) term indicates the coupling
between the photon mode in cavity a and photon mode in cavity b (mechanical mode)
with the coupling strength J (g). The term p2/(2m) + mω2

mq2/2 + αq3/3 describes the
Hamiltonian of the movable mirror, which can be regarded as a harmonic oscillator with a
cubic term (i.e., αq3/3) perturbation [52]. The parameter α is the mechanical nonlinearity
strength of the mechanical oscillator, and different values of α will lead to different coupling-

constant behavior [53]. The terms p̂2

2m + 1
2 mω2

m q̂2 + 1
3 αq̂3 denote the kinetic energy and

potential energy of the simple harmonic oscillator. In contrast, the nonlinear term αq3/3
is directly proportional to the third-order of the displacement q, which describes the
potential energy produced by the nonlinearity of the cubic nonlinear harmonic oscillator.
It is assumed that the quadratic potential energy mω2

m q̂2/2 is much larger than the cubic
potential energy αq̂3/3, and thus the cubic potential energy αq̂3/3 can be considered as a
perturbation. The cubic nonlinear simple harmonic oscillator is a most classical example
of perturbation in harmonic oscillator in quantum mechanics. Various studies on the
cubic nonlinear simple harmonic oscillator have been reported in recent years, such as the
resonance eigenvalue [54] and periodic motion [53] of the cubic nonlinear simple harmonic
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oscillator with a real mechanical nonlinearity strength, the ground state energy [55,56]
and the Stark effect [57] of the cubic nonlinear simple harmonic oscillator with a complex
mechanical nonlinearity strength. Here, the mechanical nonlinearity strength α is assumed
to be positive and real for simplicity in this work.

The Hamiltonian in Equation (1) can be rewritten as

H =h̄∆a â† â + h̄∆b b̂† b̂ + h̄J
(

â† b̂ + b̂† â
)
+ h̄gâ† âq̂ +

p̂2

2m
+

1
2

mω2
m q̂2 +

1
3

αq̂3

+ ih̄εc

(
â† − â

)
+ ih̄εp

(
â†e−iδt − âeiδt

) (2)

in the frame rotating at the frequency of control field ωc. Here, ∆a = ωa −ωc (∆b = ωb −ωc)
is the detuning between the photon mode in cavity a (cavity b) and the control field, while
δ = ωp − ωc is the detuning between the probe field and the control field. The Heisenberg–
Langevin equations of the proposed optomechanical system are then given by

d
dt

q̂ =
p̂
m

,

d
dt

p̂ = −mω2
m q̂ − αq̂2 − h̄gâ† â − γm p̂ + F̂th,

d
dt

â = −[κa + i(∆a + gq̂)]â − i Jb̂ + εc + εpe−iδt + âin,

d
dt

b̂ = −(κb + i∆b)b̂ − i Jâ + b̂in.

(3)

Here, F̂th is the thermal noise of the mechanical oscillator, and has the relationship of〈
F̂th(t)

〉
= 0 and

〈
F̂th(t)F̂†

th(t
′)
〉
= γm

∫
e−iω(t−t′)

[
coth( h̄ω

2kBT ) + 1
]

dω
2πωm

. kB and T are the
Boltzmann constant and the ambient temperature of the cavity optomechanical system. âin
and b̂in are the quantum noises of the cavities a and b, respectively, which satisfy the rela-
tions: ⟨âin(t)⟩ = 0,

〈
b̂in(t)

〉
= 0,

〈
âin(t)â†

in(t
′)
〉
= δ(t − t′), and

〈
b̂in(t)b̂†

in(t
′)
〉
= δ(t − t′). In

this work, we are interested in the mean response of the proposed cavity optomechanical
system to the probe field. Therefore, the operators q̂, p̂, â, and b̂ are then reduced to their
expectation values, i.e., q(t) ≡ ⟨q̂(t)⟩, p(t) ≡ ⟨ p̂(t)⟩, a(t) ≡ ⟨â(t)⟩, and b(t) ≡

〈
b̂(t)

〉
.

