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Abstract: A family of 2D light fields consisting of the product of three Airy functions with linear
arguments has been studied theoretically and experimentally. These fields, called three-Airy beams,
feature a parameter shift and have a cubic phase and a super-Gaussian circular intensity in the far
zone. Transformations of three-Airy beams in the Fresnel zone have been studied using theoretical,
numerical, and experimental means. It has been shown that the autofocusing plane of a three-Airy
beam is similar to the square root of the shift parameter. We also introduce generalized three-Airy
beams containing nine free parameters, and obtain their Fourier transform in a closed form.
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1. Introduction

Light fields based on the Airy function usage are intensively studied objects in modern
optics. As a solution of the 1D paraxial equation, the Airy function first appeared in 1979,
when the non-diffracting Airy beams of infinite energy were found [1]. However, a boom in
optical research related to the Airy function began in 2007, when it was noted that a linear
exponential factor allows the construction of paraxial Airy beams of finite energy [2]. In
general, Airy beams depend on some real parameters and are functionally stable solutions
of the paraxial equation. Despite the lack of structural stability, under certain restrictions,
there is a propagation zone in which the intensity of Airy beams varies very weakly. In
addition, the parabolic shape of the propagation trajectory of Airy beams provides new
opportunities for the practical application of such beams since traditional Gaussian beams
are characterized by rectilinear propagation.

This discovery was followed by studies and publications that looked at various as-
pects related to Airy beams. Among the theoretical works, the following results should
be noted: the transformation of Airy–Gaussian beams in first-order optical systems [3],
the Poynting vector and orbital angular momentum of Airy beams [4], the nonparaxial
study of Airy beams [5,6], truncated Airy beams [7,8], the comparison of Airy beams and
Hermite–Gaussian modes under astigmatic transformation [7], vortex Airy beams [7,9] and
others [10–14]. Among the experimental works, we mention papers related to the study of
the propagation of Airy beams in various media [15–17], as well as the use of Airy beams
for problems related to microparticles [18] (see also the references therein).

As a rule, either 1D Airy beams or their 2D analogs, obtained by multiplying two
1D beams whose arguments are orthogonal Cartesian coordinates in the plane, were con-
sidered. Airy beams of more complex shape (for example, circular Airy beams) have
been investigated only numerically and experimentally since theoretical study requires
the discovery of quite nontrivial integrals in a closed form. However, the theory of in-
tegral transformations of Airy functions is not yet sufficiently developed to cope with
such challenges.
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One of the nontrivial examples when theoretical research turned out to be possible is a
family of three-Airy beams [19]. In 2010, these beams were introduced as the product of
three 1D Airy patterns, which are shifted from the origin to the vertices of an equilateral
triangle and rotated so that the resulting field is invariant under rotation by 120◦:

Ai3(r | c) = Ai
(
−x

√
3 − y

2
+ c

)
Ai

(
x
√

3 − y
2

+ c
)

Ai(y + c), (1)

where

Ai(x) =
1

2π

∫
R

exp
(

it3

3
+ ixt

)
dt (2)

is the Airy function definition, r = (x, y) is a 2D vector, and c is a shift parameter.
The shift parameter determines the shape of the three-Airy beams and their behavior

when propagating in the Fresnel zone. As it turned out, the Fourier transform of these
beams has a cubic phase and a circular super-Gaussian intensity [19]:

F
[
Ai3(bρ | c)

]
(r) =

1
35/6πb2 exp

(
−2i(3x2y − y3)

27b3

)
Ai

(
32/3c +

2|r|2
34/3b2

)
. (3)

Here, ρ = (ξ, η) is a 2D vector, b is a scaling factor,

F
[

f (ρ)
]
(r) =

1
2π

∫∫
R2

e−i⟨r,ρ⟩ f (ρ)d2ρ (4)

is 2D Fourier transform, and ⟨r, ρ⟩ = xξ + yη is the standard scalar product of 2D vectors.
As is seen in (3), only the Airy factor depends on the shift parameter. A simple proof of the
relation (3) is presented in Appendix A.

The most interesting cases are when, at the central point, x = y = 0, the Airy function
reaches a maximum (i.e., 32/3c = a′n) or goes to zero (i.e., 32/3c = an). Here an and a′n are
zeros of the functions Ai(x) and Ai′(x), respectively. All of them are real and located on
the negative semi-axis. Asymptotic expansions are known for both families of zeros [20],

an ≈ −
(

3π

8
(4n − 1)

)2/3

, a′n ≈ −
(

3π

8
(4n − 3)

)2/3

. (5)

Even for small n, the initial terms of these expansions give a very good approximation to
the exact values of the zeros. For example,

a1 = −2.338 . . . ≈ −2.320, a′1 = −1.018 . . . ≈ −1.115,

a2 = −4.087 . . . ≈ −4.081, a′2 = −3.248 . . . ≈ −3.261,

a3 = −5.520 . . . ≈ −5.517, a′3 = −4.820 . . . ≈ −4.826,

a4 = −6.786 . . . ≈ −6.784, a′4 = −6.163 . . . ≈ −6.167, (6)

where the first number is the exact value of zero, and the second is due to Equation (5).
In subsequent years, three-Airy beams were constructed and studied in various ways.

Torre in [21] found their intensity moments of second order. In [22], the three-Airy beam
for the case 32/3c = a′1 was implemented on the basis of the Fourier transform method. Its
propagation in free space and a nonlinear medium (SBN crystal) was studied experimentally.
In [23], Desyatnikov et al. also used the Fourier transform method, but the initial field was
formed by the holographic method. In that article, two beams with parameters 32/3c = a3
and 32/3c = a′3 were investigated, and autofocusing of three-Airy beams was discussed. In
addition, Desyatnikov considered the propelling behavior of such beams when an optical
singularity is embedded, as well as the prospects for their use for transporting particles.
In [24], vortex three-Airy beams with different topological charges have been investigated.
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In this work, we continue to study three-Airy beams by theoretical and numerical
means, as well as in optical experiments. In Section 2, we discuss the ways to evaluate the
Fresnel transform of these beams. Here, the experimental implementation of three-Airy
beams is also considered. In Section 3, we investigate the autofocusing behavior of these
beams. In Section 4, we generalize the relation (3) and provide some corollaries concerning
the beams of finite and infinite energy. In Conclusion, we discuss possible applications of
the results obtained.

