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Abstract: We propose a theoretical method for the deterministic shaping of quantum light via
photon number state selective interactions. Nonclassical states of light are an essential resource for
high-precision optical techniques that rely on photon correlations and noise reshaping. Notable
techniques include quantum enhanced interferometry, ghost imaging, and generating fault-tolerant
codes for continuous variable optical quantum computing. We show that a class of nonlinear-optical
resonators can transform many-photon wavefunctions to produce structured states of light with
nonclassical noise statistics. The devices, based on parametric down conversion, utilize the Kerr
effect to tune photon-number-dependent frequency matching, inducing photon-number-selective
interactions. With a high-amplitude coherent pump, the number-selective interaction shapes the
noise of a two-mode squeezed cavity state with minimal dephasing, illustrated with simulations. We
specify the requisite material properties to build the device and highlight the remaining material
degrees of freedom which offer flexible material design.

Keywords: quantum optics; nonlinear optics; quantum state design; quantum control; quantum state
engineering; ENZ; EIT; cavity-QED

1. Introduction

Systems that utilize quantum information resources generally take advantage of
coherent macroscopic superposition and/or entanglement. The increased information
density and sensitivity to measurements of such quantum states, compared to their classical
counterparts, is central to their application in modern quantum information technolo-
gies like quantum key distribution [1,2], quantum computing [3–5], and metrology at
the fundamental noise limit [6–8]. Efforts toward engineering the spatio-temporal profile
of quantum states of light have already found great success [9–11]. This article focuses
instead on shaping the noise statistics of quantum states of light for such applications.
Both macroscopic superposition and entanglement are generically found in states sup-
ported by nonlinear systems [12,13]. However, optical nonlinearities are typically weak
for closed systems. Much attention has therefore been paid to developing methods for
generating quantum states of light which utilize wavefunction collapse as a source of non-
linear evolution, where a particular measurement outcome heralds the desired quantum
state [14–18]. Though hugely successful, heralded state preparation is inherently non-
deterministic, making sequential preparations low-probability events.

The approach presented here overcomes low-heralding success rates using the paradigm
of deterministic generation of quantum states. Examples in the literature can be found
where the probabilistic nature of measurement is circumvented [19–31].

One example utilizes the quantum Zeno effect [19–21]. By strongly coupling a specially
engineered system to an environment, the state of the system is continuously projected to a
subspace of states that are effectively uncoupled from the environment, called a decoherence
free subspace (DFS). External driving fields may then evolve states deterministically and
coherently within the DFS.
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With the advent of epsilon-near-zero materials [22] and polariton-enhanced scattering,
commonly facilitated by electronically induced transparency [23–26], large effective nonlin-
earities become increasingly realistic as well. When realized in a high-Q optical resonator,
strong optical nonlinearities with relatively long evolution time and low loss facilitate
deterministic quantum optical state engineering. Trapped atom and other quantum emitter
systems show great promise for this application [20,21,27–31].

Such systems accomplish universal control of an oscillator state by relying on an array
of emitters or by coupling to a single two-level emitter. With an array of quantum emitters,
the quantum information content of a state of interest is first written onto the array, typically
in a decoherence-free subspace, then mapped to super-radiant light-matter states which
couple to an optical waveguide [20,21,27,28]. Alternatively, arbitrary state transformations
may be realized in a cavity with a single quantum emitter by repeatedly addressing the
emitter with a control beam to introduce a Berry phase to cavity field Fock states and
applying coherent displacement operations to the cavity field in sequences prescribed
within [29–31]. Notably, Krastanov et al. [30,31] utilize a dispersive coupling between the
emitter and a microwave cavity field to realize a selective number-dependent arbitrary
phase (SNAP) gate which selectively rotates the phase of each Fock state of the cavity field.

This work introduces an alternative technique for precision shaping of quantum noise
statistics without the need for precise emitter engineering and addressing. We consider a
material with first-, second-, and third-order electric susceptibilities at optical frequencies
(it is straightforward to generalize our approach for nonperturbative constitutive relations)
and show that when second- and third-order nonlinearities are comparable in strength, the
optical Kerr effect alters the frequency matching condition for optical parametric oscilla-
tion such that the interaction between field states is strongly photon-number-dependent.
Our analysis separates the phase-rotating interactions from the mode-mixing interactions,
providing us a deeper intuition for the dynamics we observe. Specifically, we first solve the
combined first- and third-order system exactly and study the second-order mode-mixing in
the interaction picture. The general dynamical characteristics are illustrated and we utilize
the effect to demonstrate a procedure for the deterministic generation of approximate Fock
states, among other interesting states. General material constraints are highlighted and
developed into figures of merit to guide the experimental realizations of this method.

2. Background

We begin with a brief discussion of electromagnetic field quantization. Dirac rec-
ognized that Hamiltonian mechanics have simple rules for canonical quantization, that
Lagrangian mechanics are well suited for relativistic gauge invariant classical field theories,
and that they both poorly handle what the other does well. So, to formulate relativistic quan-
tum theory, he generalized Hamiltonian mechanics to handle systems with constraints [32].
His mechanics encode symmetries that are simple to write into a Lagrangian, into con-
straints on a Hamiltonian, recovering Hamilton’s equations of motion with a generalized
Poisson bracket called the Dirac bracket. The canonical quantization of Dirac’s bracket
reveals, in part, Dirac’s relativistic theory of quantum mechanics. Born and Infeld adopted
Dirac’s procedure to show that Maxwell’s equations in the Coulomb gauge assume a
Hamiltonian formulation [33,34] where the Hamiltonian is the classical field energy

H =
∫

V
dv

∫ t

−∞
dt

E · ∂t′D
2

+
H · ∂t′B

2
(1)

and the fields obey a version of the canonical Dirac bracket relations,

{Bj(r), Bk(r′)} = {Dj(r), Dk(r′)} = 0

{Dj(r), Bk(r′)} = εjlk ∂

∂xl δ(r− r′) ≡ δtr(r− r′) ,
(2)
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with the second equation defining the transverse delta function δtr(r− r′) (the transverse
delta function captures the constraints on the field enforced by the Coulomb gauge. In a
medium without free charges or free currents, Maxwell’s equations ensure that D and B are
always transverse to the direction of radiation propagation, unlike E and H. Furthermore,
since both D and B are divergenceless, so must be their commutator. The transverse delta
function is consistent with these two properties. It has no divergence and acts as an ordinary
delta function on transverse fields). According to Dirac’s canonical quantization, the field
amplitudes are promoted to operators, and the Dirac brackets become commutators

