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Abstract: In this paper, diffraction of scalar waves by a screen with a circular aperture is explored,
considering the incidence of either a collimated beam or a focused wave, a historical review of
the development of the theory is presented, and the introduction of the Fresnel approximation is
described. For diffraction by a focused wave, the general case is considered for both high numerical
aperture and for finite values of the Fresnel number. One aim is to develop a theory based on the use
of dimensionless optical coordinates that can help to determined the general behaviour and trends
of different system parameters. An important phenomenon, the focal shift effect, is discussed as
well. Explicit expressions are provided for focal shift and the peak intensity for different numerical
apertures and Fresnel numbers. This is one application where the Rayleigh–Sommerfeld diffraction
integrals provide inaccurate results.

Keywords: diffraction theory; focusing; Fresnel approximation; focal shift; Fresnel number; beam
propagation; laser beam systems; micro-optics; diffractive optics; planar optics; teraHertz optics;
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1. Introduction

Diffraction by a circular aperture of a uniform plane wave, or focused wave, is an
important fundamental topic in optics with numerous applications. Hundreds of papers
have been written about this area. Many of these papers have been concerned with
applications in acoustics, and a book Scalar Diffraction from a Circular Aperture by Daly
and Rao was even published, concentrating especially on the time domain behavior [1].
Another classic source in the optics discipline is the book Waves in Focal Regions by Stamnes,
which stresses asymptotic approaches to evaluating diffraction integrals [2].

The aim of the present paper is to reconsider diffraction of monochromatic plane
waves, and in particular focused spherical waves, by a circular aperture. We limit our
treatment to the scalar case for simplicity, as it will be seen that even the scalar case is
quite complicated. Osterberg and Smith calculated the axial intensity for the focused case
using the first Rayleigh–Sommerfeld diffraction formula (RSI) and found that under some
circumstances the maximum intensity could be situated further from the aperture than the
geometrical focus [3]. Li pointed out that because experimentally the maximum should be
closer to the aperture, RSI may not always be accurate, as the assumed field in the aperture
will not be not correct [4]. He instead calculated the focal shift using a boundary diffraction
wave theory. In this paper, we consider different forms of the Fresnel approximation applied
to Kirchhoff diffraction theory for diffraction of focused spherical waves. Optical systems
with different geometry, dimensions, and wavelength can be compared by introducing
normalized optical coordinates.

These results have potential applications in the areas of laser beam systems, micro-
optics, diffractive optics, planar optics, teraHertz optics, and microwave lenses.

The obvious further work is to extend the treatment to the vectorial case. The topic of
diffraction is very diverse, and any paper cannot cover all areas. Other modern research
which could be related to the present study includes diffraction by disks, rather than
apertures [5]; diffraction of vortex beams [6,7]; and diffractive optics and meta-lenses [8–10].
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2. Historical Background

Fresnel diffraction theory is taught in most optics courses and optics text books. Fresnel
proposed the principle of half-period zones (∼1818) as a mathematical model for Huygens’
principle of secondary waves (∼1678). The Fresnel number is the number of half-period
zones of which an even number tend to cancel by destructive interference. As many papers
have discussed Fresnel diffraction, in this section we identify a selection of some key papers
in its historical development.

We mention first the work of Young, who proposed a boundary diffraction wave
theory (BDW) of diffraction in which the diffracted field can be considered as a summation
of a direct beam and a wave scattered from the boundary of an aperture [11].

Airy derived the diffracted intensity for a circular aperture, the Airy disk [12]; his
result was in the form of a power series expansion, as this predated the general use of
Bessel functions.

Huygens’ principle was placed on a rigorous mathematical basis by Kirchhoff, who
applied Green’s theorem over a closed surface to provide the Kirchhoff integral theorem
(∼1882), although Helmholtz had previously derived a related result in the frequency
rather than the time domain (∼1859). Kirchhoff went on to propose that for diffraction
by an aperture in a screen, the field and its normal derivative within an aperture can be
assumed equal to their values in the absence of the screen, while the field on the screen and
elsewhere on the closed surface of integration can be taken as zero. These are known as
the Kirchhoff (or physical optics) boundary conditions. The combination of the Kirchhoff
integral theorem and Kirchhoff boundary conditions is called the Kirchhoff diffraction
theory. This theory can be applied over a variety of different surfaces, including a planar
surface within the aperture (which we call Kp) or over a spherical wavefront (Ks).

In the conventional Fresnel approximation, a square root in an exponent in the diffrac-
tion integral is approximated using a power series expansion. Fresnel theory for diffraction
by a circular aperture results in integrals that can be evaluated analytically in terms of
Lommel functions of two variables, Un(u, v), Vn(u, v) [13,14]. The functions Vn(u, v) are
used in the illuminated region, as they converge quickly, while the functions Un(u, v) are
used in the shadow region. The two variables (transverse (v) and axial (u), respectively)
are so-called optical coordinates, dimensionless quantities that allow the resulting intensity
to be expressed in a way that is independent of the wavelength and the system geometry
and dimensions. This property is quite useful, as even if the field can be computed for
specific cases it is difficult to appreciate the overall performance and trends. The same
functions can be used to investigate the important cases of diffraction by a circular aperture
of a collimated wave or a focused wave in the paraxial approximation. For illumination
with a collimated plane wave, the axial optical coordinate u is related to the Fresnel num-
ber Nz (the number of half-period zones) u/2π = Nz = a2/λz, where a is the radius of
the circular aperture, z is axial distance, and λ is the wavelength. The transverse optical
coordinate is v = kaR/z, where k = 2π/λ and R is the cylindrical radius, meaning that
v/u = R/a. Nijboer developed an alternative expansion for the focal field of a lens with
circular aperture [15]. Boersma proposed that this expansion can be used for efficient
numerical calculation of the Lommel functions [16].

Lord Rayleigh (1891) conducted an analysis of the pinhole camera (camera obscura) [17].
He found that light diffracted by a circular aperture illuminated with collimated light comes
to a focus at a distance corresponding to about Nz = 1, which corresponds to the situation
where the phase difference between marginal and axial rays is equal to λ/2, meaning that
there is a single Fresnel zone. Note that an aperture illuminated with collimated light is
analogous to a lens with infinite focal length, and the focus is closer to the lens than infinity,
meaning that this can be considered as a simple example of focal shift. Rayleigh went on to
say that if the distance is increased such that Nz = 0.5, then the phase difference is reduced
to λ/4, which reduces the wavefront aberration (defocus) but also reduces the brightness.