We consider the study of three-Airy beams at various values of the shift parameter,
the characteristics of their propagation in the Fresnel zone, and the determination of the
autofocusing plane depending on the shift parameter as a necessary basis for the subsequent
transition to the study of multiple beams of Pearcey, swallowtail, and other diffraction
catastrophes, whose non-Gaussian nature also leads to the appearance of an autofocusing
plane when propagating in the Fresnel zone.

2. Three-Airy Beams in the Fresnel Diffraction Zone
2.1. Theory

If a coherent light field of a wavelength λ is specified by its complex amplitude F0(r)
in the initial plane z = 0, then the field propagation in free space is described in the paraxial
approximation by the equation {∂2

x + ∂2
y + 2ik∂z}F(r, z) = 0, where F(r, 0) = F0(r). If

F0(r) vanishes sufficiently rapidly as |r| → ∞, then F(r, z) related to F0(r) by the Fresnel
transform [25]:

F(r, z) = FRz[F0(ρ)](r) =
k

2πiz

∫∫
R2

exp
(

ik
2z

|r − ρ|2
)

F0(ρ)d2ρ. (7)

where k = 2π/λ is the wavenumber of light.
The numerical evaluation of the double integral (7) can be carried out by expanding

the initial field into a series of Hermite–Gaussian (HG) modes (see Appendix B).
When choosing F0(ρ) = Ai3(bρ | c), the question arises: what Gaussian beam width w

is optimal for approximating a three-Airy beam by the superposition of HG modes (A11) if
the double series is replaced by a truncated finite sum?

funcFRz,w
[
Ai3(bρ | c)

]
(r) ∼= ∑

0≤n≤N
0≤m≤M

cn,me−i(n+m) arg σHn,m

(
r
w

)
. (8)

This problem can be solved numerically using the least squares method (see [19] for detail),
selecting the shift parameter c = 3−2/3a′1, for which the Fourier image of the three-Airy
beam has a circular intensity very similar to Gaussian. The solution is w = 1.027/b, and
this value remains optimal even if 32/3c ̸= a′1.

Figure 1 depicts the intensity and phase distributions of the beam (8) for the shift
parameters c = 3−2/3a′3 and c = 3−2/3a3. Other parameters are b = 1, w = 1 and
z ∈ [0, π/2]. As can be seen, when the three-Airy beam propagates, there is a plane in
which the intensity has a trefoil shape with a strong central peak. We consider this plane to
be the autofocusing (AF) plane.

For the initial beam F0(ρ) = Ai3(bρ | c), we were unable to calculate analytically the
double integral (7), while we reduce it to a 1D integral:

FRz
[
Ai3(bρ | c)

]
(r)

=
1√
π

exp
(

9icb2z
4k

+
27ib6z3

64k3

)∫
R

e−t2
Ai3

(
br

∣∣∣ c +
9b4z2

16k2 +

√
b2z
k

· e−πi/4t
)

dt. (9)

This integral representation is useful in the theoretical study of the elliptic umbilic
catastrophe [26], but it is not applicable for numerical simulation related to the propagation
of three-Airy beams in the Fresnel zone. The reason is that the integrand in (9) is the product
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of a rapidly decreasing Gaussian function, e−t2
, and a rapidly increasing Airy function

of the complex argument, Ai3∼e|t|
3/2

as t → −∞. Of course, the integral (9) converges
absolutely. However, to obtain acceptable calculation accuracy, we are forced to make the
integration domain too large, which leads to an excessive increase in calculation time. As a
result, for numerical simulation, the use of the series expansion in terms of HG modes (8)
is preferable.

Figure 1. Numerically evaluated intensity and phase distributions of the beam (8), where c = 3−2/3a′3
(top two rows) and c = 3−2/3a3 (bottom two rows). The leftmost frames correspond to the initial
plane z = 0, while the rightmost ones correspond to the Fourier plane z = ∞. All frames are shown
in the square [−h, h]× [−h, h], where h = 4.0 for the top row and h = 4.5 for the bottom. As usual,
the x axis is horizontal, the y axis is vertical.

2.2. Experiment

The experimental part of our investigation of three-Airy beams has been conducted as
follows. Figure 2 shows the optical set-up. We use solid-state laser L with a wavelength
of 532 nm. Lenses L1 and L2 ensure beam expansion to the desired size. Lens L3 forms
intensity distribution on the sensitive area of the video camera. To reduce the formation
distance, a lens with a focal length of 1000 mm was used.

Figure 2. Experimental set-up: L is laser, L1 is microlens 20×, L2 is lens with f = 400 mm, L3 is lens
with f = 1000 mm, CCD is video camera VSTT-252.

The amplitude–phase distribution presented in Figure 3a,b was encoded into a pure
phase one by partial encoding method [27]. The partial encoding technique makes it
possible to vary the error of the field generation and the diffraction efficiency in a wide
range, choosing the best ratio for a specific task. A threshold value α ∈ [0, 1] is proportional
to the accuracy of the formation of a given field and inversely proportional to efficiency.
The simulation showed a slight difference in the formed patterns calculated for α = 1 and
α = 0.5, so in the experiments, we used an optical element for α = 0.5 (see Figure 3d),
because in this case, higher diffraction efficiency is ensured.
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(a) (b) (c) (d)

Figure 3. Numerically evaluated intensity (a) and phase (b) of the input three-Airy beam. Phase of
an optical element with encoded amplitude for the formation of a three-Airy beam at α = 1 (c) and
α = 0.5 (d).

The DOE shown in Figure 3d was fabricated using the method photolithography on
a quartz plate with a resolution of 1 µm, and the microrelief depth was 530 nm. Figure 4
shows the shape of the surface microrelief section DOE. The diameter of the DOE is 4 mm.

(a) (b)

Figure 4. Surface shape of the coded section of the DOE microrelief (a), surface shape of the uncoded
section of the DOE microrelief (b).

The three-Airy beam propagation simulation and corresponding experimentally
recorded intensity patterns obtained for phase element (Figure 3d), illuminated by a
converging beam (with a focus at a distance of 1000 mm from the input plane), are shown
in Figure 5.

