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Abstract: Based on the two-dimensional (2D) nonlinear Schrödinger equation, we investigate the
collapse dynamics of a vector vortex optical field (VVOF) in nonlinear Kerr media with parity–time
(PT)-symmetric modulation. The critical power for the collapse of a VVOF in a Kerr-ROLP medium
(Kerr medium with a real optical lattice potential) is derived. Numerical simulations indicate that
the number, position, propagation distance, and collapse profile of the collapse of a VVOF in sine
and cosine parity–time-symmetric potential (SCPT) Kerr media are closely related to the modulation
depth, initial powers, and the topological charge number of a VVOF. The VVOF collapses into
symmetric shapes during propagation in a Kerr-ROLP medium, and collapse shapes are sensitively
related to the density of the PT-symmetric optical lattice potential. In addition, due to gain–loss,
the VVOF will be distorted during propagation in the Kerr-SCPT medium, forming an asymmetric
shape of collapse. The power evolution of the VVOF in a Kerr-SCPT medium as a function of the
transmission distance with different modulating parameters and topological numbers is analyzed in
detail. The introduction of PT-symmetric optical lattice potentials into nonlinear Kerr materials may
provide a new approach to manipulate the collapse of the VVOF.

Keywords: Kerr nonlinear medium; parity–time symmetry; vector vortex beam; collapse

1. Introduction

In the past few decades, light field manipulation has been extensively studied, leading
to many breakthroughs in research [1–6]. The nonlinear collapse phenomenon of a struc-
tured beam in nonlinear optical media has attracted much attention due to its fundamental
interest and potential applications [7–10]. The collapse dynamics refer to a phenomenon
in optics that the intensity of the optical field rapidly increases due to the nonlinear self-
focusing effect of the medium, leading to localized concentration phenomena. In a medium
undergoing self-focusing, the collapse of beams occurs once the input power surpasses
a critical threshold. The local intensity of the optical field increases to a level where the
nonlinear self-focusing effect can no longer sustain it, resulting in collapse. Following
by other nonlinear phenomena like multiple photon absorption, plasma generation, or
higher-order defocusing effects could inhibit the collapse of the beam. As a result, the
beam can propagate and self-focus in filaments over a long range when the power exceeds
the critical power [8,9,11–15]. Some typical applications include aerosol detection, plasma
physics research, and the generation of sub-THz radiation [16–19]. Therefore, the dynamic
manipulation of the collapse of a structured optical field is an important topic in nonlinear
optics, such as the position of collapse, the critical power of collapse, and the suppression
of collapse.

Recently, the concept of PT symmetry originated from the study of quantum mechanics
and has been introduced into optical systems [20–26]. It is worth noting that the parity–
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time (PT)-symmetric lattice, as an interesting periodic structure, has been extensively
studied in nonlinear optics and soliton physics [27–30]; in particular, the study of the
stabilization mechanisms of various solitons in PT-symmetric systems has obtained fruitful
achievements [31–35]. Many novel applications in linear and nonlinear PT symmetry
optics systems have been demonstrated, such as the localization of light, unidirectional
transmission, and information encryption [36–40]. The nonlinear collapse and evolution of
different types of beams in PT-symmetrically modulated nonlinear media have recently
been studied [10,41–43]. The PT-symmetric potential mainly affects the collapse of light
beams through two mechanisms. On one hand, the propagation and focusing of the beam
are manipulated by the modulation of the refractive index distribution of the lattice (the real
part of the parity–time-symmetric potential). On the other hand, the energy distribution of
the light beams is controlled through the gain–loss modulation of the lattice (the imaginary
part of the parity–time symmetric potential). When the scalar vortex beams propagate in
the PT-symmetric Kerr medium, the beams will collapse into a symmetrical or distorted
shape under different modulation factors of the PT potential [10]. In addition, the state of
the collapse of the light field is also affected by the vortex topological charge and the initial
powers [10]. This work studies the collapse dynamics of vector vortex beams in Kerr media
with PT-symmetric lattice modulation. Compared with scalar vortex beams, the collapse
dynamics of the VVOF in PT-symmetrical Kerr media proceed with more complex evolution
due to the involvement of different polarization components. In particular, the effect of
the PT symmetry modulation of the complex refraction index on the collapse dynamics of
vector vortex beams in the Kerr medium under different polarization topological charges is
studied in detail. It is found that the collapse number, collapse location, and propagation
distance for the collapse occurrence of the target beam are closely related to the modulation
depth of the PT symmetry structure and the parameters of the initial vector vortex beam.
When the vector vortex beams propagate in the Kerr medium with real optical lattices, the
collapse positions are sensitively dependent on the density of the PT-symmetric optical
lattice potential, initial powers, and polarization state of the light field. For the Kerr-SCPT
medium with the gain–loss modulation, the VVOF distorts during propagation in the
sine and cosine parity–time-symmetric potential (SCPT) Kerr (hereafter, we denote as the
Kerr-SCPT) medium due to the existence of gain–loss, forming an asymmetric shape of
collapse. These results provide a new means and a deeper understanding of manipulating
the collapse of a VVOF in a PT-symmetric Kerr medium.