Rayleigh (1897) derived the Rayleigh diffraction formulae, in which the integrals are
performed over an infinite planar surface [18]. Rayleigh considered an aperture illuminated
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with a plane wave; the more general case where Kirchhoff-like boundary conditions are
applied results in the Rayleigh–Sommerfeld diffraction formulae [19]. There are two
Rayleigh–Sommerfeld diffraction formulae, which we call RSI and RSII. Note that the
literature does not seem to be consistent in naming the two Rayleigh–Sommerfeld integrals,
which seems to result from the fact that Rayleigh considered RSII first, as it is physically
relevant for acoustic waves. Our notation (the most common) is that RSI uses a known field
on the integration boundary surface and RSII uses a known field derivative. The predicted
field from Kp is the mean of RSI and RSII: UKp = (URSI +URSII)/2. The difference between
RSI and RSII lies in the resulting obliquity factors. Under many practical conditions, they
provide identical results; however, in the far field of a small simple planar source, the field
predicted by RSI has a factor cos θ, where θ is the angle of diffraction, equivalent to the
planar source behaving as an axial dipole.

Debye (1909) proposed his diffraction theory of focusing, which is basically an angular
spectrum theory in which the aperture is assumed to be in the far field relative to the
focus [20]. The theory is often further approximated into a paraxial Debye theory [14].

In the acoustics discipline, several papers on the diffraction of convergent beams were
published that do not seem to have become well known by the optics community. Williams
investigated the acoustic field excited by a concave piezoelectric crystal [21]. He found that
the peak in intensity did not coincide with the geometrical focal point, but was displaced
towards the crystal. This effect is now known in optics as focal shift. Later papers in
acoustics were by Fein, who mentioned that [22]

“Focusing measurements show agreement with A. O. Williams’ prediction that
the point of maximum acoustic intensity in the radiation pattern is not necessarily
at the centre of curvature of the crystal,”

by O’Neil, who analyzed the system and found that [23]

“The point of greatest intensity is not at the centre of curvature . . . ,”

and by Lucas and Muir [24]. All of these papers found a focal shift towards the
aperture, i.e., a negative distance from the geometrical focus.

Andrews studied diffraction of a plane wave by a circular aperture using microwave
experiments and Kirchhoff diffraction theory [25]. He found that the positions of the
intensity maxima and minima were satisfactorily predicted by the Fresnel zone theory even
if the field within the aperture varies in amplitude.

Based on spheroidal wave functions, Bouwkamp developed a rigorous theory of
diffraction of an acoustic plane wave by a small circular hole [26]. He then developed the
analogous theory for diffraction of electromagnetic waves by a hole in a perfect conduc-
tor [27]. Numerical calculation of these results becomes more difficult as the diameter of
the hole becomes larger than the wavelength. These results were discussed in more detail
in a paper which reprinted his PhD dissertation [28]. As far as I know, the treatment of
diffraction of a converging spherical wave has not been studied by a rigorous treatment.
Bouwkamp published a review paper on diffraction of both scalar and electromagnetic
waves [29].

Linfoot and Wolf investigated the field near the focal region for a circular aperture
(as well as for annular apertures) based on the paraxial Debye approximation, and plotted
contours of constant intensity in the focal region [30]. The plot was later reproduced in Born
and Wolf [14]. The corresponding optical coordinates are v = kρ sin α and u = kz sin2 α,
where α is the semi-angular aperture and ρ and z are cylindrical coordinates. Thus, for a
contour plot of the intensity in a meridional section, contours of constant v, u are parallel to
the z and ρ coordinates, respectively, and the intensity in the focal region is symmetrical
about the focal plane, meaning that the intensity maximum is at the focal point [14].

Farnell calculated the field distribution of a microwave lens in the scalar approxima-
tion [31]. He found that the axial maximum in intensity was found to occur closer to the
aperture than the geometrical focus, and confirmed these results experimentally using
microwaves [32].
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Richards and Wolf investigated focusing by a high numerical aperture (NA) system in
the vectorial nonparaxial Debye (angular spectrum of plane waves) case [33]. However,
they used a paraxial axial (defocus) optical coordinate u = kz sin2 α, which is not the most
appropriate choice for high NA systems.

Based on the first Rayleigh-Sommerfeld diffraction integral (RSI), Osterberg and
Smith [3] derived an exact expression for the amplitude distribution along the optical axis
for a focused scalar wave. They found that under certain circumstances the focal shift could
be in the positive direction, i.e., further from the aperture than the geometrical focus. For
a paraxial system in the Fresnel approximation, the focal shift is found to depend on the
value of the Fresnel number.

McCutchen showed that the field in the focal region of a lens can be calculated as
a three-dimensional (3D) Fourier transform of a 3D generalization of the lens aperture
(related to what is now often called the 3D coherent transfer function, or CTF) [34]. This
approach avoids the need for a paraxial approximation.

Kogelnik and Li described the theory, in the paraxial approximation, for propagation
of Gaussian laser beams [35]. The focal shift effect is a noticeable property of this theory. In
laser optics, the Rayleigh distance z0 (2z0 is called the confocal parameter) is provided by
z0 = πw2

0/λ, where w0 is the radius of the beam waist; thus, z/z0 = zλ/πw2
0 = 1/πNw,

where Nw is a Fresnel number associated with the waist of the beam.
Sherman showed the equivalence of the formalism for angular spectrum of plane

waves and the RSI diffraction integral [36]. Note that this equivalence holds for the complete
RSI diffraction integral, including a factor (1 − ikr)/r, and including evanescent waves.
Analogous angular spectrum theories also hold for RSII and the Kirchoff diffraction theory
with integration over a planar surface (Kp).

Dainty extended the contour plot of intensity for diffraction of a focused wave by a
circular aperture for the paraxial and large Fresnel number case to larger values of u [37].
He suggested that intensity zeros occur only in the focal plane and along the optical axis.

Zemanek calculated the diffracted field from a planar circular acoustic transducer, and
confirmed Rayleigh’s result that the best focus was when Nz = 1 [38]. He started from
the Huygens–Fresnel diffraction formula (without an obliquity factor) and calculated the
integral exactly, i.e., with no Fresnel approximation. He presented contour plots of intensity,
and remarked that

“Two surprising features become evident from examining these figures . . . . The
first feature is that the −3 dB contour has a minimum diameter or spot size of
less than one-fourth the transducer diameter.”

This is reminiscent of the reduction in cross-section of a water spout when emanating
from a circular orifice.

Heurtley calculated analytic expressions for the axial intensity for diffraction of a
focused wave by a circular aperture using RSII and Kp [39], and presented plots showing
the focal shift.

Welford showed that a diffractive lens on a spherical surface can be free from spher-
ical aberration [40]. The curvature of the surface modifies the radii of the Fresnel half-
period zones.

Papoulis developed a theory of Fresnel diffraction and Fourier optics for an aperture
that involved coordinate transformations of the independent variables of the ambiguity
function [41]. He derived a simple expression for the variation in width of a diffracted beam
in the paraxial approximation in terms of moments of the amplitude of the incident wave.