{Dj(r), Bk(r′)} = δtr(r− r′)→ [Dj(r), Bk(r′)] = ih̄δtr(r− r′) . (3)

Quesada et al. [35] later showed that, to correctly recover Maxwell’s equations in
nonlinear dielectric media from the Born–Infeld Dirac brackets, it is imperative to consider
the displacement field and magnetic flux density to be the fundamental dynamical variables.
Here, ’fundamental’ indicates that D and B are Hermitian linear combinations of Bose
operators, i.e., they are Boson fields, whereas the electric and magnetic fields E and H are
generally higher polynomials of Bose operators. For modern derivations and perspectives
of quantum field theory in linear dielectric media, see [36–39].

For a finite linear cavity, the eigenstates of the system are enforced by the dielectric
structure and boundary conditions of the cavity. Let us restrict ourselves to one effective
spatial dimension, scalar susceptibilities, and a single polarization of the field modes
without loss of generality (our analysis depends only on the algebraic structure of the
Hilbert space and the dynamics generated by the Hamiltonian, so is easily generalized to
richer mode structures). This amounts to a single parameter family of eigenstates. Consider
a uniform cavity of length L with periodic boundary conditions, as is the case for a micro-
ring resonator [40]. The allowed wavenumbers, k, within the cavity are integer multiples
of 2π

L . The fields D and B are physical, therefore real-valued. Each may then be expanded
with respect to the basis of eigenmodes in the following form:

D(z) = ∑
k

Dk(z) =
1√
AL

∑
k

αkeikz + α∗k e−ikz

B(z) = ∑
k

Bk(z) =
1√
AL

∑
k

βkeikz + β∗k e−ikz ,
(4)

where A represents the transverse cross-sectional area of the modes in the cavity (if the refractive
index is not isotropic, A defines an effective cross-sectional area, discussed in [40]).

The field amplitudes of a single photon, ζk—defined later—are determined such that
the energy of a photon with well-defined momentum h̄k agrees with the Einstein energy
of a photon, h̄ω(k). Suppose a dispersive permitivity such that the Fourier components
of the linear electric field and displacement field are related by Ẽ(k) = 1

ε(k) D̃(k). If the
medium is dispersive, each frequency mode solves a different eigenvalue equation, so
normalization requires special care [37]. We rescale the amplitude by the single photon
amplitude, αk → ζkak, and promote the amplitude variable to a Bose operator obeying the
canonical commutation relations

[ak, ak′ ] = 0, [ak, a†
k′ ] = δkk′ . (5)

The displacement field operator becomes

D(z) = ∑
k

i

√
h̄ω(k)vg,kn3

k
2ALc

(
akeikz − a†e−ikr

)
≡∑

k
iζk

(
akeikz − a†e−ikr

)
, (6)

where we have adopted a common quantum optics phase convention of initial phase π/2;
vg,k is the group velocity, and nk the refractive index of the mode with wave-vector k. The
magnetic flux field operator obtains a similar form [37].
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Having properly dealt with linear dispersion, the Hamiltonian for linear quantum
optics takes the form of an infinite set of harmonic oscillators

H(1) = ∑
k

h̄ω(k)a†
k ak . (7)

Nonlinear Quantum Optics

We introduce nonlinear optics, assuming that the dispersion of nonlinear susceptibili-
ties is negligible for frequency bands we are interested in. The electric field is related to the
displacement field and polarization field, P, via [41]

E = D− 4πP =
1
ε

D− 4πPnl . (8)

We can recall from Equation (1) the electric field contribution to the field energy, E·D
2 .

The energy term 1
ε D · D is handled in the linear part of the Hamiltonian upon quantization.

The remaining interaction −Pnl · D relays the effect of the nonlinear polarization Pnl .
We assume that the polarization at a point in space depends on the displacement field

at that point, i.e., the response function is local. Expanding the nonlinear polarization in
a power series of the displacement field amplitudes up to the third order, the part of the
Hamiltonian associated with classical nonlinear dynamics is

H(nl) =
−Pnl · D

2
=

− 2π ∑
k0,k1,k2

∫
dr3 Γ(2)(~r; ω(k0), ω(k1), ω(k2)))Dk0(~r, t)Dk1(~r, t)Dk2(~r, t)

− 2π ∑
k0,k1,k2,k3

∫
dr3 Γ(3)(~r; ω(k0), ω(k1), ω(k2), ω(k3)))

× Dk0(~r, t)Dk1(~r, t)Dk2(~r, t)Dk3(~r, t) ≡ H(2) + H(3),

(9)

where Γ(2) is the second-order displacement field susceptibility that is responsible for
optical parametric oscillation (OPO)—often referred to as parametric down conversion.
Γ(3) is the third-order displacement field susceptibility responsible for four effects: the
two optical Kerr effects called self-phase modulation (SPM) and cross-phase modulation
(XPM), a mode-mixing process called four-wave mixing (FWM), and a static-field-induced
OPO. Both are defined by the power series expansion of the polarization field in terms of
displacement field [40].

The ordinary nonlinear susceptibilities are defined analogously for the electric
field [42], namely

P = Γ(1)D + Γ(2)D⊗2 + Γ(3)D⊗3 + ... = χ(1)E + χ(2)E⊗2 + χ(3)E⊗3 + ... (10)

Substituting the relation D = E + 4πP(E) into Equation (10) and collecting terms
with common powers of electric field, ignoring tensor structure and dispersion, yields
the relations

Γ(1) =
χ(1)

ε
, Γ(2) =

χ(2)

ε3 , Γ(3) =
χ(3)

ε4 − 8π
(χ(2))2

ε5 . (11)

3. Approach

We aim to show how strong Kerr nonlinearities affect OPO. The essential result is
that photon-number-dependent frequency shifts from the Kerr effect generate a photon-
number-dependent detuning in OPO. The number-dependent detuning is exploited for
coherent deterministic number-selective shaping of noise statistics in select modes. To make
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this effect clear, we constrain our view to the subspace of three optical modes engaging
in OPO, called signal, idler, and sum. We first solve the system exactly under the action
of the sum of Hamiltonian terms that preserve photon number in each mode. Evolution
under this Hamiltonian gives nontrivial structure to the time-dependent displacement field
operator; it is scaled by a diagonal unitary operator with a frequency that is a function
of the photon number operators. OPO is analyzed in the interaction picture, exhibiting
photon-number-selective behavior. The nature of this behavior is discussed, and explored
numerically in Section 4.1.