2. Theoretical Model

The optical lattice potential, Q(X, Y), with PT operator characteristics, is expressed in
the form of a complex function as follows [44]:

Q(X, Y) = V0V(X, Y) + iW0W(X, Y), (1)

Here, the real part V(X, Y) of Q(X, Y), even in X and Y, represents the refractive index
modulation in optics, while the imaginary part function W(X, Y), odd in X and Y, represents
the gain–loss; X = x/w0 and Y = y/w0 are the dimensionless transverse coordinates with
w0 representing the beam waist width; V0 and W0 represent the modulation depth of
V(X, Y) and W(X, Y), respectively. V(X, Y) and W(X, Y) can be expressed in SCPT forms
V(X, Y) = cos2(X/d) + cos2(Y/d), W(X, Y) = sin(2X/d) + sin(2Y/d) [23], where d represents
the modulator factor for the PT-symmetric lattice density. In particular, when V0 ̸= 0 and
W0 = 0, Q(X, Y) = V0V(X, Y) degenerates the ROLP (real optical lattice potential). The
refractive index and gain–loss distributions with different modulator factors d for the
PT-symmetric lattice are shown in Figure 1.
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Figure 1. The refractive index and gain–loss distributions with different modulator factors for the 
PT-symmetric lattice: (a) refractive index, (b) gain–loss. The left- and right-hand side figures are set 
as d = 0.4 and d = 0.7, respectively. The black dotted circle represents the width of the initial beam 
with n = 1 and m = 1. 
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Figure 1. The refractive index and gain–loss distributions with different modulator factors for the
PT-symmetric lattice: (a) refractive index, (b) gain–loss. The left- and right-hand side figures are set
as d = 0.4 and d = 0.7, respectively. The black dotted circle represents the width of the initial beam
with n = 1 and m = 1.

The propagation dynamic behavior of a structured beam in the Kerr-SCPT medium
is expressed by the following two-dimensional coupled nonlinear Schrodinger (NLS)
equation [18]:

∇2
⊥E± + i

∂E±
∂Z

+
2
3

(
|E±|2 + 2|E∓|2

)
E± + Q(X, Y)E± = 0, (2)

where the first term on the left of the equation represents the diffraction term of the light
field, ∇2

⊥ = ∂2/∂X2 + ∂2/∂Y2 represents the Laplace operator, and the second term denotes
the propagation term of the light field. The third term indicates the third-order Kerr nonlin-
ear effect, and the fourth term denotes the modulation action term of the PT-symmetric
optical lattice potential. + and − represent the left- and right-hand circular polarization
components. The normalized two-dimensional coupled nonlinear Schrodinger (NLS) equa-
tion (Equation (1)) is obtained from the two-dimensional coupled nonlinear Schrödinger
(NLS) equations ∇2

⊥A± + 2ik ∂A±
∂z + 4n2k2

3n0

(
|A±|2 + 2|A∓|2

)
A± + Q′(x, y)A± = 0 [18–20],

by setting X = x/w0, Y = y/w0, Z = z/(2kw0
2), and E(x, y) = kw0(2n2/n0)1/2A(x, y), where n2

is the third-order nonlinear coefficient, n0 is the linear refraction index of the medium, w0 is
the beam width, and k is the linear wave number.