550 mm 600 mm 800 mm 1000 mm 1200 mm

Figure 5. Intensity distribution of three-Airy beam for the shift parameter c = 3−2/3a′4 at various
distances from the input plane: numerical simulations (top row) and results of optical experiment
(bottom row).
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3. Autofocusing Plane of Three-Airy Beams

During free-space propagation, many non-Gaussian paraxial light fields demonstrate
an autofocusing (AF) behavior. It means that a light beam propagating in the Fresnel zone
and with a wide intensity profile at some point suddenly changes sharply and takes the
form of a single, highly localized peak of large magnitude.

The most famous beams with the AF property are circular Airy beams ea(r0−r)Ai(r0 − r),
where r0 is the radius of the Airy ring on the input plane and a is an exponential truncation
factor [28,29] (see also [30] and the references therein). Due to the radially symmetrical
shape of such fields, the study of the location of their AF plane when propagating in
the Fresnel zone is reduced to a 1D problem and allows the application of asymptotical
methods based on the idea of the stationary phase.

For three-Airy beams, Ai3(r | c), even the very definition of the concept of “autofocus-
ing plane” becomes a problem since the transverse intensity distribution of such beams is
not radially symmetric and, as a consequence, a 3D profile of its intensity is not bell-shaped.
However, in the simplest version, when the shift parameter is defined by the relation
32/3c = a′1 ≈ −1.018, the intensity of the three-Airy beam in the Fresnel zone changes
weakly, transforming from triangular to circular shape. In this case, the intensity reaches a
maximum value on the axis of the beam propagation.

Thus, there are two ways to find the location of the AF plane of the three-Airy beam.
First, one can write an equation for its intensity extrema points located on the optical axis
(i.e., at r = 0):

∂z
∣∣Ai3(0, z | c)

∣∣2 = 0 (10)

and try to solve it within the framework of some additional asymptotic assumptions.
Second, one can represent the Fresnel transform of the three-Airy beam as a certain integral
of the pure phase exponential and apply the stationary phase method to find the caustic.
We consider both of them.

3.1. Three-Airy Beam Intensity at the Points of the Optical Axis

It is known that the Fresnel transform (7) of a field F0(ρ) can be written in terms of the
Fourier transform of the field. Specifically, since

F0(ρ) = F−1
[
F [F0](r)

]
(ρ) =

1
2π

∫∫
R2

ei⟨r,ρ⟩F [F0](r)d2r, (11)

then

FRz
[
F0(ρ)

]
(r) = F−1

[
exp

(
− iz

2k
|ρ|2

)
F [F0](ρ)

]
(r). (12)

Substituting the three-Airy beam F0(ρ) = Ai3(bρ | c) and its Fourier image (3), one obtains

Ai3(br, z | c) =
1

35/6πb2 F
−1

[
exp

(
− iz

2k
|ρ|2 − 2i(3ξ2η − η3)

27b3

)
Ai

(
32/3c +

2|ρ|2
34/3b2

)]
(r). (13)

Let us simplify this integral for r = 0, passing to polar coordinates, ξ + iη = ρeiϕ, integrat-
ing over the polar angle and introducing the variable t = ρ2/9b2:

Ai3(0, z | c) =
37/6

2π

∫ ∞

0
exp

(
−9izb2

2k
t
)

J0(2t3/2)Ai(32/3[c + 2t])dt. (14)

Then the equation ∂z|Ai3(0, z | c)|2 = 0 takes the form

Im
{

G∗
1 · G0

}
= 0, where Gm =

∫ ∞

0
exp

(
9izb2

2k
t
)

J0(2t3/2)Ai
(
32/3[c + 2t]

)
tm dt, (15)

and the asterisk means complex conjugation.
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Some intensity curves, |Ai3(0, z | c)|2, are depicted in Figures 6 and 7. Here, we use
the dimensionless variable z := 2zb2/k and select the shift parameter c so that the Fourier
image of the three-Airy beam reaches its maximum value at a point lying on the optical axis,
c = cn = 3−2/3a′n. Thus, the location of the AF plane zs(cn) depends on n. A numerical
study of the discrete function zs(cn), where 20 ≤ n ≤ 150, revealed that zs(cn) ≈

√
n + 5

for large n (in particular, zs(c60)−
√

60 = 4.812), while, of course, the numerical results
cannot be considered to be a true asymptotic behavior of zs(c) as c → ∞.

Figure 6. Intensity distributions |Ai3(0, z | c)|2 versus dimensionless z := 2zb2/k when the shift
parameter is c = cn = 3−2/3a′n, 1 ≤ n ≤ 6. The global maximum point characterizes the location of
the AF plane zs(cn). If n = 1, then there is no such plane. For other ns, the plane exists and the value
of zs(cn) increases monotonically with increasing n: 1.842, 3.038, 3.806, 4.389, and 4.868.

Figure 7. Intensity distributions |Ai3(0, z | c)|2 versus dimensionless z := 2zb2/k when the shift
parameter is c = 3−2/3a′n, n = 100 (red), 120 (green), and 140 (blue). Here, zs = 15.012, 15.985, and
16.852, respectively.

3.2. Caustic of Three-Airy Beam upon Propagation in the Fresnel Zone

Finding the caustic is one of the traditional problems that arise when the properties of
diffraction catastrophe integrals and light fields associated with them are studied. Each
diffraction catastrophe is connected to a definite caustic due to the equations on the sta-
tionary phase and the Hessian. A good introduction to this field (catastrophe optics) is
the paper [31] (see also [32] and the references therein). Recently, caustical investigation
has been applied to aberration laser beams [33], vortex beams [34], and Ince–Gaussian
beams [35].