Carter calculated the field of a scalar spherically-symmetric source numerically, ex-
cluding evanescent waves [42]. This is equivalent to the problem of focusing a complete
uniform hemispherical converging wave, i.e., α = 90◦. He also presented a plot of the
intensity for a semi-angle of convergence of α = 30◦.

Arimoto applied the Fresnel approximation to a lens with circular aperture. He found
there was a factor f /( f + z) in the axial amplitude, and showed that the point spread
function of an optical system of low NA (for a constant focal length) is not symmetrical
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about the focal plane [43]. He stressed that this effect becomes particularly important for
the focusing of laser beams:

“The large f -number optics will become more important as the laser becomes
more popular.”

Harvey showed that the breakdown in the Fresnel approximation close to the aperture
is equivalent to the introduction of aberrations [44].

Southwell discussed the connections between the Fresnel approximation and the
paraxial approximation [45].

The focal shift for optical systems of finite Fresnel number became well known in
the traditional optics community only in 1981, when three papers were independently
published [46–48].

Sheppard and Wilson studied high NA focusing of scalar waves, and introduced
a redefined axial (or defocus) optical coordinate u = 4kz sin2(α/2), which is a better
approximation for nonparaxial systems than the paraxial form u = kz sin2 α [49].

Li and Wolf showed that the optical coordinate of the paraxial Debye theory scales
nonlinearly with the axial distance according to the value of the Fresnel number N = a2/λ f ,
where f is the focal length and a is the radius of the aperture [47,50]. They found that

v =

(
f

f + z

)
kρ sin α =

akρ

f + z
=

2πNρ f
a( f + z)

,

u =

(
f

f + z

)
kz sin2 α =

a2kz
f ( f + z)

=
2πNz
f + z

. (1)

The Debye theory is valid only for systems with large Fresnel number values, rather
than a small f -number as proposed by Arimoto [43]. For the case of a finite Fresnel
number, the paraxial diffraction integral undergoes a coordinate transformation such that
the diffracted intensity is not symmetrical about the focal plane. Li and Wolf plotted the
intensity in the focal region [50]. Lines of constant u are straight lines perpendicular to the
z axis that get further apart with increasing u, while lines of constant v are straight lines
that radiate from a point at the centre of the aperture. Born and Wolf’s Principles of Optics
was revised (from the 6th corrected edition, in 1986) to provide conditions of validity for
the paraxial Debye approximation [51]:

“However if f ≫ a ≫ λ, and a2/λ f ≫ 1, the Debye integral can be expected to
give a good approximation to the light distribution in the region of focus.”

Li and Wolf derived an expression for the fractional focal shift for the paraxial case
as [47]

∆ f
f

= − 1
1 + π2N2/12

. (2)

Wilson and Sheppard analyzed diffraction of a focused wave by a circular aperture
using Fresnel diffraction theory in the paraxial approximation, and showed that there is a
paraboloidal phase factor exp(iv2/4πN) in the focal plane [52]. In addition, they showed
that the axial optical coordinate for a point at a distance z from the focus is

u = ka2
(

1
f
− 1

f + z

)
=

ka2z
f ( f + z)

≈ ka2z
f 2 (3)

only if z ≪ f . Thus, it can be seen that the paraxial Debye form for the axial optical
coordinate u makes the assumption that z ≪ f .

Li [53] calculated the focal shift for a nonparaxial scalar system based on the BDW
theory. He found that the focal shift effect could be expressed as a function of two pa-
rameters, namely, the Fresnel number N and the f -number. Experimental confirmation
of the focal shift effect for visible laser light was demonstrated by Li and Platzer [54].
In particular, it was found that the focal shift relative to the geometrical focal point was
towards the aperture.
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Sheppard described how the focal shift effect for a low NA system could be explained
by a compromise between an increase in spatial frequency cut-off for observation points
closer to the aperture and blurring caused by defocus [55]. According to this theory,
the axial optical coordinate is modified to become u = kz sin α sin β, where the effective
semi-angular aperture at the observation point β is a function of axial position.

Li extended the results of his previous paper on the coordinate transformation resulting
from finite Fresnel number in a Fresnel approximation calculation to small Fresnel numbers,
including N = 0 [56].

Sheppard and Matthews proposed the pseudo-paraxial diffraction theory of focus-
ing [57]. According to this theory, the focused field for a system of moderate NA is better
approximated by the paraxial approximation if the axial optical coordinate is redefined
as u = 4kz sin2(α/2) [49] such that kz − u/2 = kz cos α (the axial component of the phase
change along a marginal ray). They also showed that the amplitude of a full uniform spher-
ical focused wave with its maximum intensity normalized to unity is U = sin (kr)/(kr),
where r is the spherical radius.

English and George extended the treatment of Osterberg and Smith for the on-axis
amplitude for illumination of a circular aperture by a plane wave to provide an analytic
expression for the vectorial regime [58].

Steane and Rutt derived an expression for the transverse derivative of the amplitude
for illumination of a circular aperture by a plane wave in the Fresnel approximation [59].
They showed that the accuracy of the Fresnel approximation can be improved by redefining
the Fresnel number, and thereby the axial optical coordinate.

Bertilone calculated an analytic expression for the focused field at the focus of a
uniform hemispherically-focused scalar wave in terms of Lommel functions [60,61].

Kraus proposed calculating the Huygens–Fresnel diffraction integral for diffraction of
a diverging spherical wave by a circular aperture by integrating over the wave front rather
than the plane of the aperture [62]. He claimed at the time that this approach was more
accurate, but later showed that if the full Kirchhoff diffraction integral is used (rather than
Huygens–Fresnel) there is in fact no advantage from the point of view of accuracy [63].

Sheppard and Hrynevych [64] provided expressions for the optical coordinates in the
nonparaxial finite Fresnel number regime based on a generalization of Fresnel diffraction.
In this theory, the optical coordinates are redefined taking into account the critical points
in a stationary phase treatment. However, this is not an asymptotic evaluation, and as
such is valid even at the focal point. They went on to consider oblique illumination, and
derived expressions for the optical coordinates in the meridional plane. The validity of this
approach is supported by Young’s BDW theory [11] and the results of Andrews [25]. The
accuracy of the generalized Fresnel diffraction theory for diffraction of a plane wave by a
circular aperture was investigated in detail by Hrynevych [65]. He found that the results
for intensity were accurate to 1% for ka2/z ≤ 1500, as compared with ka2/z ≤ 100 for the
conventional Fresnel theory, while for the phase they were accurate to 1% for ka2/z ≤ 200
as compared with ka2/z ≤ 150 for the conventional Fresnel theory.

Andrés et al. studied the off-axis focal shift for non-rotationally symmetric aper-
tures [66].

Hsu and Barakat [67] calculated the focal distribution for a finite Fresnel number
system of high NA. They assumed, however, that the distribution could be expressed in
terms of Li and Wolf’s optical coordinates, which are not the most appropriate choice for
high NA systems.