3.1. Eigenstates of Kerr Hamiltonian

The Hamiltonian H(3) from Equation (9) is responsible for two distinct photon number
density-preserving processes, SPM and XPM, and a mode-mixing process, FWM. FWM
is a rich effect, leading to optical frequency combs and soliton propagation in micro-
resonators [43]. However, our aim is to study an entirely different phenomenon in the same
environment, so we do not wish to handle these complications presently. We will suppose
that the dispersion relation of our system is specified such that no FWM is phase-matched
for the active modes.

Unlike FWM, SPM and XPM are always phase-matched. These effects, together with
the linear Hamiltonian, dominate the phase dynamics of the system. The corresponding
Hamiltonian is diagonal in the Fock basis and, equivalently, conserves photon number
for each mode. Our present objective is to solve for the time evolution of the field oper-
ator under photon number density-preserving Hamiltonian H0 ≡ H(1) + H(3) such that
H = H0 + H(2), where H(1), H(2), and H(3) are defined in Equations (7) and (9). We later
show how this time evolution affects H(2), producing a photon-number-selective interac-
tion under the right conditions. We will consider the dynamics of three modes interacting
in the cavity: a sum, signal, and idler mode with frequencies ωΣ, ωs, and ωi, respectively.

We assume permutation invariance of all susceptibilities and abbreviate the frequency
dependence of Kerr susceptibilities Γ(3)(−ω1, ω1,−ω2, ω2)) = Γ(3)

1,2 = Γ(3)
2,1 (permutation

invariance typically does not hold near resonance, where we expect our system to reside
given the constraints derived later. However, accounting for variability in Γ(3) simply
amounts to substituting the average Γ̄(3) in place of Γ(3) and does not qualitatively change
the results). Furthermore, we uphold the rotating wave (secular) approximation and
assume spatially constant third-order susceptibility. After ordering all permutations of the
creation and annihilation operators to be simple powers of the mode number operators
Nj = a†

j aj, the Hamiltonian H0 pertaining to the sum, signal, and idler modes is

H0 =
(

h̄ωΣ − 12πLζ2
Σ(2ζ2

ΣΓ(3)
Σ,Σ + ζ2

s Γ(3)
Σ,s + ζ2

i Γ(3)
Σ,i )
)

NΣ

+
(

h̄ωs − 12πLζ2
s (2ζ2

s Γ(3)
s,s + ζ2

i Γ(3)
s,i + ζ2

ΣΓ(3)
s,Σ)
)

Ns

+
(

h̄ωi − 12πLζ2
i (2ζ2

i Γ(3)
i,i + ζ2

ΣΓ(3)
i,Σ + ζ2

s Γ(3)
i,s )
)

Ni

− 24πL
(

ζ4
ΣΓ(3)

Σ,ΣN2
Σ + ζ4

s Γ(3)
s,s N2

s + ζ4
i Γ(3)

i,i N2
i

+ ζ2
Σζ2

s Γ(3)
Σ,sNΣNs + ζ2

Σζ2
i Γ(3)

Σ,i NΣNi + ζ2
i ζ2

s Γ(3)
i,s Ni Ns

)
(12)

Heisenberg’s equation of motion, ȧ = 1
ih̄ [a, H0], tells us the time evolution for the

field annihilation operators aΣ, as, and ai. To condense our notation, let us define the Kerr
frequencies

gij ≡
24πAL

h̄
ζ2

i ζ2
j Γ(3)

ij (13)

where gjj are the frequencies of self-phase modulation and gi,j 6=i are the frequencies of
cross-phase modulation. These frequencies are proportional to the classical Kerr frequency
shifts δω in accordance with the relation g〈N〉 = δωI where I is the classical intensity and
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〈N〉 is the mean photon number. The time evolution of each field annihilation operator
under H0 is

aΣ(t) = exp
{
− i
(

ωΣ − (gΣΣ +
gΣs
2

+
gΣi
2

)− gΣΣ(2NΣ + 1) + gΣsNs + gΣi Ni)
)

t
}

aΣ(0)

as(t) = exp
{
− i
(

ωs − (gss +
gsΣ

2
+

gsi
2
)− gss(2Ns + 1) + gsΣNΣ + gsi Ni)

)
t
}

as(0)

ai(t) = exp
{
− i
(

ωi − (gii +
giΣ
2

+
gis
2
)− gii(2Ni + 1) + giΣNΣ + gisNs)

)
t
}

ai(0) .

(14)

It should be noted that the exponentials above do not commute with the t = 0 field
annihilation operators. To further simplify our notation, we call a(0) = a, and use ξ to
represent the exponential operators on the right-hand side of Equation (14), such that

aΣ(t) = ξΣaΣ, as(t) = ξsas, ai(t) = ξiai (15)

Substituting these operators into Equation (6) yields the time-dependent displacement
field operator for the nonlinear field described by H0,

Dk(z, t) = iζk

(
ξk(t)akeikz − e−ikza†

k ξ∗k (t)
)

. (16)

The time-dependent displacement field operator is the essential result of this sub-
section and the starting point for our analysis in the following Section 3.2. Let us take
a brief detour to understand how the ξ operators affect optical pumping and derive our
first constraint.