A vector vortex optical field (VVOF) can be expressed as follows:

E(X, Y, Z = 0) = A0rn exp(−r2)einφ
[
cos(mφ + φ0)ex + i sin(mφ + φ0)ey

]
, (3)

where A0 is the amplitude of the VVOF, r is the normalized polar coordinates to w0, and
φ and φ0 are the azimuth coordinates and the initial phase. ex and ey are the unit vectors
in the x-direction and the y-direction. m and n represent the polarization and the vortex
topological charges, respectively.

When propagating in the Kerr-ROLP medium (Kerr medium with a real optical lattice
potential), the beam has two important physical quantities, namely, the beam power
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P(z) =
s

S|E+|2 + |E−|2dXdY and the Hamiltonian. Let us define four quantities as
follows [45,46]:

I1(Z) =
s

S

(
|E+|2 + |E−|2

)
dXdY,

I2(Z) =
s

S
(
X2 + Y2)(|E+|2 + |E−|2

)
dXdY,

I3(Z) = i
[
s

S X
(

(E++E−)∂(E∗
++E∗

−)
∂X − (E∗

++E∗
−)∂(E++E−)

∂X

)
dXdY

]
+i

[
s

S Y
(

(E++E−)∂(E∗
++E∗

−)
∂Y − (E∗

++E∗
−)∂(E++E−)

∂Y

)
dXdY

]
,

I4(Z) =
s

S|∇E+|2 + |∇E−|2 − 1
3 (|E+|4 + |E−|4 + 4|E+|2|E−|2)

−V0(cos2(X/d) + cos2(Y/d))(|E+|
2
+ |E−|2)dXdY,

(4)

where I1 is the beam power, I2 the beam’s root-mean-square width, I3 the momentum, and
I4 the Hamiltonian, which separately satisfy the evolution relations: dI1/dz = 0, dI2/dz = 0,
dI3/dz = 0, and dI4/dz = 0. There is an important propagation invariant Q = 2I2(Z)I4(Z) −
I3

2(Z)/4 that is related to the root-mean-square width I2 via the relation as follows [47]:

d2 I1/2
2 (Z)
dZ2 =

Q
I3/2
2 (Z)

. (5)

The general solution of Equation (5) with the VVOF as an initial field distribution can
be given [42] as follows:

I2(Z) = I2(Z = 0) +
Q

I2(Z = 0)
Z2, (6)

where

Q = 2(−4−5n)πA4
0(n + 1)!

×
[
2(3n+1)[2π

(
2(m2 + n + n2)(n − 1)! + n!

)
− G(n)V0

]
− πA2

0(2n)!
]
,

(7)

where G(n) = ∑n
k=0

(
n
k

)
Γ
(

k + 1
2

)
Γ
(

n − k + 1
2

)[
1F1

(
n − k + 1

2 ; 1
2 ;− 1

2d2

)
+ 1F1

(
k + 1

2 ; 1
2 ;

− 1
2d2

)
+ 2

]
, 1F1(α, β, z) is a hypergeometric function. Γ(.) is the gamma function.

Equation (6) describes the variation in the root-mean-square beam width of the VVOF
in a Kerr-ROLP medium. When the Hamiltonian I4 = 0, the root-mean-square beam width
became constant, and a balance was reached between the self-focus effect and the diffrac-
tion defocus effect [7,47]. Therefore, the critical amplitude A0 of the vector vortex beam
can be calculated by setting I4 = 0, and then the critical power Pcr is obtained by the beam
power P(z) =

s
S (|E+|2 + |E−|2)dXdY:

Pcr =
4n+1π(m2 + n2 + n)(n − 1)!n!

(2n)!
− 4nV0G(n)n!