Wang et al. investigated the far-field behaviour of focused fields for different Fresnel
numbers [68,69]. Their numerical results were restricted to the paraxial domain.

Forbes investigated the accuracy of the Fresnel approximation for diffraction of a plane
wave by a circular aperture [70].

Sheppard and Török [71] reinterpreted the numerical results of Li [53] using differ-
ent definitions for the focal length and Fresnel number, which are more appropriate for
high NA.
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Sheppard and Török considered different power series expansions of the square root
in the diffraction integral and derived different optical coordinates corresponding to these
expansions [72]. They also considered the vectorial focused case.

Sheppard stressed the requirement for satisfaction of the Debye approximation, i.e.,
that the axial displacement z must also satisfy z ≪ f in addition to the conditions mentioned
by Born and Wolf ( f ≫ a ≫ λ and a2/λ f ≫ 1) [14,73]. The condition f ≫ a is necessary
in order for the paraxial Debye approximation to be valid.

Sheppard and Török calculated the axial field, axial optical coordinate, and focal
shift for systems with a high NA and finite Fresnel number based on various different
scalar diffraction formulae [74]. For RSI, they confirmed the conclusion of Osterberg and
Smith [3], namely, that the focal shift can be in the direction further from the lens than
the geometric focus. They considered five different diffraction theories: RSI, RSII, and
Kirchhoff (Kp) diffraction integrals performed over the plane of the aperture, a Kirchhoff
diffraction integral over the spherical illuminating wavefront (Ks), and an approximate
form of Ks valid for small displacements (which we call aKs). Of these, only RSI resulted in
positive focal shifts.

Teng et al. showed how the amplitude on the axis and along the shadow edge for
diffraction of a plane wave by a circular aperture can be calculated analytically using series
of Bessel functions, as these are equivalent to Lommel functions [75].

Li reproduced Osterberg and Smith’s results for RSI; as the occurrence of positive
focal shift does not agree with experimental observations, he deduced that RSI is not an
accurate diffraction model for this application [4]. Although RSI is rigorous for a scalar
approximation, the assumed boundary condition, that is, that the field in the aperture is
unperturbed by the presence of the screen, may not be valid. Using BDW theory to correct
for the field in the aperture, they were able to obtain negative focal shifts.

Lin et al. used McCutchen’s approach involving 3D Fourier transformation to calculate
a focused field of finite Fresnel number in the paraxial approximation [76]. Kou et al.
extended this approach to the nonparaxial regime using a 3D RSI model [77].

Glückstad and Madsen described how the predictions of Fraunhofer diffraction by
a circular aperture can be extended into the Fresnel regime by renormalizing to the axial
amplitude, which can be very simply calculated by the Fresnel diffraction expression [78].

A recent paper by Li considered the complete field, from the aperture to infinity, for
diffraction of a focused wave in the paraxial case [79]. He introduced a mapping from the
axial coordinate z to a new coordinate Z = z/( f + z) (where u = kZ sin2 α) in order to plot
the behaviour in the far field. He showed that there are a finite number of intensity zeros
between the geometrical focus and infinity.

Several papers have extended the treatment for finite Fresnel number and high NA
to the case of oblique illumination [2,80–85]. These results have applications in digital
deconvolution with objective lenses of finite tube length, although this utility has been
reduced by the current adoption of infinite tube length objectives.

It is apparent from this historical review that the traditional optical community was
rather slow to appreciate several features of diffraction that were well known in other
disciplines, including laser beam optics, microwave optics, and acoustics. It is interesting
to recall the rebirth of optics in the 1960s, which resulted from the introduction of optics
and photonics into the electrical engineering curriculum through developments in lasers
and quantum electronics, electromagnetic theory and microwaves, and information and
Fourier optics.

3. The Fresnel Approximation
3.1. The Two Traditional Forms for the Fresnel Approximation (FrA1 and FrA2)

We first review the case of diffraction of a uniform plane wave by a circular aperture
in order to introduce the Fresnel approximation. For illumination of a circular aperture
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by a uniform plane wave, the Huygens–Fresnel (HF) diffraction integral (neglecting an
obliquity factor) becomes

U2 = − i
λ

∫∫ eikr

r
dS, (4)

where r is the distance from a point in the aperture to the observation point, with

r =
[
(x2 − x1)

2 + (y2 − y1)
2 + z2

]1/2
. (5)

Here, eikr/r represents a spherical wave emanating from a point in the aperture and
the factor −i/λ comes from the fact that the source is driven in resonance, meaning that
the far field is π/2 out of phase with the forcing.

Although it sometimes might not be appreciated, there are two forms of the Fresnel
approximation [44,82]. In the first (FrA1), we replace r in the exponent by expanding the
square root by a binomial expansion:

r ≈ z

[
1 +

R2
1

2z2 +
R2

2
2z2 − (x1x2 + y1y2)

z2

]
, (6)

where R1, R2 are cylindrical radii in the aperture and observation planes, respectively. In

the second form (FrA2), we divide by the distance r0 =
√

z2 + R2
2 from the centre of the

aperture to the observation point:

r ≈ r0

[
1 +

R2
1

2r2
0
− (x1x2 + y1y2)

r2
0

]
. (7)

The difference between these approximations is that if R2 is large, R2
2/z2 cannot be

assumed to be small, as in Equation (6).
In the denominator, r is replaced by the first term of the expansion Equations (6) and (7).

Then, the diffracted amplitude (for FrA1) is

U = − ik
z

eikz exp

(
ikR2

2
2z

) ∫ a

0
exp

(
ikR2

1
2z

)
J0

(
kR1R2

z

)
R1dR1, (8)

or

U = −ik
exp(ikr0)

r0

∫ a

0
exp

(
ikR2

1
2r0

)
J0

(
kR1R2

r0

)
R1dR1, (9)

for FrA2, where Jn is a Bessel function of the first kind of order n. For FrA1, the expo-
nential before the integral represents a paraboloidal wave, while for FrA2 it represents a
spherical wave.

Setting ρ1 = R1/a, ρ2 = R2/a, we can introduce optical coordinates
v = ka2ρ2/z, u = ka2/z (FrA1) or v = ka2ρ2/r0, u = ka2/r0 (FrA2) to obtain

U = − iu
2

eiw IL(v, u), (10)

where

IL(v, u) =
∫ 1

0
2J0(vρ1) exp

(
iuρ2

1
2

)
ρ1dρ1. (11)
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A third optical coordinate w has now been introduced:

w = kz +
uρ2

2
2

= kz +
v2

2u
, (FrA1),

w = kr0, (FrA2), (12)

where IL can be expressed in terms of Lommel functions of two variables u, v. The factor
of 2 in Equation (11) ensures that IL = 1 for v = 0, u = 0.