Let us consider the problem of finding the AF plane of the beam Ai3(r, z | c) as the
process of the appearance of a caustic point of the beam when it propagates in the Fresnel
zone. Replacing the radial Airy function in Equation (13) with the definition (2) and
changing the variable t → 3−2/3t, we obtain

Ai3(r, z | c) =
3−5/6

4π3

∫∫∫
R3

exp
(

iP(ξ, η, t)
)

dξ dη dt, (16)

where P(ξ, η, t) = (xξ + yη)− 1
4 z(ξ2 + η2)− 2

27 (3ξ2η − η3) + 1
27 t3 + t

[
c + 2

9 (ξ
2 + η2)

]
.
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By making the substitution of the output variables (x, y, z, c) = 4
9
(
X, Y, 2Z,−A

)
in the

function P(ξ, η, t),

P(ξ, η, t) = 4
9 (Xξ + Yη − At) + 2

9 (t − Z)(ξ2 + η2) + 1
27 (t

3 − 6ξ2η + 2η3), (17)

and equating its gradient to zero, ∂ξ P = ∂η P = ∂tP = 0, we obtain a system for finding the
stationary points:

ξη + (Z − t)ξ = X, 1
2 (ξ

2 − η2) + (Z − t)η = Y, (ξ2 + η2) + 1
2 t2 = 2A. (18)

From the last equation, it is seen that a real solution (ξ, η, t) exists for A > 0 only.
Equating the Hessian of P(ξ, η, t) to zero, we have a fourth relationship between

the variables:

(t3 − 6ξ2η + 2η3) + 2Z(ξ2 + η2 − t2) + t(Z2 − 3[ξ2 + η2]) = 0. (19)

This equation, when jointly solved with the system (18), allows us to find the location and
shape of the caustic curve.

Ideally, our further plan of action is as follows. We find an explicit solution of the
system (18) in the form of ξ = ξ(X, Y, Z, A), η = η(X, Y, Z, A), and t = t(X, Y, Z, A). Then,
we substitute it into (19) and obtain a caustic equation, Φ(X, Y, Z, A) = 0, which for the
values X = Y = 0 leads to AF plane: Φ(0, 0, Z, A) = 0 ⇒ Z = Z(A).

Carrying out this plan and passing from Cartesian coordinates to polar ones,
(ξ, η) = (ρ cos ϕ, ρ sin ϕ), we obtain

X = 1
2 ρ2 sin 2ϕ + (Z − t)ρ cos ϕ, Y = 1

2 ρ2 cos 2ϕ + (Z − t)ρ sin ϕ, ρ2 + 1
2 t2 = 2A,

(t3 − 2ρ3 sin 3ϕ) + 2Z(ρ2 − t2) + t(Z2 − 3ρ2) = 0.

Later, we use the equation ρ2 + 1
2 t2 = 2A to replace ρ =

√
2A cos θ, t = 2

√
A sin θ, where

−π/2 ≤ θ ≤ π/2. In fact, it makes the transition from Cartesian to spherical coordinates
(ξ, η, t) → (ρ, ϕ, θ).

Making another change in variables, (X, Y, Z) = (AX̃, AỸ,
√

A Z̃), we obtain the
caustic equations without the explicit presence of the variable A (thus, the use of the
stationary phase method at A ≫ 1 becomes justified):

X̃ = cos2 θ sin 2ϕ +
√

2(Z̃ − 2 sin θ) cos θ cos ϕ, (20)

Ỹ = cos2 θ cos 2ϕ +
√

2(Z̃ − 2 sin θ) cos θ sin ϕ, (21)

2
√

2 cos3 θ sin 3ϕ = sin θ(Z̃ − 2 sin θ)2 + 2 cos2 θ(Z̃ − 3 sin θ). (22)

From the last equation, we find the solution ϕ = ϕ(Z̃, θ). Substituting it into
Equations (20) and (21), we obtain the caustic curve in parametric form.

The case cos θ = 0 is the most interesting. If θ = −π/2, then there is no solution due
to the constraint z ≥ 0. If θ = π/2, then we obtain the singular solution (X̃, Ỹ, Z̃) = (0, 0, 2).
This is a caustic point. It determines the location of the AF plane. Returning to the original
variables (x, y, z), we obtain x = y = 0 and

zs =
8
3

√
−c. (23)

Thus, if the shift parameter c, while remaining negative, increases in absolute value, then
the AF plane moves away from the initial plane.

It is interesting to note that the same result is obtained if we replace the Bessel function
in Equation (15) with its asymptotic expression, J0(x)∼

√
2/πx cos(x − π/4). However,

this way requires much more effort.
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In the numerical experiments above, we considered the case c = cn = 3−2/3a′n. Then,

zs(cn) =
8
3

√
−3−2/3a′n

(5)
≈ 4

3
[
π(4n − 3)

]1/3. (24)

The exponent of n in the last formula does not coincide with the analogous indicator in
the dependence zs(cn) ≈

√
n + 5, found empirically for n ≤ 150 in numerical experi-

ments. Nevertheless, already at n = 100, we obtain a quite good correspondence with an

exact numerical result (see Figure 6): zs(c100)
(24)
= 14.3522 ≈ 15.012. Taking into account

the asymptotic nature of the formula (23), we expect that its accuracy will increase with
increasing n, while the accuracy of the empirical formula will decrease.

Fixing Z̃ = 2 (the AF plane), let us investigate the question: what is the shape of the
caustic curve in the plane of variables (X̃, Ỹ)? We omit the case cos θ = 0, leading to the
caustic point. Then,

sin 3ϕ =
sin θ(2 − 2 sin θ)2 + 2 cos2 θ(2 − 3 sin θ)

2
√

2 cos3 θ
. (25)

The curve of the RHS of (25) versus θ ∈ [−π/2, π/2] is shown in Figure 8. As is seen, there
are two intervals, θ ∈ [−0.651,−0.418] and [0.339, 1.123], for which the RHS value is placed
in [−1, 1], i.e., for which a solution ϕ0 = ϕ(θ) exists. The general solution ϕ(θ) is a set of
the values

{
ϕ0, ϕ0 +

2π
3 , ϕ0 +

4π
3
}

and
{

π
3 − ϕ0, π − ϕ0, 5π

3 − ϕ0
}

. If we use these six values
ϕ(θ) to construct the parametric curve given by Equations (20) and (21), then we obtain a
caustic, consisting of two parts:

• outside—a triangular-shaped curve (six values for θ ∈ [−0.651,−0.418] are used),
• inside—a 3-bladed curve with sharp vertices (six values for θ ∈ [0.339, 1.123] are used).

The shape of the caustic (shown on the right in Figure 8) is very similar to what is
obtained in numerical and optical experiments.