(2n)!
, (8)

The critical power Pcr of the collapse of scalar vortex beams in a Kerr medium can
be given by assuming a topological charge of m = 0 and a modulation depth of V0 = 0
in Equation (8): Pcr = (4nn!(n + 1)!/2n!)PG, where the normalized critical power of a
Gaussian beam in a Kerr medium PG = 4π [48,49].

The critical powers of the VVOF in a Kerr-ROLP medium with different V0 and d for
various topological numbers are shown in Figure 2. The critical power in Equation (8) is
determined by the parameters of the medium and beam, V0, d, n, and m. This critical power
in Equation (8) indicates the total balance between the self-focusing, the diffraction, and the
PT-symmetric lattice refractive index modulation during a vector vortex beam propagating
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in the PT-symmetry Kerr medium. The root-mean-square beam width remains constant
when the input power is Pin = Pcr [50]. When the input power exceeds the threshold Pcr,
the beam evolves into a global collapse, and the beam width decreases to zero over a finite
distance. Notably, through numerical simulation, we found that the critical power of the
vector vortex beam when it collapses is often smaller than the theoretical critical power.
The critical power mentioned here is the upper threshold of the power when the beam
collapses [8,50,51]. When the initial powers Pin = αPG (α is any positive value) are given, the
initial amplitude of the vector vortex optical field E0 can be obtained by Pin = πE0

2n!/2n+1.

Photonics 2024, 11, x FOR PEER REVIEW 5 of 13 
 

 

The critical powers of the VVOF in a Kerr-ROLP medium with different V0 and d for 
various topological numbers are shown in Figure 2. The critical power in Equation (8) is 
determined by the parameters of the medium and beam, V0, d, n, and m. This critical power 
in Equation (8) indicates the total balance between the self-focusing, the diffraction, and 
the PT-symmetric lattice refractive index modulation during a vector vortex beam propa-
gating in the PT-symmetry Kerr medium. The root-mean-square beam width remains con-
stant when the input power is Pin = Pcr [50]. When the input power exceeds the threshold 
Pcr, the beam evolves into a global collapse, and the beam width decreases to zero over a 
finite distance. Notably, through numerical simulation, we found that the critical power 
of the vector vortex beam when it collapses is often smaller than the theoretical critical 
power. The critical power mentioned here is the upper threshold of the power when the 
beam collapses [8,50,51]. When the initial powers Pin = αPG (α is any positive value) are 
given, the initial amplitude of the vector vortex optical field E0 can be obtained by Pin = 
πE02n!/2n+1. 

 
Figure 2. The critical powers of the VVOF in a Kerr-ROLP medium with different V0 and d for vari-
ous topological numbers: (a) n = 1, m = 1; (b) n = 1, m = 2; and (c) n = 2, m = 1. 

3. Numerical Results and Analysis 
Numerical calculations with split-step finite difference are carried out to further ex-

plore the collapse dynamics of a VVOF in a PT-symmetric Kerr medium, here λ = 0.53 µm 
and w0 = 10 µm. The evolution of the polarization state of a VVOF in a Kerr-SCPT can be 
described by the Stokes parameters: S0 = |EX|2 + |EY|2, S1 = |EX|2 − |EY|2, S2 = EXEY* + EYEX*, 
and S3 = i(EXEY* − EYEX*), where S0 denotes the light intensity and S1 represents the linear 
polarization component (its positive and negative values correspond to the horizontal and 
vertical directions, respectively). Similarly, positive and negative S2 represent the linear 
polarization components in the 45° and 135° directions, respectively, and the positive and 
negative values of S3 denote the left and right circular polarization components, respec-
tively.  