Pump Photon Blockade

The ξ operators neatly quantify the photon blockade effect, reviewed in [26], which
affects optical pumping of the resonator. To see this, consider a cavity pumped by a
near-monochromatic beam that is near resonance to a cavity mode with wavenumber k j.
As the photon number in the cavity increases from Nj to Nj + 1, the frequency shifts by
gjj(2Nj + 1). If the frequency of the next excitation shifts out of the pump linewidth, the
cavity will no longer be excited, i.e., additional photons are blockaded from entering by
the photons already in the cavity. Consequently, obtaining a high cavity intensity requires
a pump beam with a wide linewidth in the presence of very strong Kerr nonlinearities.
However, a wide pump linewidth yields unwanted excitations, so it is best for the Kerr
nonlinearities involving the pump frequency to be small.

If small Kerr frequencies at the pump frequency are challenging to achieve, we consider
the following constraint: self-phase modulation by a positive susceptibility redshifts the
frequency by −gjjN2

j . If Γ(3)
jj > 0, the largest photon number achievable in the cavity

pumped by a beam with a spectral edge at some fraction f of ωj is

NMAX =

√
(1− f )ωj

gjj
(17)

When considering optical parametric oscillation in the next sections, we drive the sum
frequency cavity mode with an external pump. It is most important that the external pump
spectrum does not overlap with the signal and idler modes to avoid unwanted excitation.
Therefore, it is necessary that f > 1/2 and preferable that f > 3/4. We discuss later in
Section 4.2, and simply note now, that a large coherent state for the sum mode minimizes
dephasing and enhances OPO efficiency. Because unwanted excitations and high pump
intensity are coincident, it is best for the Kerr nonlinearities involving the pump frequency
to be negative, if not small.
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3.2. Number-Selective Optical Parametric Oscillation

The previous section solved the Kerr Hamiltonian exactly and introduced the operators
ξ to simplify our analysis of optical parametric oscillation. With an exact time evolution
for the Kerr photons in hand, we construct the Hamiltonian for number-selective optical
parametric oscillation (NSOPO). In the interaction picture, the OPO Hamiltonian evolves
via the photon number preserving propagator, U0 = exp{−iH0t/h̄}. From Equation (9),
we obtain the time-dependent OPO Hamiltonian in the interaction picture,

HI = U†
0 H(2)U0 = −2π ∑

k0,k1,k2

∫
dr3 Γ(2)(~r; ω(k0), ω(k1), ω(k2)))Dk0(~r, t)Dk1(~r, t)Dk2(~r, t) . (18)

We assume the susceptibility Γ(2) is spatially local, spatially constant, and frequency
permutation invariant (as is the case for Γ(3), permutation invariance is not valid for the
strong nonlinearities required of NSOPO. However, accounting for variability simply
amounts to substituting the average Γ̄(2) in place of Γ(2) and does not qualitatively change
the result). The time-dependent displacement field operators, Equation (16), are substituted
into Equation (18). Terms of the form a†

Σa†
i a†

s and aΣasai are neglected by assuming the
rotating wave approximation for the three modes, but the time dependence from the
Kerr-induced frequency mismatch is preserved. All possible permutations of the three
relevant mode contributions to the field operators are reordered to a common tractable form,
accounting for the noncommutativity of a and ξ. The simplified interaction Hamiltonian
is thus

HI = −i12πALζΣζsζi

(
Γ(2)

Σ,s,ia
†
Σasaiξ

∗
Σξsξie−i(2gss+2gii+gsi−gΣs−gΣi)t − h.c.

)
(19)

where h.c. denotes a Hermitian conjugate.
We suppose that the sum frequency mode is a high-amplitude coherent state |αΣ〉

such that N̄Σ = |αΣ|2 � N̄s, N̄i. Then, we can reasonably replace the operator aΣ with the
c-number αΣ without worrying much about dephasing effects. For example, if the shaping
of signal and idler modes is done in a range of m photons, the purity of the manipulated

quantum state is of the order of e−|
m

2αΣ
|2 (See Section 4.2).

To simplify notation, we define the NSOPO complex squeezing parameter Ξ and OPO
resonance detuning frequency ∆(NΣ, Ns, Ni) such that

Ξei∆t ≡
(12πAL

h̄
ζΣζsζiΓ

(2)
Σ,s,iα

∗
Σ

)(
ξ∗Σξsξie−i(2gss+2gii+gsi−gΣs−gΣi)t

)
(20)

where
Ξ ≡ 12πAL

h̄
ζΣζsζiΓ

(2)
Σ,s,iα

∗
Σ , (21)

∆ ≡ δ + GΣNΣ + GS(Ns + 1) + Gi(Ni + 1) , (22)

and

δ ≡ ωΣ −ωs −ωi + 2(gss + gii − gΣΣ)

GΣ ≡ gΣs + gΣi − 2gΣΣ

Gs ≡ 2gss + gis − gΣs

Gi ≡ 2gii + gsi − gΣi

(23)

are the set {G} of detuning weights for each photon number, as well as a static detuning δ.
The interaction Hamiltonian is now expressed compactly as

HI = −ih̄
(

asaiΞei∆t − e−i∆tΞ∗a†
i a†

s

)
(24)
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Without Kerr nonlinearities, non-degenerate parametric down-conversion generates
two-mode squeezing between the signal and idler modes [44]. With Kerr nonlinearities,
the squeezing parameter hosts a detuning oscillation with a photon-number-dependent
frequency, making the two-mode squeezing amplitude dependent. Let us explore precisely
how this feature affects the interaction.

The OPO detuning ∆(NΣ, Ns, Ni) governs how number states experience two-mode
squeezing. A simple, and very useful, case to study is when a large-αΣ coherent state
|αΣ〉 is injected into the nonlinear cavity in the presence of a two-mode squeezed state of
signal and idler frequencies. We choose to study NSOPO on a two-mode squeezed state
rather than a single-mode state to highlight how noise shaping is identically present in
the entangled signal and idler modes, though NSOPO may be realized with a single mode
as well. Experimentally, NSOPO of a two-mode squeezed state would require a method
for coherently injecting the state into the nonlinear cavity initially in the vacuum state.
Acknowledging the technological challenge (this may be realized, for example, with an
acousto-optic modulator), we will assume it is possible and investigate its consequences.