Figure 8. Left: intervals in θ for which there is a solution ϕ(θ) to Equation (25). Right: caustic
X̃ = X̃(ϕ, θ(ϕ)), Ỹ = Ỹ(ϕ, θ(ϕ)), 0 ≤ ϕ ≤ 2π, obtaining from Equations (20)–(22) with Z̃ = 2.
Callout: a zoomed-in area around the origin shows the caustic point, which exists only in the
AF plane.

4. Fourier Transform of Generalized Three-Airy Beams

In this section, we consider a 2D light field generalizing the three-Airy beam (1).
Let us define the field as the product of three Airy functions with linear arguments of
general form,

Ai3(r |M) = ∏
1≤n≤3

Ai(Anx + Bny + Cn), (26)

where An, Bn, Cn are real parameters combined into a matrix
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M =

A1 A2 A3
B1 B2 B3
C1 C2 C3

. (27)

We do not discuss what values these parameters can take. The only restriction is that each
of the Airy multipliers is nontrivial (i.e., we discard cases like A1 = B1 = 0).

The main result of this section is that the Fourier image of the field (26) can be found
in a closed form:

F
[
Ai3(ρ |M)

]
(r) =

1
2π|∆|1/3 exp(iP1 + iP3)Ai(P0 + P2), (28)

where ∆ is a constant and Pn = Pn(r) are homogeneous real-valued polynomials of degree
n. All of them are quite cumbersome since the LHS of (28) contains 9 free parameters. We
write ∆ and Pn using auxiliary quantities. Specifically, let

∆1 =
∣∣∣ A2 A3

B2 B3

∣∣∣, ∆2 =
∣∣∣ A3 A1

B3 B1

∣∣∣, ∆3 =
∣∣∣ A1 A2

B1 B2

∣∣∣, (29)

that means that det M = C1∆1 + C2∆2 + C3∆3. Let also Rn = Bnx − Any. Then,

∆ = ∆3
1 + ∆3

2 + ∆3
3, P0 =

det M
∆1/3 , P2 =

∆1∆2∆3

∆4/3 ∑
1≤n≤3

R2
n

∆n
,

P1 =
1
∆

∣∣∣∣∣∣
R1 R2 R3
∆2

1 ∆2
2 ∆2

3
C1 C2 C3

∣∣∣∣∣∣, P3 =
1

3∆2

{∣∣∣∣∣∣
R3

1 R3
2 R3

3
∆3

1 ∆3
2 ∆3

3
1 1 1

∣∣∣∣∣∣+ ∏
1≤m<n≤3

(Rn∆n − Rm∆m)

}
. (30)

Formula (28) can be proved at least in two ways. The first is based on the 1D Fourier image
of the product of two Airy functions ([36] Section 3.5.3): If

F(x) =
∫
R

e−ixtAi(A1t + B1)Ai(A2t + B2)dt, (31)

then

F(x) =
1

|A3
1 − A3

2|1/3
exp

(
i(A2

1B1 − A2
2B2)x

A3
1 − A3

2
+

i(A3
1 + A3

2)x3

3(A3
1 − A3

2)
2

)
× (32)

× Ai
(

1
(A3

1 − A3
2)

1/3

[
A1B2 − A2B1 −

A1 A2x2

A3
1 − A3

2

])
, A1 ̸= A2

F(x ̸= 0) =
1

2
√

π|Ax|
exp

(
ix3

12A3 +
i(B2 + B1)x

2A
− iA(B2 − B1)

2

4x
+

πi
4

sgn(Ax)
)

, A1 = A2 = A ̸= 0

F(0) =
1
|A| δ(B2 − B1). A1 = A2 = A ̸= 0

The second way is similar to the proof of Equation (3) in Appendix A but lengthy. Never-
theless, both ways are straightforward. Moreover, a desire to find the representations of
the polynomials Pn in (28) which demonstrate their invariance under permutations of the
triples {An, Bn, Cn}, requires quite tedious algebra.

The formula (28) has numerous and important corollaries. Some of them, interesting
for mathematics, are mentioned in [37]. For optics, the light field Ai3(r |M) is a field of
finite or infinite energy provided ∆ > 0 or ∆ < 0, respectively. The condition ∆ < 0 can be
expressed in terms of the relative position of the vectors (An, Bn), 1 ≤ n ≤ 3, on the plane:
If there is a straight line passing through the origin such that all three vectors are located
along one side from it, then ∆ < 0. And vice versa, if such a line does not exist, then ∆ > 0.
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Consider an example: Let the product of Airy functions in Equation (26) be as follows:

Ai3(r |M) = Ai(−x sin α + y cos α + C1)Ai(x sin α + y cos α + C2)Ai(y + C3). (33)

Then

(A1, B1) = (− sin α, cos α), (A2, B2) = (sin α, cos α), (A3, B3) = (0, 1),

∆1 = −2 cos α sin α, ∆2 = ∆3 = sin α, ∆ = 2 sin3 α(1 − 4 cos3 α),

R1 = x cos α + y sin α, R2 = x cos α − y sin α, R3 = x, (34)

and the polynomials Pn are reduced to simpler expressions:

P0 =
C1 + C2 − 2C3 cos α

21/3(1 − 4 cos3 α)1/3 ,

P1 =
C2 − C1

2 sin α
· x +

C3 − 2(C1 + C2) cos2 α

1 − 4 cos3 α
· y,

P2 =
1

21/3(1 − 4 cos3 α)1/3

(
1

2 sin2 α
· x2 − 2 cos α

1 − 4 cos3 α
· y2

)
,

P3 = − cos2 α

sin2 α(1 − 4 cos3 α)
· x2y +

1 + 4 cos3 α

3(1 − 4 cos3 α)2 · y3. (35)

One of the most interesting cases is when the RHS of Equation (28) contains a circular
Airy factor. For this, the polynomial P2 should be radially symmetric, which leads to
the equation

1
2 sin2 α

= − 2 cos α

1 − 4 cos3 α
⇒ 8 cos3 α − 4 cos α − 1 = 0. (36)

Introducing the variable t = 2 cos α, one obtains the cubic equation t3 − 2t − 1 = 0. Its
roots are t = {−1, (1 ±

√
5)/2} that corresponds to α = {2π/3, π/5, 3π/5}. We discuss

these three cases separately.