Contours of u and v are plotted against z/a and ρ in Figures 1 and 2 for FrA1 and
FrA2, respectively, where the variable u = 2πNz, the shadow edge corresponds to u = v,
and small Nz (small u) corresponds to the far field. Lines of constant v are straight lines
in both cases. They are very similar for small values of v but become more different as v
increases. Lines of constant u are straight lines for FrA1 and circles for FrA2. They agree
quite well for small ρ and z/a larger than about three.
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Figure 1. Contours of u (blue) and v (red) for FrA1 for diffraction of a plane wave by a circular aperture.
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Figure 2. Contours of u (blue) and v (red) for FrA2 for diffraction of a plane wave by a circular aperture.

The advantage of FrA1 is that it allows the field to be propagated from a plane to a
plane. However, FrA2 is more accurate than FrA1 in the far field for large values of ρ2,
when the field strength can be significant for small apertures. It should be appreciated that
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although the intensity can be expressed in a way that is independent of wavelength and
geometry, the phase cannot because of the factor exp(ikz).

3.2. The Generalized Fresnel Approximation (gFrA)

The Fresnel approximation uses a parabolic approximation of r evaluated by a power
series expansion that becomes worse as R1 increases relative to z or r0. This is unfortunate,
as we know from the stationary phase method that the edge of the aperture makes a
significant contribution to the integral. Thus, alternative ways of matching can be expected
to provide an improved result [59]. In the generalized Fresnel approximation (gFrA), we
still use a parabolic approximation, but choose to match up at the critical points of r in the
stationary phase evaluation of the diffraction integral [64]. However, we do not actually
use a stationary phase expansion, and only use it to define the optical coordinates, meaning
that the approach is valid even in the focal region. Here, we have

kr ≈ w − vρ cos ϕ + 1
2 uρ2. (13)

In the illuminated region, there are three critical points, two of the second kind and
one of the first kind, which provide three simultaneous equations for u, v, w. We introduce
g1, g2, respectively the maximum and minimum distances from the observation point to
the aperture edge, as follows:

g1,2 =
[
z2 + a2(1 ± ρ)2

]1/2
. (14)

Then, the two critical points of the second kind provide the two equations

kg1,2 = w ± v +
u
2

, (15)

where the + and − signs refer to g1 and g2, respectively. Subtracting the two parts of
Equation (15), we obtain the transverse optical coordinate

v =
k
2
(g1 − g2) (16)

such that surfaces of constant v are hyperboloids of one sheet, with the foci located on the
aperture edge. Contours of constant v are shown in Figure 3. If ρ and z/a are large enough,
then lines of constant v tend asymptotically to straight lines, the slopes of which agree
better with FrA2 than FrA1.

0 2 4 6 8 10 12

0

2

4

6

8

z/a

ρ

u=0.1ka

0.15
0.2

0.40.6
v=0ka

0.2

0.3

0.4

0.5

0.6

0.7
0.80.9

0.1ka

Figure 3. Contours of u (blue) and v (red) for the generalized Fresnel approximation for diffraction of
a plane wave by a circular aperture.
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Additionally, adding the two parts of Equation (15), we have

2w + u = k(g1 + g2). (17)

The third simultaneous equation is provided by the critical point of the first kind:

w − v2

2u
= kz. (18)

Eliminating w, we have

k(g1,2 − z) =
(u ± v)2

2u
, (19)

which are positive, and which we can set equal to p2, q2, respectively. (u − v)2 results in
slow intensity variations, while (u + v)2 results in fine structure. We introduce the variables
p, q, defined as [64]

p =
√

g1 − z,

q =
√

g2 − z; ρ ≤ 1

=−
√

g2 − z; ρ > 1, (20)

resulting in v = (k/2)(p2 − q2). It is difficult to appreciate the behaviour of p, q for large z
from Equation (20); thus, we rewrite them here as

p =
a(1 + ρ)√

g1 + z
,

q =± a(1 − ρ)√
g2 + z

; ρ ≶ 1, (21)

where we have used
√

g2
1,2 − z2 = a(1 ± ρ).

Then, the other two optical coordinates are

u =
k
2
(p + q)2; w = kz +

v2

2u
= kz +

k
4
(p − q)2. (22)

Contours of constant u are shown in Figure 3. These are plotted over a larger domain
than our previous plot [64], and are more accurate as a result of improvements in the
contour plotting routines. Lines of constant u become close to circles for small values of u.
For small ρ, they match FrA2 quite well for values of z/a greater than about four. For larger
values of u (greater than about 1ka), lines of constant u become more elongated and the
shape of the lines for FrA1 agree better than those for FrA2, although neither of the standard
Fresnel approximations provides the correct relationship between u and z/a. Contours of
constant w are shown in Figure 4. For large w these are approximately circular, becoming
more elongated for smaller values of w. For large z/a, it can be seen from Equation (17)
that as u becomes small, the equation for constant values of w provide a family of ellipses
with the centre at the origin, tending towards spheres w = k

√
z2 + a2ρ2 for w ≫ ka.

Along the axis, ρ = 0 and p = q; thus, v = 0 and w = kz, and we have

u =2k(
√

z2 + a2 − z) =
2ka2

z +
√

z2 + a2
,

z =
ka2

u

[
1 − u2

16π(a/λ)2

]
. (23)



Photonics 2024, 11, 346 12 of 37

0 2 4 6 8 10 12

0

2

4

6

8

10

z/a

ρ

w=14ka

12

10

8

6

4

2

1

0.5

0.2
0.1

Figure 4. Contours of w = kz + v2/2u for the generalized Fresnel approximation for diffraction of a
plane wave by a circular aperture.

Values of u = 4πn, where n is a positive integer, determine the positions of the
intensity zeros along the axis. The axial intensity zero furthest from the aperture occurs at

z =
a2 − λ2

2λ
. (24)

Thus, the number of axial intensity zeros is ⌊a/λ⌋, indicating the axial behaviour
depends on the value of the dimensionless parameter a/λ. The axial field agrees well with
direct evaluation of the diffraction integral, but only agrees with FrA1 or FrA2 if z > 3a.

Along the shadow edge, ρ = 1, q = 0, u = v = kp2/2 = k(g1 − z)/2, and
w = kz + u/2.

In the plane of the aperture, z = 0, p2 = a(1 + ρ), and q2 = a(1 − ρ); thus, v = kaρ,
and within the aperture, u = ka(1 +

√
1 − ρ2) and w = k[z + a(1 −

√
1 − ρ2)/2].