We assume an initial two-mode squeezed state—a state which is a superposition of
all equal populations of signal and idler photons. Evident from the interaction operator
a†

Σasai, the difference in signal and idler photon numbers is a conserved quantity, so the
state remains a superposition of equal photon numbers for all times, much less than the
cavity decay time. When GΣ = 0, the OPO detuning ∆ is independent of the sum frequency
photon number and NSOPO is coherently driven by the sum frequency beam. Each OPO
interaction event will decrement or increment the signal and idler photon numbers by
one, transporting probability amplitude along the space of states. Adjacent states see a
difference in detuning of

γ ≡ Gs + Gi = 2(gss + gii + gis − gΣΣ) (25)

Let us suppose there is a photon number, Ns = Ni = n′, such that the detuning is
minimal. We call n′ the shape center. Then, the OPO Hamiltonian in Dirac notation takes
the form

HI = −ih̄
∞

∑
m=0

(m + 1)
(

Ξei(γ(n′−m)+∆(n′))t|m〉〈m + 1| − Ξ∗e−i(γ(n′−m)+∆(n′))t|m + 1〉〈m|
)

. (26)

This Hamiltonian generates a particularly interesting evolution when Ξ and γ are
of similar magnitude; however, it is challenging to describe analytically. We explore this
behavior in the following section.

4. Results and Discussions

In the previous section, we developed a theoretical method for directly targeting
photon number states to coherently shape the quantum statistics of an optical field in a
cavity. In the following section, we numerically simulate the model and illustrate how
the parameters can be controlled to generate quantum states with useful structure. The
constraints established here and in Section 3 are elaborated on and brought together to
determine what regions of parameter space are viable for experimental realization.

4.1. Simulations

The time-dependent Schrödinger equation corresponding to the interaction Hamil-
tonian, Equation (26), is numerically evolved with a Crank–Nicolson method, which
preserves unitarity. Figure 1 reveals the characteristic behavior of NSOPO. It shows that
probability amplitude tends to coalesce around number states separated by a spacing

s =
2π

γt
(27)
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where states see constructive interference from two-mode squeezing. These peaks rapidly
fall off in amplitude when near the shape center, but fall off more slowly when away from
the shape center maintaining a wide tail in their height distribution. The peak heights
increase monotonically with |Ξ| until reaching a maximum, after which the peak begins to
wind itself and develops a complicated structure.
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General Characteristics of NSOPO

Figure 1. General characteristics of NSOPO. In each plot, the state is initially a uniform real-valued
distribution. The plots differ only in the phase of the NSOPO complex squeezing parameters Ξ. For all
plots, the gouge center is n′ = 60, the Kerr detuning γ = π, and the evolution time τ = 0.08. Orange dots
are spaced by the predicted peak spacing, s = 2π

γτ , and aligned with the shaping center. The green curve
shows a first-order approximation of shaping that follows the peak positions and magnitude closely. The
blue curve is the shaped photon probability distribution resulting from an initial uniform distribution.

The peak nearest the shape center deviates from periodic spacing, consequently
shifting the pattern for states with a higher photon number. The location of the central
peak depends on the phase of the NSOPO squeezing parameter Ξ. For Ξ = −i, the peak is
centered on the shape center. For Ξ = i, there is a deep trough at the shape center with the
nearest peaks equidistant to the left and right. For Ξ = 1(−1), the nearest peak and trough
are to the right and left (left and right) of the shape center. The plots in Figure 1 underlay
the function

1
N

[
sinc

(
γ(n′ −m)τ + arg(Ξ) + π/2

)
(m + 1)τ + 1

]
(28)

which approximately replicates the height and location of each peak, breaking accuracy at
the central peak. This function is obtained by integrating the Hamiltonian over time τ and
acts as a more tractable guideline for engineering states with shaping.

These shaping principles can be applied in several ways. Setting arg(Ξ) = −π/2
such that the shape center is aligned with the peak of a state and the peak spacing s to be
greater than the width of the state, the photon number probability will coalesce into an
approximate Fock state. Figure 2a illustrates this process, generating a state with signal
photon number probabilities P(n = 52) ≈ 45%, P(n = 54, 53, 51, 50) ≈ 11%. Alternatively,
if the shape center is set far from the concentration of initial state probabilities, clean
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periodic oscillations in photon number probabilities, with a period s, are introduced into
the state. Figure 2b–d illustrate this process: (b) shows precision shaping of a coherent state
with s = 2; (c) is the same as (b) but acting on a two-mode squeezed vacuum; (d) shows
shaping with s = 6.
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Noise Shaping Photon Number Probabilities

Figure 2. Examples of photon probability shaping offered by NSOPO. (a) An approximate Fock state
of n = 52 accomplished by placing the shaping center on the peak of an initial coherent state with an
amplitude of αs,i = 7. (b) A precision shaping of the same coherent state. Parameter γt is chosen such
that peak spacing s is two photons. (c) A two-mode squeezed vacuum state with s = 2. (d) A two-mode
squeezed vacuum with s = 6.

In tandem with photon number probabilities, NSOPO offers control over states in
optical phase space. The following demonstrates an interesting case of this control: gener-
ating a family of displaced Schrödinger’s cats with a single operation. It is important to
remember that, in the Schrödinger picture, the modes experience self-phase modulation
and cross-phase modulation via the Kerr effect. Introducing the condition GΣ = 0 into
Equation (12), we see that the term of the Hamiltonian

HKerr = −h̄
(

gssN2
s + gii N2

i + gisNi Ns
)

, (29)

generates nonlinear dynamics for the signal and idler modes. Noting that N is an integer,
we see that states of a single mode are periodic in time t when each Kerr frequency satisfies
gt = 2πm, with m an integer. For simple rational values of m, the evolution maps coherent
states to generalized coherent states [12].