In addition, the thermal noise F̂th and quantum noises âin and b̂in can be ignored in the
following. In this case, the Heisenberg–Langevin equations (3) can be rewritten as the mean
value equations

d
dt

q =
p
m

,

d
dt

p = −mω2
mq − αq2 − h̄ga†a − γm p,

d
dt

a = −[κa + i(∆a + gq)]a − i Jb + εc + εpe−iδt,

d
dt

b = −(κb + i∆b)b − i Ja,

(4)

where the thermal noise and quantum noise terms are dropped due to the zero mean values
of âin, b̂in, and F̂th. In addition, the factorization approximation (e.g., ⟨qa⟩ = ⟨q⟩⟨a⟩) is used.

It is noted that the driving filed is much stronger than the probe field, and thus the
solutions of Equation (4) can be written as

O = Os + O1+e−iδt + O1−eiδt + O2+e−2iδt + O2−e2iδt (5)

with O = q, p, a, b. Here, only the first-order and second-order sidebands are considered,
while higher-order sidebands are ignored in this work. The term Os is the steady-state
solution of the operator O, the terms O1+e−iδt and O1−eiδt denote the first-order upper
and lower sidebands with the frequencies of ωp and 2ωc − ωp, respectively. The terms
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O2+e−2iδt and O2−e2iδt represent the second-order upper and lower sidebands with the
frequencies of 2ωp − ωc and 3ωc − 2ωp, respectively.

By substituting Equation (5) into Equation (4), and ignoring the higher-order nonlinear
terms, the steady-state solutions Os provided by the driving field can be obtained as

ps = 0,

qs = − h̄g|as|2

mω2
m + αqs

,

as =
εc

κa + i∆′
a +

J2

κb+i∆b

,

bs =
−i Jas

κb + i∆b
,

(6)

where ∆′
a = ∆a + gqs is the effective detuning between the cavity a and the control field.

The results of the first-order sideband are given as

q1+ =
−h̄g

(
a∗s a1+ + a∗1−as

)
f (δ)

,

q1− =
−h̄g

(
a∗s a1− + a∗1+as

)
f ∗(δ)

,

a1+ =
εp

[
κa − i(∆′

a + δ) + B(δ) + ih̄g2|as|2/ f (δ)
]

d(δ)
,

a1− =
ih̄g2a2

s εp

d∗(δ)

b1+ =
−i Ja1+

κb + i(∆b − δ)
,

b1− =
−i Ja1−

κb + i(∆b + δ)
.

(7)

Here,
f (δ) = mω2

m + 2αqs − iδm(γm − iδ), (8)

d(δ) = C(δ)D(δ) + ih̄g2|as|2[C(δ)− D(δ)]/ f (δ), (9)

and

A(δ) =
J2

[κb + i(∆b − δ)]
,

B(δ) =
J2

[κb − i(∆b + δ)]
,

C(δ) = κa + i
(
∆′

a − δ
)
+ A(δ),

D(δ) = κa − i
(
∆′

a + δ
)
+ B(δ).

(10)

The coefficient of the second-order upper sideband can also be obtained, which is given as

a2+ =−
h̄g3a2

s q1+a∗1−
f (2δ)d(2δ)

+
igas

(
h̄ga1+a∗1− + αq2

1+
)

D(2δ)

f (2δ)d(2δ)

−
igq1+a1+

[
D(2δ) + ih̄g2|as|2/ f (2δ)

]
d(2δ)

.

(11)

It can be seen from Equation (11) that the generation of the second-order upper sideband
is closely related to the first-order upper sideband (i.e., a1+) and the first-order lower
sideband (i.e., a1−) generation.
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The output field can be obtained according to the input–output relation [19], which is
given as

εout = (εc −
√

2κaas)e−iωct + (εp −
√

2κaa1+)e−iωpt

−
√

2κaa1−e−i(2ωc−ωp)t −
√

2κaa2+e−i(2ωp−ωc)t

−
√

2κaa2−e−i(3ωc−2ωp)t.