For small ρ, we have the following for v, u:

v =
ka2ρ√
z2 + a2

[
1 − z2a2ρ2

2(z2 + a2)2

]
,

u =
2ka2

z +
√

z2 + a2

1 −

(√
z2 + a2 + 2z

)
a2ρ2

4(z2 + a2)3/2

. (25)

If z/a is larger than about 5 [64], then we have

v ≈ ka2ρ

z

[
1 − a2

2z2 (1 + ρ2)

]
,

u ≈ ka2

z

[
1 − a2

4z2 (1 + 3ρ2)

]
,

w ≈ kz +
ka2ρ2

2z

[
1 − a2

4z2 (3 − ρ2)

]
. (26)

The radius of curvature of contours of constant u at ρ = 0 tends to 2z/3 for large z,
i.e., the centre of curvature is at z/3, as can be deduced from Figure 3.
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For z ≫ a, z ≫ aρ, we obtain

p2 =
a(1 + ρ)√

2z
, q2 =

a(1 − ρ)√
2z

,

u =
ka2

z
, v =

ka2ρ

z
, (27)

which indicates agreement with FrA1.
The generalized coordinates work well for the illuminated region. In the shadow

region, there are two critical points of the second kind, corresponding to the rim of the
aperture. Then, the transverse optical coordinate v is

v =
2ka2ρ√

z2 + a2(1 + ρ)2 +
√

z2 + a2(1 − ρ)2
, (28)

which is consistent with the previous results (as in Equation (16)). For z ≫ a, if we also
have ρ ≫ 1, then

v =
ka2ρ√

z2 + a2ρ2
, (29)

which agrees with FrA2. If, in addition, ρ ≪ z/a, then this also agrees with FrA1.
The amplitude and phase of the diffraction pattern can be calculated from Equation (4)

using the values of u, v, w and IL to provide gFrA-HF. These same values can alternatively
be used together with RSI, RSII, or Kp diffraction integrals. The integral should be pre-
multiplied by a factor (1 − i/kr0) cos θ for gFrA-RSI, a factor (1 + i/kr0) for gFrA-RSII,
and a factor cos2(θ/2) + (i/kr0) sin2(θ/2) for gFrA-Kp, where θ is the angle subtended
at the axis by the line from the centre of the aperture to the point of observation. For a
distant observation point, kr0 ≪ 1 and can be neglected; however, there will still be distinct
angular differences between RSI and Kp relative to the Huygens–Fresnel result. In fact, as
is well known in antenna theory, RSI acts as an axial dipole rather than as a simple source.
Closer to the aperture, gFrA-RSI reproduces the exact RSI results better than the gFrA-HF
predictions [64].

4. The Focused Case
4.1. Focal Length and Fresnel Number

We now consider the case of diffraction of a convergent wave by a circular aperture,
considering a spherical wave convergent on an opaque screen with a circular aperture of
radius a (Figure 5). We stress that this is different from the case of a microscope objective
used to focus light to a small spot, where the aperture is situated in the front focal plane of
the lens and Fresnel number effects are not present. We define the focal length as the radius
of curvature f of the wave front at the aperture. This is different from the usual convention
in paraxial optics, which is the distance d of the focus from the plane of the aperture. If the
focal length of the lens is long, then these tend to the same value; however, in the limiting
case of a hemisphere of focused wavefront, d = f cos α → 0, where α is the semi-angular
aperture of the focusing system. We choose to specify either α or the NA NA = sin α rather
than the f -number f /# = d/2a, as the f -number becomes zero for the hemispherical case
in which NA = 1.

We define the Fresnel number N f as the number of half-wavelengths in the difference
between the distances of the geometrical focus from the edge and centre of the aperture;
thus, πN f = k( f − d) = k f (1 − cos α) = 2k f sin2(α/2) = ka tan(α/2). This definition is
different from the definitions used by Li and by Hsu and Barakat (which are also different
from each other) [53,67]. Note that N f is related to the surface area of the cap of the spherical
wavefront Acap = 4π f 2 sin2(α/2) by πN f = Acap/ f λ, which determines the amplitude at
the focal spot. The significance of the Fresnel number of half-period zones is that the field
for an even number of zones tends to cancel by destructive interference to give a zero, while
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for an odd number of zones there tends to be close to a secondary maximum in intensity.
This definition of Fresnel number is consistent with Welford’s proposal for generating
diffractive lenses on spherical surfaces to eliminate spherical aberrations [40]. For a low
NA, α is small, meaning that 2 sin(α/2) ≈ sin α and N f ≈ a2/λ f = N; however, this latter
expression does not accurately provide the number of Fresnel zones for higher NA. A
consequence is that the radii ai of the regions in a zone plate, conventionally ai =

√
λ f ,

need to be modified at higher NAs [40]. Indeed, for the hemispherical case, N f = 2 f /λ,
while the paraxial form N = a2/λd becomes infinite. Even for the complete spherical
case, N f is still defined, providing N f = 4 f /λ; however, N is only defined for α < 90◦.
Moreover, as k f must be non-zero, N f = 0 implies that α = 0.

(ρ,z)

f

g1

g2

a
d

r

rP

z

ρ

P

F
α

θ
h

δ2

ψ

E2

E1

β2

A

α2

W

Figure 5. Schematic diagram of a spherical wave diffracted by a circular aperture of radius a in an
opaque screen at distance d from the geometrical focal point F, with sagitta h = f − d; the angle
α is the semi-angular aperture, and θ is the angle subtended at the optical axis by a ray from a
general point W on the wavefront to F. The points E1, E2 on the aperture edge correspond to the
maximum and minimum distances g1, g2 from the observation point P, with cylindrical coordinates
ρ, ϕ, z relative to F and distant rP from F and r from W. The triangle ∆FPE2 has an exterior angle
∡E2FA = α2 and interior angles ∡FPE2 = β2 and ∡FE2P = δ2. The angle rays between rays from
point W to F and P are ∡FWP = ψ.

Li argued that RSI is not valid for the case of high NA focusing by a system of finite
Fresnel number [4], as the calculated focal shift can be positive, as calculated by Osterberg
and Smith [3], whereas in practice negative values are always observed. In addition,
negative focal shift would be intuitively expected by analogy with Gaussian beams, where
the waist of a focused wavefront occurs before its centre of curvature. The problem with
RSI is that, although it is exact, the assumed amplitude within the aperture (equal to the
amplitude if the screen with aperture were absent) is not correct. For this reason we agree
with Li, and choose not to use RSI.