We extend this argument to the two-mode squeezed state, recalling Ni = Ns. We
choose a preferred final state by selecting m to satisfy

(gss + gii + gsi)t = 2πm = (γ/2 + gΣΣ)t . (30)
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Equation (27) provides a similar constraint regarding NSOPO peak spacing. If we
suppose gΣΣ = 0, then (gss + gii + gsi) = γ/2, making Equations (30) and (27) the same
constraint with 2m = 1/s. Setting s = 4, we obtain a four-phase Schrödinger cat state.
Figure 3 shows the action of NSOPO on a coherent state, (a), that is split into a generalized
four-phase Schrödinger cat state, (b). Depending on the phase arg(Ξ), NSOPO restricts
the amplitude of the cat to two of four phases, shown in (c–f). The axes in each plot are
independent phase space quadratures of the displacement field. Not shown in Figure 3,
shifting the shape center by one rotates the action of NSOPO among the operations shown
in (c–f). Namely, under n′ → n′ + 1, the plots map to each other according to c, d, e, f →
f , c, d, e. This behavior alludes to efficient quantum logic gates for macroscopic quantum
states, though further investigation is needed to understand the range of this capability.

Figure 4 shows the effect of incoherent loss on the generation of an approximate Fock
state, similar to that shown in Figure 2a. In this instance, an initial product state |ψ〉 of a
signal/idler two-mode coherent state with amplitude αs,i = 2 and a large coherent pump
state is evolved according to the local Lindblad master equation

dρ(t)
dt

=
1
ih̄
[H(1) + H(2) + H(3), ρ(t)]

+
Γcav

2

(
2asρ(t)a†

s − ρ(t)a†
s a− a†

s asρ(t) + 2aiρ(t)a†
i − ρ(t)a†

i a− a†
i aiρ(t)

) (31)

where ρ(0) = |ψ〉〈ψ| and Γcav represents the incoherent decay rate of the cavity at the signal
and idler frequencies.

To characterize the viability of the system for generating useful and pure quantum states,
we introduce a parameter that is similar in spirit to cooperativity [45]. Cooperativity is defined
for light-matter systems with specific quantum models of the material and quantifies the ratio
of the light-matter interaction rate to the loss rate of the system. Our theory is derived from a
constitutive relation, Equation (10), so it does not offer the detail required to provide the exact
cooperativity. However the strength-to-loss ratio γ/Γcav of the adjacent state detuning γ, i.e.,
the Kerr frequency of the signal-idler state, and the incoherent decay rate of the cavity at the
signal and idler frequencies Γcav, serves a similar role.

Plot (a) shows the growth of quantum infidelity 1− F with respect to reciprocal NSOPO
peak spacing γt = 2π

s . Each curve represents a different value of the strength-to-loss ratio
γ/Γcav. For γt < 1, infidelity scales linearly with γt. For |Ξ|t = 0.3, n′ = 4, and γt = 0.9, we
find the numerical result

Γcav/γ ≈ 1− F
3

. (32)

This inverse proportionality between the strength-to-loss ratio and infidelity is substantial.
Interestingly, generating approximate Fock states of higher photon numbers require a
smaller γt, such that the spacing is larger, thus high Fock state generation demands less of
the strength-to-loss ratio for the same quantum fidelity.

4.2. Pump Dephasing

A key challenge to overcome for preserving the quantum coherence of noise-shaped
states of light is to mitigate the dephasing effects of the pump beam. The two criteria to
satisfy are a strong pump beam, quantified below, and a vanishing detuning weight for the
pump frequency, GΣ = 0. Specifically, we demand that the detuning weights satisfy

GΣNΣ ≈ |2gΣΣ − gΣs − gΣi||αΣ|2 � GsNs + Gi Ni = γNs . (33)

A vanishing pump detuning weight ensures that the desired OPO detuning ∆ is
independent of pump photon number, rendering NSOPO not number-selective for the
pump field. This condition is important because a pump photon-number-selective process
implies that far fewer states in the entire Hilbert space contribute to OPO, dramatically
decreasing the efficiency of the process. Furthermore, if the interactions were number-



Photonics 2024, 11, 287 12 of 19

selective for the pump, the state of the pump field would vary dramatically for different
possible interaction histories, resulting in strong dephasing.

When NSOPO is not number-selective for the pump, the OPO interaction is simply
a displacement operation, which minimally disturbs the structure of the pump field. To
illustrate, let us consider the state |αΣ, ns, ni〉 time-evolved under the OPO interaction HI
with GΣ = 0. The result is a superposition of products of shifted coherent states in the sum
frequency and incremented number states in the signal and idler. The coherent states are,
at most, shifted by a displacement corresponding to the maximum photon number change
of the signal and idler. For large amplitude coherent states, shifts in the coherent states on
the scale of shifts in the signal and idler yield minimal deviations in the overlap between
the coherent pump states.
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Figure 3. (a) Wigner function of an initial coherent state of amplitude α = 7. (b) The coherent state
subject to Kerr rotation without any NSOPO. (c–f) The state shaped with NSOPO complex squeezing
parameter ±2,±2i. In all plots, blue regions are positively valued and red regions are negative.
Every state is shaped with parameters γ = π/2, τ = 1, and n′ = 8. As the phase of Ξ is varied by
increments of π/2, number-selective shaping changes predictably.
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Figure 4. Both plots present data from a simulation generating an approximate N=5 Fock state in
the presence of incoherent loss. The state is evolved from an initial two-mode squeezed coherent
state of amplitude α = 2. The Hamiltonian parameters are |Ξ|τ = 0.3, γτ = 0.9, and n′ = 4. Plot
(a) shows the growth of quantum infidelity 1− F with respect to reciprocal NSOPO peak spacing
γt = 2π

s . Each curve represents a different value of the strength-to-loss ratio γ/Γcav where γ is the
the adjacent state detuning and Γcav is the decay rate of the cavity at the signal and idler frequencies.
Plot (b) shows the effect of loss on corresponding photon number probabilities.