(i) If α = 2π/3, then ∆ = 35/2/23, the field (33) is of finite energy, and

F
[
Ai3(ρ |M)

]
(r) =

1
35/6π

exp
(

i
3
{√

3(C2 − C1)x − (C1 + C2 − 2C3)y
}

− 2i
27

(3x2y − y3)

)
Ai

(
C1 + C2 + C3

31/3 +
2

34/3 (x2 + y2)

)
. (37)

When C1 = C2 = C3 = c, this formula coincides with Equation (3).
(ii) If α = π/5, then

cos α =
1 +

√
5

4
, sin α =

1 +
√

5
4

√
5 − 2

√
5 , ∆ = −

√
5 sin3 α < 0, (38)

and the field (33) is of infinite energy. Its Fourier image is

F
[
Ai3(ρ |M)

]
(r) =

√
10 + 2

√
5

52/32π
exp(iP1 + iP3)Ai(P0 + P2), (39)

P0 = − 1
51/6

(
C1 + C2 −

1 +
√

5
2

C3

)
,

P1 =

√
5 +

√
5

10
(C2 − C1) · x +

(3 +
√

5)(C1 + C2)− 4C3

2
√

5
· y,

P2 = −1 +
√

5
52/3 (x2 + y2), P3 =

2(2 +
√

5)
5

· x2y +
2(4 +

√
5)

15
· y3.
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Since P2 is negative, the field (39) has an infinite number of zero circles. Figure 9
depicts an example when C1 = C2 = c, C3 = 1

2 (3 +
√

5)c, and 51/3c = a′1. Then, the
polynomial P1 vanishes, and the intensity becomes maximum at the origin.

Figure 9. Numerically evaluated intensity and phase (without cubic component) distributions of the
three-Airy beam of infinite energy and of its Fourier image (from left to right). All frames are shown
in the square [−h, h]× [−h, h], where h = 4.5.

(iii) If α = 3π/5, then

cos α = −
√

5 − 1
4

, sin α =

√
5 − 1
4

√
5 + 2

√
5 , ∆ =

√
5 sin3 α > 0, (40)

and the field (33) is of finite energy. Its Fourier image is

F
[
Ai3(ρ |M)

]
(r) =

√
10 − 2

√
5

52/32π
exp(iP1 + iP3)Ai(P0 + P2), (41)

P0 =
1

51/6

(
C1 + C2 +

√
5 − 1
2

C3

)
,

P1 =

√
5 −

√
5

10
(C2 − C1) · x − (3 −

√
5)(C1 + C2)− 4C3

2
√

5
· y,

P2 =

√
5 − 1
52/3 (x2 + y2), P3 = −2(

√
5 − 2)
5

· x2y +
2(4 −

√
5)

15
· y3.

The polynomial P2 is positive, so the field (41) has a finite number of zero circles.
As before, we choose the coefficients Cn in such a way as to vanish the polynomial
P1: C1 = C2 = c, C3 = 1

2 (3 −
√

5)c. When 51/3c = a′1, a1, a′4, a4, the initial three-Airy
beams, and their Fourier images are depicted in Figure 10.

Finally, let us consider the field (33) for the limiting case α → +0. Then sin α ∼= α,
cos α ∼= 1, ∆ ∼= −6α3, and

P0 =
2C3 − C1 − C2

61/3 , P1 =
C2 − C1

2α
· x +

2(C1 + C2)− C3

3
· y,

P2 = − 1
64/3

(3x2

α2 + 4y2
)

, P3 =
x2y
3α2 +

5y3

27
. (42)

Substituting these expressions into Equation (28) and integrating both sides over x ∈ R (at
his stage, the integral over ξ reduces to Dirac’s delta function and α vanishes), we have

2π
∫
R

e−iyη ∏
1≤n≤3

Ai(η + Cn)dη =
1

61/3 exp
[

i(2C1 + 2C2 − C3)y
3

+
5iy3

27

]
×

∫
R

exp
[

i(C2 − C1)x
2

+
ix2y

3

]
Ai

(
2C3 − C1 − C2

61/3 − 3x2 + 4y2

64/3

)
dx. (43)

This quite unusual identity is applicable in the theory of hypergeometric functions
and helps to investigate the elliptic umbilic diffraction catastrophe [26], and has various
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corollaries. We provide only one of them, the integral representation of the product of both
Airy functions (see also Section 3.6.3 in [36]):

Ai(c)Bi(c) = 31/6
∫
R

Ai2(η)Ai(η + 31/3c)dη. (44)

To prove this, we substitute y = 0 into (43), then the integral over x is known due to Berry
([31], Equation (B17)). The formula (44) helps to study the propagation of certain Gaussian
and non-Gaussian light fields of finite and infinite energy containing the factor AiBi.

Figure 10. Numerically evaluated intensity and phase (without cubic component) distributions of the
three-Airy beam of finite energy and of its Fourier image (from left to right) for the shift parameters
51/3c = a′1, a1, a′4, a4 (from top to bottom). All frames are shown in the square [−h, h]× [−h, h], where
h = 4.5.

5. Conclusions

The problems studied above related to the propagation of three-Airy beams in the
Fresnel zone have close connections with hot topics in optics. We believe that generalized
three-Airy beams will be useful for various applications of modern optics and photonics,
such as laser structuring of photosensitive material surfaces and laser ablation [38,39],
optical trapping and manipulation [40,41].

For the theory, the results obtained can be used as a basis for studying other light fields.
For example, when talking about Airy laser beams, we usually mean the beams constructed
for the function Ai(x), ignoring the function Bi(x). The only exception known to the authors
is Ref. [42], in which the study of the initial light field F0(x) = exp(−x2/w2)Bi(Ax+ B) was
conducted by Torre. It is quite easy to transfer all the results obtained for Airy–Gaussian
beams in [3] (here, Airy means Ai) to the case of Bi. One of the possible ways is to apply the
fact that both functions, Ai(x) and Bi(x), are solutions of the differential equation, y′′ = xy.
The second way is to use algebraic relations ([43], Equations (10.4.6) and (10.4.9)),

2ωAi(ωx) = −Ai(x) + i · Bi(x), 2ωBi(ωx) = −Bi(x) + 3i · Ai(x), (45)
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where ω = e2πi/3 is a cubic root of unity.
For the initial field F0(x) = exp(−x2/w2){Ai + i · Bi}(Ax + B), it is also easy to

construct a solution of the paraxial equation. It can be seen that the resulting beam, F(x, z),
exhibits the property of “bending the trajectory” as it propagates.