First, we investigate the collapse evolution of the VVOF in Kerr-ROLP media for m = 
1, n = 1. The initial intensity profiles (Z = 0) of the optical field in Figure 3 are shown in the 
corresponding plots below. It can be seen from Figure 3a that when the VVOF propagates 
in the Kerr-ROLP medium with V0 = 0, the beam collapses at four points. These four points 
correspond to the positions of the four linear polarizations in the target beam, because the 
nonlinear refractive index of linearly polarized light is greater than that of circularly po-
larized light [18], thus the energy of the beam tends to be concentrated at the linearly 
polarized position. With the increase in V0 (the modulation depth of the real optical lattice 
potential), the four points that initially collapsed outside the axis gradually converge to-
ward the center of the beam, and the center of the beam forms a partial collapse. This is 
because when the VVOF propagates in the Kerr-ROLP medium, the interaction among 
the lens convergence effect of the refractive index distribution of the real optical lattice 
potential (see Figure 1), the self-focusing effect of the Kerr nonlinear medium, and the 
linear diffraction effect of the beam leads to the difference in collapse positions. 

Figure 2. The critical powers of the VVOF in a Kerr-ROLP medium with different V0 and d for various
topological numbers: (a) n = 1, m = 1; (b) n = 1, m = 2; and (c) n = 2, m = 1.

3. Numerical Results and Analysis

Numerical calculations with split-step finite difference are carried out to further ex-
plore the collapse dynamics of a VVOF in a PT-symmetric Kerr medium, here λ = 0.53 µm
and w0 = 10 µm. The evolution of the polarization state of a VVOF in a Kerr-SCPT
can be described by the Stokes parameters: S0 = |EX|2 + |EY|2, S1 = |EX|2 − |EY|2,
S2 = EXEY

* + EYEX
*, and S3 = i(EXEY

* − EYEX
*), where S0 denotes the light intensity and S1

represents the linear polarization component (its positive and negative values correspond
to the horizontal and vertical directions, respectively). Similarly, positive and negative S2
represent the linear polarization components in the 45◦ and 135◦ directions, respectively,
and the positive and negative values of S3 denote the left and right circular polarization
components, respectively.

First, we investigate the collapse evolution of the VVOF in Kerr-ROLP media for
m = 1, n = 1. The initial intensity profiles (Z = 0) of the optical field in Figure 3 are shown
in the corresponding plots below. It can be seen from Figure 3a that when the VVOF
propagates in the Kerr-ROLP medium with V0 = 0, the beam collapses at four points. These
four points correspond to the positions of the four linear polarizations in the target beam,
because the nonlinear refractive index of linearly polarized light is greater than that of
circularly polarized light [18], thus the energy of the beam tends to be concentrated at
the linearly polarized position. With the increase in V0 (the modulation depth of the real
optical lattice potential), the four points that initially collapsed outside the axis gradually
converge toward the center of the beam, and the center of the beam forms a partial collapse.
This is because when the VVOF propagates in the Kerr-ROLP medium, the interaction
among the lens convergence effect of the refractive index distribution of the real optical
lattice potential (see Figure 1), the self-focusing effect of the Kerr nonlinear medium, and
the linear diffraction effect of the beam leads to the difference in collapse positions.

The collapse evolution of the VVOF with m = 1 and n = 1 in a Kerr-ROLP medium
for different modulation depths V0 is shown in Figure 3b. With the increase in V0 (the
optical lattice potential modulation depth), the eight collapse points outside the axis can be
collapsed at four collapse positions where a higher refractive index is located. In addition,
when m ̸= n, there is always an optical singularity located at the beam center (unlike the
case of m = n, there can exist the optical field in the center of the beam such as m = n = 1);
therefore, the beam never collapses at the beam center when m ̸= n.
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Figure 3. The influence of different modulation depths on the evolution of the VVOF in a Kerr-ROLP
medium with: (a) m = 1, n = 1, W0 = 0, d =0.75, Pin = 5.3 PG, Z = 1.305 and (b) m = 2, n = 1, W0 = 0,
d = 0.75, Pin = 8.2 PG, Z = 0.34.