(12)

Here, the terms (εc −
√

2κaas)e−iωct and (εp −
√

2κaa1+)e−iωpt denote the output fields with
the driving frequency ωc and probe frequency ωp, respectively. The transmission of the
probe field can then be obtained as tp = 1 −

√
2κaa1+/εp. The term −

√
2κaa1−e−i(2ωc−ωp)t

represents the Stokes field with the frequency of 2ωc − ωp. The term −
√

2κaa2+e−i(2ωp−ωc)t

describes the output field with the frequency of ωc + 2δ, which is related to the second-
order upper sideband. In contrast, the second-order lower sideband is denoted by the term
−
√

2κaa2−e−i(3ωc−2ωp)t with the frequency of ωc − 2δ. The efficiency of the second-order
upper sideband is defined as

η =

∣∣∣∣−√
2κaa2+

εp

∣∣∣∣. (13)

In addition, the associated group delay of the second-order upper sideband is given as [35]

τ =
∂[arg(η)]

2∂δ
. (14)

The positive group delay (τ > 0) indicates the effect of slow light, while the negative group
delay (τ < 0) represents the fast light in the second-order upper sideband.

3. Results and Discussion

The parameters involved in this work were adopted from the experimental work
that investigated the deceleration, switching, and propulsion of microwave signals in an
optomechanical system [23]. Here, the effective mass of the movable mirror is m = 7 pg.
The mechanical frequency and mechanical damping rate are ωm = 2π × 1.45 MHz and
γm = 2π × 9 Hz, respectively. The optomechanical coupling strength is g = 2π ×
1.26

√
h̄/(2mωm) Hz/m. The coupling strength J between the two cavities is

J = 2π × 12.5 kHz. The decay rates of the cavities are κa = κb = 0.1ωm. The frequency
of the coupling field is ωc = 2π × 6.07 GHz. The cavity a is assumed to be driven at the
red-detuned mechanical sideband, resulting in the effective detuning ∆′

a ≈ ωm
The term αq3/3 in the Hamiltonian (1) describes the cubic potential energy, which

is linearly determined by the nonlinearity strength α. Therefore, the ratio of the cubic
potential energy to the quadratic potential energy r = |(αq3

0/3)/(mω2
mq2

0/2)| increases
with the nonlinearity strength α. When the nonlinearity strength is α = 108 N/m2, the
ratio r is about 0.14. This indicates that the steady-state quadratic potential energy is much
larger than the cubic potential energy, and thus, the cubic potential energy can be described
as a perturbation.

The efficiency of the second-order upper sideband η as a function of the normalized
detuning δ/ωm with different mechanical nonlinearity strength α is shown in Figure 2. It is
found that a sideband dip between two asymmetric sideband peaks appears around the
normalized detuning δ/ωm = 1. Such a phenomenon can be attributed to the nonlinearity
of the proposed coupled optomechanical cavity system with a cubic nonlinear harmonic
oscillator, which is quite different from the linear optomechanical cavity system [33,35].
For a conventional cavity optomechanical system with a harmonic mechanical oscillator,
a symmetrical transparent window (i.e., OMIT) can be observed under the resonance
condition of δ = ωm (i.e., ωc + ωm = ωp) [19]. However, the mechanical oscillator with the
potential energy of mω2

m q̂2/2 + αq̂3/3 is not a harmonic oscillator but a cubic nonlinear
harmonic oscillator. In this case, this cubic term (i.e., αq̂3/3) changes the frequency of
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mechanical oscillator, which is different from the frequency ωm in the case of harmonic
oscillator. Therefore, the system with a cubic nonlinear harmonic oscillator exhibits an
asymmetric OMIT window and the transparency peak is also shifted, which has been
demonstrated in Refs. [6,48]. It is noted that the second-order sideband originates from the
up-conversion of the first-order sideband. This asymmetric OMIT window in the cavity
optomechanical system with a cubic mechanical oscillator thus results in an asymmetric
spectrum in the efficiency of a second-order sideband. In addition, such phenomenon has
also demonstrated in the cavity optomechanical system with a nonlinear Kerr resonator [35].

In the case of ∆′
a ≈ ωm and δ/ωm ≈ 1 shown in Figure 2, the anti-Stokes field is

resonantly enhanced, which then results in suppressed second-order sidebands. For the
mechanical nonlinearity strength α = 0 N/m2, the maximum efficiency is about 0.017%.
The maximum efficiency of the second-order upper sideband is then improved to 0.02%
when the mechanical nonlinearity strength is α = 10 × 107 N/m2. The enhancement in
second-order sideband efficiency can be attributed to the nonlinearity of the mechanical
oscillator, which improves the four-wave mixing process in the optical cavity [6].

Figure 2. The efficiency η as a function of the normalized detuning δ/ωm with a different mechanical
nonlinearity strength α.