To obtain a generic measure of state purity, we note that the histories of Fock state
amplitudes are carried along with NSOPO peaks. The pump beam coherent states that are
entangled with either peak acquire dephasing contributions from pump beam coherent
states with a mean shifted by the interval of photon numbers the NSOPO peak has traveled
over its evolution. This entanglement between the pump, signal, and idler contributes a
dephasing in the signal and idler density matrix. The purity of the signal/idler density
matrix, Tr(ρ2

s/i), is well approximated by the squared overlap of the shifted and unshifted
pump beam states. Thus, for a pump beam in a coherent state |ασ〉, signal/idler in initial
two-mode squeezed coherent state |αs,i〉, and spacing s, the purity measure is

γpurity = exp
{
−
∣∣∣ αs,i

4sαΣ

∣∣∣2} . (34)

4.3. Summary of Constraints and Figures of Merit

Five conditions must be met in order to realize coherent NSOPO. The following
subsections summarize each condition, roughly ordered from simplest to most difficult
to satisfy:

1. In the presence of strong Kerr nonlinearities, exciting a cavity pump field to high
intensity requires a broad external pump linewidth. However, a broad external pump
will excite superfluous modes in the system. Let us suppose the pump beam is a broad
spectrum coherent state |αΣ〉. To mitigate unintended interactions from modes above
the signal and idler frequency, we restrict the magnitude of the sum mode self-phase
modulation frequency by Equation (17) to obtain

gΣΣ <
ωΣ

4|αΣ|4
. (35)
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Thus, it is essential for gΣΣ to be small or negative.
2. The purity measure Equation (34) indicates the constraint

αs,i

4αΣ
� s . (36)

The precision of noise-shaping is limited by the relative uncertainty of the signal/idler
photon number noise with respect to the pump photon number noise and is generally
easy to control.

3. Numerical simulations place useful values of Ξ
γ in the range from 0.1 to 10. For an

order of magnitude estimate of this constraint, let us consider a case where gss = gii =
gis and gΣΣ = 0. Using the definitions of γ, Ξ, and g from Equations (6), (13), (21),
and (25),

Ξ
γ

=
Ξ
6g
≈

ζΣΓ(2)α∗Σ
12ζsζiΓ(3)

. (37)

The quantity ζ is the single photon displacement field amplitude in Equation (6).
Careful use of Equation (11) relates the displacement field susceptibilities to the more
commonly measured electric field susceptibilities. Expanding the ratio with the
definitions of each frequency yields

Ξ
γ
≈
√

LA
18h̄ω

√√√√ cvg,Σn3
Σ

vg,svg,in3
s n3

i

Γ(2)α∗Σ
Γ(3)

≈
√

LA
18h̄ω

√
cvg,Σ

vg,svg,i

√
1

nΣnsni

χ(2)α∗Σ
χ(3)

∈ [0.1, 10]

(38)

This criterion is straightforward to satisfy in real materials. For however large the
magnitude of χ(3) is, the strength of OPO can be increased with the intensity of the
pump beam and the quantization volume.

4. As discussed in Subsection 4.2 above, shaping maintains quantum coherence if the
pump field detuning weight vanishes, GΣ = 0. Equation (33) provides a qualitative
expression of the requisite smallness of GΣ. The upshot is that greater pump power
requires higher precision in the proximity of GΣ to zero. This condition is easiest to
satisfy if Kerr frequencies related to the pump are independently small, which is chal-
lenging if the other Kerr frequencies are to be incredibly large. Appendix A discusses
a class of systems that can satisfy exactly this scenario by generating nonlinearities on
resonance with the signal and idler, and off-resonance with the pump.

5. To apply the theory developed in this paper, all shaping should occur on a time scale
τ shorter than that defined by the acceptable infidelity 1− Facc and desired spacing
according to

Γ
γ

2π

s
=

τ

τcav
<

1− Facc

s
. (39)

where τcav = 1/Γcav is the cavity decay time. This constrains the lower bound on the
Kerr frequencies gss, gii, and gsi. Let us assume gss = gii = gsi = g and gΣ,Σ = 0 for
simplicity. Restating the numerical result for the high-fidelity regime Equation (32),
but substituting in the cavity lifetime τcav = 2Q

ω , we obtain

3
1− F

≈ γ

Γcav
=

12gQ
ω

.

Substituting ζ from Equation (6) into the definition of the Kerr frequencies g from
Equation (13), and relating Γ(3) to χ(3) with Equation (11), we find that the strength-
to-loss ratio is

γ

Γcav
= 72πQ

h̄ω

V
v2

g

c2
χ(3)

n2 (40)
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Finally, substituting in the classical form of the nonlinear refractive index n2 = 24π2χ(3)

cn2 ,
we obtain a figure of merit F for NSOPO that is proportional to the strength-to-
loss ratio,

1
1− F

≈
Qh̄ωv2

gn2

πVc
≡ F (41)

This figure of merit commands our attention; it is the most challenging constraint to
practically satisfy among those in this list. Candidate systems will have large F at
the signal and idler frequencies and small F at the sum frequency. In Appendix A,
we show that compliance is likely attainable by addressing the state of the art for
achieving strong nonlinearities with minimal loss and controllable group velocity and
showing that these systems perform well within the boundary of the constraints.

4.4. Control Parameters

The shape center n′ is controlled by modulating the linear refractive index of the
material, and therefore the static detuning parameter δ, in time. To understand the extent
of modulation we may ask, what are the possible rates of change for the shape center with
respect to refractive index shifts? Let us recall the expression for δ, (23), which contains the
frequency difference ωΣ −ωs−ωi. In the simplest case, the frequencies are related to the
fixed wavenumbers of each mode by

ω =
kc
n

. (42)

where dω
dn is maximal, so is dδ

dn . Therefore, it is desirable for the refractive index of each
mode to be near zero. This conclusion is agreeable with the figures of merit derived above.
One can change the refractive index of the material by, for example, introducing a static
field, or by utilizing acoustic oscillations in the cavity material.

The NSOPO squeezing parameter, (21), is primarily controlled by modulating the
amplitude and phase of the pump beam. In practice, one should be aware that changing
the shape center affects the strength of NSOPO in three ways:

1. Equation (26) shows that OPO strength is scaled by (m + 1), where m is the signal
photon number of the state being acted upon. Thus, the OPO strength is scaled by the
shape center.

2. In some materials, e.g., organic materials, changing a static field to modulate the
refractive index will reorient molecules affecting Γ(2).

3. Static fields will also introduce a Γ(3) contribution to OPO strength Ξ.

Ultimately, determining the parameters for preparing a particular state will be a matter
of empirical tuning guided by rough numerical estimates.

A final note on state control: if the static field can be modulated on a time scale faster
than the state preparation time τ, more complicated shaping of the field noise statistics can
be accomplished, beyond fixed shaping parameters.