The evolution of vector vortex beams in a Kerr-SCPT medium for different gain–loss
modulations is shown in Figure 4. For the case m = 1 and n = 1, when W0 (the imaginary
part gain–loss modulation depth) increases, three points of the original four collapse points
gradually become darker, and finally there is only one collapse point, as seen in Figure 4a.
On the other hand, for m = 2 and n = 1, the beam collapses into three or four collapse points
with varying intensities instead of the original eight points as W0 increases, as shown
in Figure 4b. The distortion and variation in the collapse positions are attributed to the
modulation of the gain–loss distribution. The asymmetric collapse is attributed to the
anti-centrosymmetric gain–loss modulation of the lattice.
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(a) m = 1, n = 1, V0 = 4, d = 0.4, Pin = 2.6 Pcr, Z = 0.4 and (b) m = 2, n = 1, V0 = 0, d = 0.75, Pin = 8.2 PG,
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The collapse distance of the VVOF as a function of the initial powers, modulation
depth V0, and W0 is shown in Figure 5. The collapse distance is significantly shortened
with increasing initial powers. The collapse distance of the light field is also shortened with
increasing V0 and W0, which is consistent with our previous observations [8–10].
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The effect of the variation in PT-symmetric optical lattice potential density on the
propagation and collapse dynamics of the VVOF in a Kerr-ROLP medium is further intu-
itively described in 3-dimensional intensity evolutions, as shown in Figure 6, for the cases
m = 1, n = 1 and m = 2, n = 1, respectively. The collapse positions of the beam are sensitively
related to the optical lattice potential density. The main collapse positions of the VVOF
with m = 2, n = 1 are 4 points for V0 = 4.1, W0 = 0, and Pin = 1.7 Pcr. It is worth noting
that the collapse of the VVOF with d = 0.4 and d = 0.19 is at opposite positions, as shown
in Figure 6b. This is because the refractive index distribution modulated by the potential
density of the PT-symmetric optical lattice gradually turns the collapse point to a higher
refractive index position. Therefore, the results confirm that the positions and number
of collapses of the VVOF in the PT-symmetric optical lattice can be manipulated by the
potential density, initial powers, topological charge number, and modulation depth.
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For Kerr-SCPT media, the collapse points formed on the VVOF section present an
asymmetric and non-uniform distribution due to the gain–loss modulation, as shown in
Figure 7. Different from the Kerr-ROLP medium, the energy can be more concentrated on
one point or side, whereas the intensity of a certain point or side of the beam is weakened.
The number and positions of the final collapse points of the VVOF are significantly de-
pendent on the modulation of gain–loss. It provides an effective means to manipulate the
collapse of the VVOF in Kerr-SCPT media.

When the VVOF propagates in the PT-Kerr medium, the field distribution and reshape
of the VVOF vary due to the influence of the self-focusing of the Kerr medium, the real
refractive index modulation, and optical diffraction in the PT lattice potential. Therefore,
when the VVOF is modulated by gain–loss, the ratio of the gain–loss suffered by each
point in the optical field is always changing. The proportion of the gain–loss modulation
received by each point on the VVOF is closely dependent on the density of the PT optical
lattice potential d, which determines the relative position of each point on the VVOF and
the lattice potential.
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The normalized powers of the VVOF in a Kerr-SCPT medium as a function of the
transmission distance with different modulating parameters W0, V0, and d and topological
numbers (m, n) are shown in Figure 8. The powers have been normalized to their initial
powers. The powers remain invariant if W0 = 0 because of the conservation of energy.
When d = 0.25, V0 = 0, and W0 ̸= 0, the powers of the VVOF increase during propagation
in a Kerr-SCPT medium, indicating that the gain effect of the VVOF is greater than the loss
effect. On the contrary, if d = 0.45, V0 = 0, and W0 ̸= 0, the power of the VVOF weakens
with the extension of transmission distance, indicating that the gain effect of the VVOF
is less than the loss effect, as shown in Figure 8a. When V0 ̸= 0 and W0 ̸= 0, the powers
of the VVOF are influenced by the refractive index modulation of V0 due to its effect on
the evolution of the VVOF. The influence of V0 on the power of the VVOF depends on the
relative position of the PT lattice potential. When the VVOF is subjected to more gain for
the values of V0, the power of the VVOF will be enhanced. In the contrary scenario, the
power of the VVOF will be weakened. As shown in Figure 8b, when d = 0.95 and W0 = 12,
the power of the VVOF increases with the extension of the transmission distance. It is worth
noting that with the increase in V0, the power enhancement trend of the VVOF decreases.
This is because the increase in V0 changes the refractive index of the Kerr-SCPT medium
and the field distribution of the VVOF, resulting in the change in the relative position of the
VVOF and PT lattice potential. However, due to the complex evolution of the VVOF in the
Kerr-SCPT medium, the gain–loss ratio of the VVOF may have large fluctuations, as shown
in Figure 8b. Especially when the value of W0 is large, the powers are sensitively related to
the variation in V0, as shown by the solid lines in Figure 8b with d = 0.45, W0 = 90, and the
power curves of the VVOF show large fluctuations during propagation. In addition, the
power variations are also related to the initial powers and the topological charge number
(m and n), as shown in Figure 8c,d. The reason for the power changes is that the nonlinear
refraction index and gain–loss are related to the initial powers, as shown in Figure 8c,