The effects of decay rates κa and κb on the efficiency of the second-order upper side-
band η are shown in Figure 3. Here, the mechanical nonlinearity strength α is fixed at
5 × 107 N/m2. Figure 3a shows the efficiency η as a function of the normalized detuning
δ/ωm with different decay rates κa of cavity a. It is found that the dip of efficiency η
is almost unchanged with the variations of κa. The values of two asymmetric sideband
peaks decreases with the increasing decay rate κa of cavity a. For example, the maximum
values of efficiency η is 0.016% with κa = 0.1ωm, which is about 1.8-fold higher than that
with κa = 0.2ωm. Therefore, the efficiency of the second-order upper sideband η can be
increased by reducing the decay rate κa of cavity a. Specifically, the maximum efficiency
can be improved to 0.16% with κa = 0.01ωm, which is about 10 times that with κa = 0.1ωm,
and 17.7 times that with κa = 0.2ωm. In contrast, the variations in the decay rate κb of cavity
b do not affect the efficiency of the second-order upper sideband η, as shown in Figure 3b.
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(a) (b)

Figure 3. The efficiency η as a function of the normalized detuning δ/ωm with different cavity decay
rates (a) κa: 0.1 ωm (red dotted line), 0.15 ωm (blue dashed line), and 0.2 ωm (black solid line) for
κb = 0.1 ωm, and (b) κb: 0.1 ωm (red dotted line), 0.15 ωm (blue dashed line), and 0.2 ωm (black solid
line) for κa = 0.1 ωm. Here, the mechanical nonlinearity strength is α = 5 × 107 N/m2.

The effect of the coupling strength J on the efficiency of the second-order upper
sideband η is also discussed. The efficiency η as a function of the normalized detuning
δ/ωm with different coupling strengths J is shown in Figure 4. Here, the mechanical
nonlinearity strength is α = 5 × 107 N/m2, and the decay rates of cavity a and cavity b are
κa = κb = 0.1ωm. It can be observed from Figure 4 that the dip of efficiency η is not affected
by the variations in the coupling strength J. The maximum value of efficiency η decreases
with the increase in the coupling strength J. For example, the maximum efficiency of the
second-order upper sideband is 0.016% with the coupling strength J = 2π × 12.5 kHz,
while it is decreased to 0.01% with J = 15π × 12.5 kHz.

Figure 4. The efficiency η as a function of the normalized detuning δ/ωm with different coupling
strengths J. Here, α = 5 × 107 N/m2, and κa = κb = 0.1 ωm.

It should be noted that the mechanical nonlinearity strength α, the cavity decay rates
κa and κb, and the coupling strength J are difficult to tune for a fabricated optomechanical
system. However, the optomechanical response of the proposed optomechanical system
can be adjusted with the power of the control field and probe field. Figure 5a shows the
efficiency of the second-order upper sideband η as a function of the normalized detuning
δ/ωm with the power of the probe field ℘p. Here, the mechanical nonlinearity strength
is α = 10 × 107 N/m2, cavity decay rates are κa = κb = 0.1ωm, the coupling strength is
J = 2π × 12.5 kHz, and the power of the control field is fixed at ℘c = 0.02 µW. It is found
that the maximum efficiency increases with the increase in the power of the probe field
℘p. Specifically, the maximum value of η is 0.02% with ℘p = 0.02 µW, while it is improved
to 0.035% with the power of the probe field ℘p = 0.06 µW. Therefore, the efficiency of the
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second-order upper sideband η can be effectively improved by increasing the power of the
probe field. For example, the maximum efficiency of 0.203% is achieved with the power of
the probe field ℘p = 2 µW, which is about 10.2 times higher than that with ℘p = 0.02 µW.
The effect of the power of the control field ℘c on the efficiency of the second-order upper
sideband η with a fixed power of the probe field ℘p is shown in Figure 5b. It is found that
the positions of the efficiency peaks are changed with the variations of ℘c. In addition,
compared to the adjustment of the power of the control field ℘c, the variation in the power
of the probe field ℘p has less of an impact on the maximum efficiency of the second-order
upper sideband.