The amplitude in the focal region of a lens can be alternatively calculated using the
Kirchhoff diffraction integral, which is known to be exact when performed over an arbitrary
closed surface. We choose to integrate over the spherical wave front (Figure 1), an approach
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we call Ks (for Kirchhoff, spherical). Note that while this has similarities with the approach
of Kraus, it is different in that we apply integration over the wave front for a converging
wave rather than for a diverging one [62]. We assume that the field on this surface is equal
to the incident spherically-convergent wave (Kirchhoff boundary condition), and the field
on the remainder of the closed surface is taken as zero. We argue that this assumption is
more accurate than either of the RSI and RSII Rayleigh–Sommerfeld approaches, where the
integral is performed over a planar surface (or, in the Kirchhoff approximation, performed
by integrating over a plane, which we call Kp) because the presented method incorporates
effects of diffraction during the propagation of the wave before reaching the aperture plane.
The obliquity factor for this geometry is close to unity, and as such can be neglected for
observation points not too distant from the geometrical focus, even though the convergence
angle is appreciable. This is very different from the geometry for a planar integration
surface or diverging wave as studied by Kraus [62,63]. We continue by neglecting a term of
order 1/k f . Then, the amplitude at a point P with cylindrical coordinates ρ, z relative to
the geometrical focus is

UKs(ρ, z) = − ik f 2

2π
exp( −ik f )

∫ α

0

∫ 2π

0

exp(ikr)
r

sin θ dϕdθ, (30)

where

r =
[

f 2 + z2 + ρ2 − 2 f ρ sin θ cos ϕ + 2 f z cos θ
]1/2

=
[
( f + z)2 + ρ2 − 2 f ρ sin θ cos ϕ − 4 f z sin2(θ/2)

]1/2
. (31)

4.2. Behaviour along the Optical Axis

We first consider the amplitude U at a point on the axis at a distance z from the
geometrical focus when

UKs(z) = −ik f 2 exp( −ik f )
∫ α

0

exp(ikr)
r

sin θ dθ (32)

and
r =

[
( f + z)2 − 4 f z sin2(θ/2)

]1/2
. (33)

Li and Wolf presented an evaluation based on series expansion of the square root,
resulting in a form of the Fresnel approximation [50,72]. However, rather than approximat-
ing the square root, which can introduce inaccuracies, we choose to evaluate the integral
in Equation (32) directly for an observation point on the optical axis. This approach was
described previously in [74]. Thus, changing the variable of integration from θ to r using
r dr = − f z sin θ dθ from Equation (33), we have

UKs(z) = − ik f
z

exp(−ik f )
∫ f+z

g
exp(ikr) dr,

= − f
z
{exp(ikz)− exp[ik(g − f )]}, (34)

where the distance g of P from the centre and edge of the aperture is

g =
[
( f + z)2 − 4 f z sin2(α/2)

]1/2
. (35)
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Geometrically, Equation (34) can be recognized as comprising two components, repre-
senting the sum of two waves from the centre and edge of the aperture, respectively (as in
Young’s BDW approach) added in antiphase. The axial amplitude is then provided by

UKs(z) = −2i f
z

exp
{

i
[

k(g + z − f )
2

]}
sin
[

k( f + z − g)
2

]
. (36)

Therefore, to describe the axial amplitude, we introduce the axial (defocus) opti-
cal coordinate u, defined in terms of the argument of the sine function in Equation (36)
as follows:

u = 2k( f + z − g). (37)

This definition for the axial optical coordinate has previously been discussed else-
where [64,71,74].

Then, for the axial amplitude we have

UKs(z) =− i f u
2z

eikze−iu/4
[

sin(u/4)
u/4

]
=− i f u

2z
eiψ
[

sin(u/4)
u/4

]
, (38)

where the phase variation (unwrapped) along the axis relative to the geometrical focal
point is

ψ = kz − u
4
=

k
2
(g + z − f ). (39)

This expression for the axial amplitude is a generalization of the paraxial Debye
expression ([14], p. 441) but is valid for both large angles of convergence and finite values
of the Fresnel number. Thus, the axial intensity is

IKs(z) =
(

f u
2z

)2[ sin(u/4)
(u/4)

]2
. (40)

From Equation (37), it is difficult to see the behaviour of u when z is small; we can
rewrite the equation as

u =
4kz( f − d)
f + z + g

=
8k f z sin2(α/2)

f + z + g
,

=
8k f z sin2(α/2)

( f + z) +
√
( f + z)2 − 4 f z sin2(α/2)

. (41)

Now, u = 4kZ sin2(α/2), with a mapping

z → Z; Z =
2 f z

f + z + g
. (42)

In a similar way, ψ is provided by

ψ =
kz[(g + z − f ) + 2 f cos2(α/2)]

f + z + g

=
kz[(z − f cos α) +

√
( f + z)2 − 4 f z sin2(α/2)]

( f + z) +
√
( f + z)2 − 4 f z sin2(α/2)

. (43)

We can obtain an equation between u and z by eliminating g from Equations (35) and (37):

u2 − 4ku( f + z) + 8k2 f z sin2(α/2) = 0, (44)
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which can be solved for kz as a function of u:

kz =
u
(

1 − u
4k f

)
[
1 − u

4k f sin2(α/2)

] 1
4 sin2(α/2)

. (45)

We now introduce the Fresnel number N f , where πN f = 2k f sin2(α/2). For u/2πN f
in terms of z/ f , we have

u
2πN f

=
2z

f + z + g
=

Z
f
=

z
f

D =
2(z/ f )

(1 + z/ f ) +
√
(1 + z/ f )2 − 4(z/ f ) sin2(α/2)

, (46)

which is plotted in Figure 6a for different values of α. In Equation (46), we have introduced
a dimensionless parameter D = Z/z = 2 f /(z + f + g) = u/[4kz sin2(α/2)]. All the curves
exhibit the same slope for small z/ f . For small z/ f (or for large k f , and consequently
large N f ), we have u = 4kz sin2(α/2), agreeing with the result of the pseudo-paraxial treat-
ment [57], while for α → 0 u reduces to the form of Li and Wolf for the finite Fresnel number
case in the paraxial approximation [50]. For large values of kz, u/2πN f → 1, meaning that
there is a finite number ⌊N f /2⌋ of zeros in intensity beyond the geometrical focus. In the
centre of the aperture z = − f cos α, unlike in the paraxial case, u = −2πN f [cot(α/2)− 1]
is also finite. Interestingly, for α = π, corresponding to extreme case of a complete spheri-
cally focused wave, u/4 = kz and ψ = 0, agreeing with the correct values for a spherical
standing wave [57]. This gives us confidence that the diffraction integral is providing
meaningful results.
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Figure 6. The behaviour of (a) u/2πN f (from Ks) and (b) u0/2πN f (from aKs), with z/ f for different
semi-angular apertures. Lines are coloured red for small α, orange for α = 10◦, green for α = 30◦, blue
for α = 60◦, and purple for α = 90◦. For small α, the behaviour of u/2πN and u0/2πN f agrees with
that of Li and Wolf [50]. Along the optical axis, u/2πN f = Z/ f = D(z/ f ), with Z as in Equation (42)
and D as in Equation (46).