In addition, the connection between Airy functions with Bessel functions of orders
±1/3 makes it possible to construct fractional Bessel–Gaussian (BG) beams of these orders.
These beams are quite different from the BG beams of integer and half-integer orders
known before [44–46]. It would be especially interesting to study three-Airy beams of
infinite energy, i.e., fractional-order Bessel beams, to reveal the effect of larger depth of
focus [47]. Moreover, replacing Airy functions in the initial fields above with the Pearcey
and Swallowtail functions leads to light fields related to Bessel functions of the order of
±1/4 and ±1/5.

Finally, the study of the propagation of generalized three-Airy beams Ai3(r |M) in
the Fresnel zone requires the use of diffraction catastrophe integrals of order higher than 3.
For example, considering Equation (28) for the general case of P2 instead of the radially
symmetric case P2(r) = cr2, one can obtain∫

R
eixξAi(22/3ξ)Ai(ξ + C1)Ai(ξ + C2)dξ =

|x|−1/4

25/3π3/2 exp
(

ixX2

4
− ix3

12
− πi

4
sgn x

)
×

{
Pe

[
(C2 − C1)|x|1/4,−X|x|1/4], (x > 0),

Pe∗
[
−(C2 − C1)|x|1/4, X|x|1/4], (x < 0),

(46)

where X = x/2 − (C1 + C2)/x, the asterisk means complex conjugation, and

Pe(x, y) =
∫
R

exp
(
it4 + iyt2 + ixt

)
dt (47)

is the Pearcey function [48,49], i.e., the diffraction catastrophe of order 4. In particular,

∫
R

eixξAi(22/3ξ)Ai2
(

ξ +
x2

4

)
dξ =

Γ(5/4)|x|−1/4

22/3π3/2 exp
(
− ix3

12
− πi

8
sgn x

)
, (48)

since Pe(0, 0) = 2Γ(5/4)eπi/8. This result confirms a very important statement given in [50]:
Fourier and Fresnel transforms of light fields constructed using diffraction catastrophes of
order n sometimes require the use of diffraction catastrophes whose order exceeds n.
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Appendix A. Evaluation of the Fourier Image of Three-Airy Beams

Here, we present a proof of Equation (3), which is considerably simpler than that
proposed in [19]. Below, we use dimensionless variables and set b = 1 for brevity.

Let us write the beam Ai3 as the product of three copies of the Airy function on the
base of the integral representation (2) and regroup the linear terms depending on x, y, c:

Ai3(r | c) =
1

(2π)3

∫∫∫
R3

exp
[

i
3
(ξ3 + η3 + ζ3)

+ ix ·
√

3
2

(ξ − η) + iy
(

ζ − ξ + η

2

)
+ ic(ξ + η + ζ)

]
dξ dη dζ. (A1)

Replacing variables (ξ, η, ζ) → (u, v, w) by the relations

u
v
w

 =
1
2


√

3 −
√

3 0

−1 −1 2

2 2 2


ξ

η
ζ

 ⇒

ξ
η
ζ

 =
1
3


√

3 −1 1

−
√

3 −1 1

0 2 1


u

v
w

, (A2)

we obtain

Ai3(r | c) =
1

(2π)3 · 2
3
√

3

∫∫∫
R3

exp
[

i(xu + yv + cw) +
i

27
P(u, v, w)

]
du dv dw, (A3)

where P(u, v, w) = 2v3 − 6u2v + 6u2w + 6v2w + w3 is a homogeneous cubic polynomial.
The integral of dw is reduced to the Airy function by the change w = 32/3t, and we obtain

Ai3(r | c)

=
1

2π2 35/6

∫∫
R2

exp
[

i(xu + yv) +
2i
27

(v3 − 3u2v)
]

Ai
[

32/3c +
2

34/3 (u
2 + v2)

]
du dv.

(A4)

Recognizing this integral as the inverse 2D Fourier transform (u, v) → (x, y), we obtain the
formula, which is the same as the relation (3).

It should be noted that the attempt to fit the integral of dv into an Airy function shape
leads to the Fourier transform in terms (u, w) → (x, c), which reduces to the trivial identity,
Ai3 = Ai3, due to Berry’s integrals (see Equations (B17) and (B18) in [31]).

Appendix B. Fractional Fourier Transform for Visualization Purposes of a Light Beam
Propagation in the Fresnel Zone

It is well known that Hermite–Gaussian (HG) modes,

Hn,m(r) = exp(−|r|2)Hn(
√

2 x)Hm(
√

2 y), (n, m,= 0, 1, . . .), (A5)

keep their structural stability upon propagation in the Fresnel diffraction zone:

FRz

[
Hn,m

(
ρ

w

)]
(r) =

1
σ

exp
(

2iz|r|2
kw4|σ|2 − i(n + m) arg σ

)
Hn,m

(
r

w|σ|

)
. (A6)

Here w is a Gaussian spot width, and σ = 1 + 2iz/kw2 is an auxiliary complex parameter.
Thus, as z grows from 0 to +∞, the HG mode changes in scale, r → r/|σ|, and two pure
phase factors appear. The first one is a defocusing factor, exp(2iz|r|2/kw4|σ|2). The second,
exp(−i(n + m) arg σ), demonstrates the phase shift of the beam during propagation and
depends on the Gouy phase.
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If F0(r) is a coherent light field of finite energy, then it is well known that it can be
expanded into a series of HG modes,

F0(r) = ∑
n,m≥0

cn,mHn,m

(
r
w

)
, (A7)

where the coefficients are easy to find,

cn,m =
1

π 2n+m−1n! m!