Photonics 2024, 11, 345 10 of 13

whereas the distributions of the VVOF are modulated by the topological charge number
(m and n), as shown in Figure 8d. Therefore, the powers of the VVOF in a Kerr-SCPT
medium can be dynamically manipulated with the modulation of the gain–loss (W0), the
real refractive index modulation depth (V0), initial power (Pin), and topological charge
number (m and n) when W0 ̸= 0.
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4. Discussion

The nonlinear collapse of a structured light field and its control and manipulation have
become a challenging research topic due to the rapid development of nonlinear optics and
its wide application. The collapse properties of a VVOF in a PT-symmetry Kerr medium
remain unexplored. With the introduction of PT-symmetric potential to a nonlinear Kerr
medium, the collapse dynamics of a VVOF become more complex and provide a more
flexible manipulation of a VVOF in nonlinear Kerr media due to the modulation of the
symmetric distribution of the real part of the PT-symmetric potential (refraction index) and
the asymmetric distribution of the imaginary part (gain–loss). In this work, the study of
the collapse dynamics of a VVOF in nonlinear Kerr media with PT-symmetric modulation
indicates that a VVOF collapses into symmetric shapes during propagation in a Kerr-ROLP
medium, and collapse shapes are sensitively related to the density of the PT-symmetric
optical lattice potential. In addition, due to the modulation of the asymmetric distribution
of the gain–loss, the VVOF will be distorted during propagation in the Kerr-SCPT medium,
forming an asymmetric shape of collapse. On the other hand, the power evolution of
the VVOF in a Kerr-SCPT medium as a function of the transmission distance is closely
related with different modulating parameters and topological charge numbers. The collapse
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dynamics of a VVOF propagating in a Kerr medium with a PT-symmetry complex refractive
index distribution can extend our deeper understanding of the collapse dynamics in PT-
symmetric Kerr media and provides a more flexible manipulation of the collapse of a VVOF
in the Kerr-SCPT medium.

5. Conclusions

The collapse dynamics of a VVOF in PT-symmetric Kerr nonlinear media are demon-
strated by using the 2D NLS equation. The critical power needed to keep the root-mean-
square width of the beam constant during a VVOF propagating in the PT-symmetric Kerr
nonlinear medium is derived theoretically. The numerical results indicate that the number,
location, propagation distance for collapse, and profile of the collapse of the VVOF in SCPT
Kerr media are closely related to the modulation depth, initial power, and the topological
charge number of the VVOF. The VVOF collapses into symmetric shapes during propaga-
tion in a Kerr-ROLP medium, and collapse shapes are sensitively related to the density of
the PT-symmetric optical lattice potential. In addition, due to gain–loss, the VVOF will be
distorted during propagation in a Kerr-SCPT medium, forming an asymmetric shape of
collapse. The power evolution of the VVOF in a Kerr-SCPT medium as a function of the
transmission distance with different modulating parameters W0, V0, and d and topological
numbers (m, n) is analyzed in detail.
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