5. Conclusions

We have proposed a novel method for the deterministic manipulation of quantum
states of light. The underlying theoretical tools required for its implementation are devel-
oped and the physical constraints for its practical implementation described. The method
utilizes strong Kerr nonlinearities to introduce photon number dependence into the fre-
quency matching condition for optical parametric oscillation, rendering the OPO interaction
photon-number-selective. Number-selective interactions expand the capabilities of current
CV quantum optical state control and preparation techniques by introducing targeted
deterministic manipulations to subspaces of a light field’s Fock space.

Simulations indicate the generation of highly nonclassical quantum states of light. We
establish five necessary conditions to realize NSOPO in practice, which will aid the search
for candidate materials and optical configurations. The constraints are consistent with a
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common figure of merit, F , expressed in Equation (41). The best materials for NSOPO will
have large F at the signal and idler frequencies, and small F at the sum frequency. The
constraints can likely be realized in specialized systems that are driven into electronically
induced transparency and spontaneously generated coherence.

Future research will aim to realize the requisite constraints in detailed models of
highly resonant cavity light coupled with matter systems, with special attention paid to
dark resonances. From specific models, the approach derived in this paper will be adapted
to accommodate Hamiltonians beyond the simple cubic and quartic interactions treated
above. These new models will be used to guide experimental design and to search for
novel sculpted states. Future research will also investigate generation of entanglement
between two uncorrelated signal and idler states, and study how noise shaping can be
generalized to pulses of light, in particular to solitons in optical resonators with attention
paid to mitigating the dephasing effects of quantum soliton propagation.
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Abbreviations
The following abbreviations are used in this manuscript:

OPO Optical parametric oscillation
SPM Self-phase modulation
XPM Cross-phase modulation
FWM Four-wave mixing
NSOPO Number-selective optical parametric oscillation
TMSV Two-mode squeezed vacuum
ENZ Electronically induced transparency
CV Continuous variable
DFS Decoherence-free subspace
SGC Spontaneously generated coherence

Appendix A

The present theoretical paper describes how one might achieve the deterministic
shaping of a Fock state. This appendix gives a plausibility argument that the required
figure of merit is achievable. However, meeting the constraints discussed in Section 4.3
may require new materials and device architectures. Here, we individually consider the
measured properties of known material systems to estimate a reasonable range of the figure
of merit.

https://github.com/GarrettCompton/NSOPO.git
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EIT is an example of a process that exhibits the requisite properties for NSOPO.
Schmidt and Imamoglu [26] showed that a four-level system can be configured to obtain
a giant cross-phase modulation strength. With the additional presence of spontaneously
generated coherence (SGC), which can be accomplished in a five-level system [46], the
EIT window can be shifted such that the Kerr nonlinearity is maximal when absorption
is near zero. Furthermore, the five-level system proposed offers direct control over the
group velocity, which ranges from highly sub- to super-luminal and with photon-number-
dependent behavior [47].

Obtaining giant nonlinearities in near resonant systems with EIT gives us two other
desirable features for NSOPO. The peaks of the linear and nonlinear susceptibilities are
sufficiently sharp near resonance to make FWM minimal due to a rapidly increasing phase
mismatch and rapidly decaying interaction strength. In addition, off-resonant nonlinearities
will be comparatively weak. Such a system can be tuned so that the sum frequency
is off resonance with the material while the signal and idler are on resonance. Then,
Constraint (33) is satisfied by virtue of small Kerr nonlinearities at the pump frequency and
FWM can be reliably neglected for all modes.

Bang and Doai, [46,47], report values of self and/or cross-phase modulating nonlinear
index in a gas of 85Rb with density 108 atoms/cm3 on the order of

n2 =
24π2χ(3)

cn2 ≈ 5× 10−13 s · cm2

erg
(A1)

In principle, the atom density can be made orders of magnitude greater in a solid-
state device. With modest concentrations of the active molecule on the order of 1018

molecules/cm3 [48], the third-order susceptibility for non-interacting molecules is enhanced
in proportion to the molecular density, increasing the nonlinear index to

n2 ≈ 5× 10−3 s · cm2

erg
. (A2)

Supposing that the signal and idler wavelengths are on the order of 1 µm, the resonator
cross-sectional area is 1 µm × 1 µm, and the group velocity of the signal and idler are both
c. Then, the figure of merit F is to within an order of magnitude given by

F =
Q
L

103 . (A3)

For a length on the order of 10λ and cavity quality factor on the order 104 [49,50], the
infidelity F−1 is 10−10. This scenario is the upper boundary of feasible materials of this
type, so we do not expect to reach it in practice, but it offers several orders of magnitude of
leeway for trade-offs in designing materials and devices that shape photon statistics.

While this rough calculation shows the plausibility of deterministic shaping given
known materials’ properties, an important question remains as to the plausibility of making
a solid-state waveguide device. Realizing the benefits of EIT and SGC in a solid-state
waveguide device would require a material that, in analogy, is made with atoms that do
not strongly interact with each other. A possible material system is a dye-doped polymer,
which can be fabricated into waveguides, and whose linear and nonlinear optical properties
can be controlled with atom/molecule doping.

One way to incorporate the active atom/molecule into a solid is to use a polymer,
sol-gel host, or other host—which would lead to higher dopant concentration, thus a
larger nonlinearity [51]. Such materials can be made into thin films and fibers [52] and
photolithographic techniques can be used to make waveguide resonators [53]. Interactions
between the host material and the atom/molecule can be minimized by using molecular
pincers—called chelates—to isolate them. Chelated rare-earth atoms are commonly used in
amplifiers [54]. The ability to get higher densities of active molecules to increase nonlinear-
ity, the flexibility of choosing molecules for their spectral properties, the shielding from the
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environment to mitigate dephasing through chelation, and the reduction of inhomogeneous
broadening by cooling the material all provide the means for optimization.

Each of these approaches presents challenges, but designing a device is far beyond
the scope of this paper. However, the numbers suggest that making a device for the
deterministic shaping of quantum light statistics is possible and our work defines the
material requirements that will guide future experimental efforts.
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