(a) (b)

Figure 5. The efficiency η as a function of the normalized detuning δ/ωm with a different (a) power
of the probe field ℘p and (b) power of the control field ℘c. The power of the control field is ℘c = 2 µW
in (a), and the power of the probe field is ℘p = 0.02 µW in (b). Here, the mechanical nonlinearity
strength is α = 10 × 107 N/m2, cavity decay rates are κa = κb = 0.1 ωm, and the coupling strength is
J = 2π× 12.5 kHz.

The group delays in the proposed coupled optomechanical cavity system with a cubic
nonlinear harmonic oscillator were also investigated. The group delay of the transmitted
light in a conventional optomechanical system is only related to the power of the control
field [20]. Therefore, the effect of the power of control field ℘c on the group delay τ is
considered in this work. The group delay τ as a function of the coupling field power ℘c
at the resonance δ/ωm = 1 with different cavity decay rates κa is shown in Figure 6. It
was found that only the positive group delay (τ > 0) is observed, which indicates that the
slow light effect is achieved with the proposed optomechanical system. For example, the
maximum group delay of about 1250 µs is obtained with the power of the control field
℘c = 3.57 µW when the decay rate of cavity a is κa = 0.1ωm. In addition, the peak position
and peak value of the group delay τ decreases with the cavity decay rate κa. Specifically, the
maximum group delay decreases from 780 µs to 472 µs when the decay rate κa is changed
from 0.2ωm to 0.3ωm, and accordingly, the corresponding power of the control field ℘c is
changed from 1.87 µW to 1.27 µW. It is worth noting that the positive group delay can also
be significantly enhanced with the introduction of cavity b in the coupled optomechanical
cavity system. For example, the maximum positive group delay is about 0.007 µs with
κa = 0.1ωm in the coupled optomechanical cavity system without cavity b, which is much
smaller than that obtained with both cavity a and cavity b (i.e., 1250 µs).

The introduced strong cubic mechanical nonlinearity in the proposed optomechanical
system can be obtained with the method proposed in ref. [44]. By coupling the resonators
with a low-dimensional auxiliary system, the cubic and even quartic nonlinearity of the
mechanical oscillator can be obtained. To obtain a nonlinear harmonic oscillator, a linear
mechanical oscillator is coupled to a three-level (qutrit) auxiliary via the interaction µxV.
µ is the interaction strength, and V is an operator of the qutrit. x is the dimensionless
position of the mechanical oscillator, which has the relationship of q =

√
h̄/(mωm)x with

the displacement operator q. This qutrit has a diagonal auxiliary Hamiltonian H̃0 that is
evenly separated by ∆, and its energy levels are E(0)

n = n∆ (n = 0, 1, 2). By placing the
auxiliary qutrit in the eigenstate with the energy level E1 and choosing an appropriate
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operator V, a cubic potential term in the form of 2h̄∆(µ/∆)3x3 can be achieved with the
mechanical oscillator. If the interaction strength µ is 2π × 3.7 MHz, and ∆ is 2π × 5 GHz,
the mechanical nonlinearity strength α of 1.2 × 108 N/m2 can be obtained [6], which is
quite close to the value of α used in this work. Such an approach to obtaining a cubic
nonlinear harmonic oscillator was also adopted in Refs. [6,50].

(a) (b)

Figure 6. Group delay τ as a function of the coupling field power ℘c at the resonance δ/pomegam = 1
with different cavity decay rates κa for the proposed coupled optomechanical cavity system with
(a) both the cavity a and cavity b, and (b) only cavity a. Here, κb = 0.1 ωm, and the mechanical
nonlinearity strength is α = 5 × 107 N/m2.

4. Conclusions

In summary, the generation of second-order sidebands and group delays in a coupled
optomechanical cavity system with a cubic nonlinear harmonic oscillator is investigated.
The influence of the mechanical nonlinearity strength, the cavity decay rate, the coupling
strength between two cavities, the power of the control field, and the power of the probe
field on the efficiency of the second-order upper sideband are studied. It is found that the
efficiency can be effectively enhanced by reducing the decay rate of cavity a, increasing
the coupling strength J and the power of the probe field ℘p. The enhanced generation
efficiency of second-order sidebands is helpful in frequency conversion for all-optical
network communication. In addition, the slow light effect can be achieved with the
proposed optomechanical system. The maximum value of the group delay can be effectively
controlled by the power of the control field and the decay rate of cavity a.
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