∫∫
R2

F0(ρ)Hn,m

(
ρ

w

)
d2ρ

w2 , (A8)

due to the orthogonality property of HG modes:∫∫
R2

Hn,m(r)Hν,µ(r)d2r = π 2n+m−1n! m! δn,νδm,µ. (A9)

Thus, for a light field, defined by its complex amplitude distribution F0(r) in the initial
plane z = 0, the field evolution in the Fresnel zone is reduced to calculating a series similar
to the series (A7):

FRz
[
F0(ρ)

]
(r) =

1
σ

exp
(

2iz|r|2
kw4|σ|2

)
∑

n,m≥0
cn,me−i(n+m) arg σHn,m

(
r

w|σ|

)
. (A10)

For any number of values of z, this approach requires a single calculation of the coefficients
(A8). Thus, this method of calculating the Fresnel transform is very time-efficient for some
families of light fields (see [19,51]). Nevertheless, finding the optimal parameter w and
the ranges 0 ≤ n ≤ N, 0 ≤ m ≤ M for the double series truncation may turn out to be a
nontrivial problem, which strongly depends on the properties of the initial field F0(r).

Let us now assume that we want to show the change in the field F0(r) as it propagates
in the Fresnel zone at z ∈ [0, ∞]. For this, we need to calculate a sequence of transverse
distributions of intensity and phase at discrete points {z0 = 0, z1, z2, . . . , zN = ∞}. It seems
reasonable when the sequence of such frames is generated by a computer to use a functional
Fresnel transform, removing the defocusing factor and the scaling that occurs during the
propagation of the beam (A10):

funcFRz,w
[
F0(ρ)

]
(r) = ∑

n,m≥0
cn,me−i(n+m) arg σHn,m

(
r
w

)
. (A11)

Here, unlike the Fresnel transform, we have added the parameter w as an index to empha-
size that the functional Fresnel transform depends not only on the choice of the plane z,
but also on the choice of the Gaussian width w:

funcFRz,w
[
F0(ρ)

]
(r)

(A10)
= σ exp

(
−2iz|r|2

kw4

)
FRz

[
F0(ρ)

]
(|σ|r). (A12)

Replacing (A10) with (A11) solves two visualization problems. The first is to reduce
moire on the phase distribution (the moire effect is typical for the phase of the field (A10)
due to oscillations that become increasingly stronger as z grows. The second is to eliminate
the intensity magnifying scaling of the field (A10) in the x, y plane as z grows, since
otherwise, with fixed frame sizes, significant details of the field would begin to go beyond
the frame boundaries.
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Applying (A11) to a single HG mode with a Gaussian width w1, one obtains

funcFRz,w

[
Hn,m

(
ρ

w1

)]
(r)

=
σ

σ1
exp

(
2iz|r|2
k|σ1|2

[
1

w4
1
− 1

w4

]
− i(n + m) arg σ1

)
Hn,m

(
r

w1
· |σ|
|σ1|

)
, (A13)

where σ1 = 1 + 2iz/kw2
1. If w1 = w, then the intensity of the field in the RHS of Equation

(A13) is the same for all z:

funcFRz,w

[
Hn,m

(
ρ

w

)]
(r) = e−i(n+m) arg σHn,m

(
r
w

)
. (A14)

If w1 ̸= w, then the phase defocusing factor and intensity scaling are present in (A13) but
remain limited for all z ∈ [0,+∞]. Moreover, the intensity of the field in the RHS of (A13)
remains the same at z = ∞ as at z = 0, regardless of the values of w1 and w.

The relationship (A14) demonstrates that HG modes are eigenfunctions for the opera-
tor funcFRz,w, corresponding to the eigenvalues e−i(n+m) arg σ. This equality is very similar
to the well-known property of HG modes,

Fγ

[
Hn,m

(
ρ√
2

)]
(r) = e−i(n+m)γ Hn,m

(
r√
2

)
, (A15)

where

Fγ

[
f (ρ)

]
(r) =

eiγ

2πi sin γ

∫∫
R2

exp
(
−i

⟨r, ρ⟩
sin γ

+ i
|r|2 + |ρ|2

2 tan γ

)
f (ρ)d2ρ (A16)

is the fractional Fourier transform, γ ∈ [0, π/2]. This suggests that the functional Fresnel
transform and the fractional Fourier transform are closely related. Indeed, the relationship
between these operators can be obtained on the basis of Equation (A12).

It is well known that ordinary Fresnel transform and fractional Fourier transform have
much in common [52,53]. More precisely, there is a one-to-one correspondence between
FRz

[
F0(ρ)

]
(r) for z ∈ [0, ∞) and Fγ

[
F0(ρ)

]
(r) for γ ∈ [0, π/2]: If F(r, z) = FRz[F0(ρ)](r)

is known, then (below we use dimensionless vectors r, ρ in both transforms)

Fγ

[
F0(ρ)

]
(r) =

eiγ

cos γ
exp

(
− i|r|2 tan γ

2

)
F
(

wr√
2 cos γ

,
kw2

2
tan γ

)
. (A17)

And vice versa: If Fγ

[
F0(ρ)

]
(r) is known, then

F
(

wr√
2

, z
)
=

1
σ

exp
[
(σ − 1)|r|2

2|σ|2

]
Farg σ

[
F0

(
wρ√

2

)](
r
|σ|

)
, (A18)

where σ = 1 + 2iz/kw2. As result,

funcFRz,w
[
F0(ρ)

]
(r)

(A12),(A18)
= Fγ

[
F0

(
wρ√

2

)](
r
√

2
w

)
. (A19)

Thus, if we want to demonstrate the propagation of the field F0(r) based on the expression
(A11) instead of (A10), we need to use the fractional Fourier transform instead of the
Fresnel transform. In Figure 1, we use equality (A19) to visualize the transverse intensity
and phase distributions at equidistant sample points: γn = arctan zn = nπ/2N, where
n = 0, 1, . . . , N.
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And finally, we mention that Equation (A17) allows the discovery of the fractional
Fourier transform of any initial field F0(r) if the corresponding solution F(r, z) of the
paraxial equation is known. In particular,

Fγ

[
Hn,m

(
ρ

w

)]
(r) =

eiγ

σ̃
exp

(
i|r|2 sin 2γ

4|σ̃|2

[
4

w4 − 1
]
− i(n + m) arg σ̃

)
Hn,m

(
r

w|σ̃|

)
, (A20)

where σ̃ = cos γ + i(2/w2) sin γ is an auxiliary parameter, similar to the parameter σ,
which appeared in (A6).
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