We now have the following for z/ f as a function of u/2πN f and α:

z
f
=

u
2πN f

(
1 − u

2πN f
sin2 α

2

)
(

1 − u
2πN f

) , (47)

which was plotted in [74].
We have expressed u in terms of f , α, N, and z, with the first three parameters charac-

terizing the optical system. There are many alternative ways to specify the geometry. The
triangle ∆FPE2 has sides (rP, g2, f ) in general (and similarly for triangle ∆FPE1); for the spe-
cial case when P is on the axis, it has sides (z, g, f ). The angles of the triangle are (β2, δ2, α2),
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where α2 = (β2 + δ2) is the exterior angle. For P on the axis, α2 = α, β2 = β, δ2 = δ. On the
optical axis [74],

u = 2πN
(

1 − tan(β/2)
tan(α/2)

)
. (48)

Using the sine rule, we have

u = 4kz sin(α/2) sin(β/2) sec(δ/2), (49)

which, if α, β, δ are small, gives us

u = kz sin α sin β, (50)

which is the same as derived for the paraxial case [55]. Further, if we defines a
Fresnel number Ng for the observation point, then πNg = k(g − d − z), meaning that
πNg = 2kg sin2(β/2). Then,

Ng cot(β/2) = N f cot(α/2) (51)

and
u = 2π(N f − Ng). (52)

The intensity at the geometrical focal point is

I0 =
(

2k f sin2 α

2

)2
= (πN f )

2. (53)

Then, the axial intensity is

I = I0

(
2 f

f + z + g

)2[ sin(u/4)
u/4

]2
= I0D2

[
sin(u/4)

u/4

]2
, (54)

or in terms of u and N f ,

I = I0

 1 − u
2πN f

1 − u
2πN f

sin2( α
2
)


2[
sin(u/4)

u/4

]2
. (55)

For large N, Equation (55) reduces to the standard form for the paraxial Debye approx-
imation as provided by Born and Wolf [14], except that the optical coordinate u is provided
by the more correct high NA form u = 4kz sin2(α/2) [57]. The focal shift effect is caused by
the factor in the braces in Equation (55). It can be seen that this factor becomes weaker as
NA increases, becoming a constant for a complete spherical wave (i.e., corresponding to no
focal shift).

4.3. Focal Shift

The optical coordinate u provided by Equations (37) or (46) is of a more complicated
form than that of Li and Wolf [50]. However, if we apply the condition that z/ f ≪ 1, which
we call aKs (approximate Kirchhoff spherical), we have g ≈ f + z cos α and can obtain
approximate expressions u0 for u from Equation (41):

u0 =
4kz sin2(α/2)

1 + (z/ f ) cos2(α/2)
=

2πN f z
f + z cos2(α/2)

. (56)

Note that this equation cannot be derived accurately from Equation (37) in the same
way, as (g − f ) is the small difference between two large quantities; thus, we must
be careful when using the approximation g ≈ f + z cos α. A better approximation is
g ≈ f + z cos α + (z2/2 f ) sin2 α. The first equality of Equation (56) reduces to provide the
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usual high NA expression if z/ f is negligible [57], while the second form reduces to the
finite Fresnel number expression of Li and Wolf when α is small [50]. Thus, Equation (56)
can be regarded as providing more accurate expressions for the optical coordinate in the
regime with finite Fresnel number and high NA that are valid for small distances from the
geometrical focus. We can further introduce Z0, D0, approximate values of Z, D, valid near
the geometrical focal point. Then, we have Z0 = u0/4k sin2(α/2) = f z/[ f + z cos2(α/2)],
D0 = u0/4kz sin2(α/2) = f /[ f + z cos2(α/2)]. It should be noted that Hsu and Barakat [67]
assumed the paraxial form for the optical coordinates in their high-aperture vectorial treat-
ment based on the Stratton–Chu formula, which is not justifiable for high NAs. The
behaviour of u0/2πN f = Z0/ f = D0(z/ f ) with z/ f is shown in Figure 6b. It can be seen
that the range of values of z/ f for which u0 is a good approximation for u increases as
NA decreases.

If z/ f is small, then for the analogous approximate expression ψ0 for ψ we have

ψ0 =
kz( f + z) cos2(α/2)

f + z cos2(α/2)
, (57)

which reduces to the high NA axial phase variation ψ ≈ kz cos2(α/2) for z ≪ f [57].
The approximate form u0 for u is valid for small focal shifts, meaning that the principal

maximum in intensity is located at

u ≈ 24
πN f

cos2 α

2
. (58)

Then, the fractional focal shift is provided by

∆ f
f

≈ − cos2(α/2)
cos4(α/2) + π2N2

f /12
, (59)

and the increase in intensity relative to that at the geometrical focus by

I − I0

I0
≈ 12 cos4(α/2)

π2N2
f

. (60)

Equations (58)–(60) are generalizations of those of Li and Wolf for low NAs [47,50].
Further, Equation (59) for the fractional focal shift is much simpler than the empirical
formula provided by Li for the nonparaxial case [53]. As we have seen that N f = 0
implies that α = 0, in this case Equation (59) provides ∆ f / f = −1, meaning that the axial
intensity decays monotonically from the aperture plane [79]. For non-zero α, as the value of
∆ f / f cannot be less than − cos α from geometrical arguments, there is a minimum Fresnel
number predicted by Equation (59) for any given value of α. For example, the minimum
Fresnel number is N f = 1 for α = 57.03◦, corresponding to a value of k f = 6.92 and
ka = 5.78.

Figure 7 compares the fractional focal shift predicted from the Ks expression for inten-
sity in Equation (40) using Equation (46) and by the analytic expression in Equation (59)
provided by aKs. The behaviour calculated from Equation (40) and aKs show good agree-
ment. The fractional focal shift ∆ f / f is negative, showing that the diffraction focus is
shifted towards the aperture for all NAs, in contrast to Osterberg and Smith’s results using
RSI for high NA (NA > 0.943, α = 70.56◦) [3] (and confirmed by [4,74]). The absolute value
of the fractional focal shift increases as the Fresnel number decreases. For Ks, the absolute
value of the fractional focal shift decreases with NA for Fresnel numbers greater than about
0.62 and increases for smaller values of Fresnel number. The behaviour predicted by the
aKs analytic expression in Equation (40) is qualitatively similar, but the effect of NA is
smaller, with the cross-over for no variation in focal shift with aperture occurring at a
Fresnel number of 2

√
3/π = 1.10 for low NAs. For high NA, as N f decreases the size of
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the aperture also decreases, and eventually the diffraction calculations become invalid. We
indicate where in Figure 7 the value of a/λ = 5 (ka = 10π) by coloured circles.
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Figure 7. The fractional focal shift as a function of the Fresnel number N for different NAs: (a) for the
Ks model (Equations (46) and (55)) and (b) from the analytic aKs expression in Equation (59). Lines
are coloured red for small α, orange for α = 10◦, green for α = 30◦, blue for α = 60◦, and purple for
α = 90◦. For small α, the behaviour agrees with that of Li and Wolf [50]. The curves for small α and
α = 10◦ are very close to each other. The small circles indicate where a/λ = 5: for small a/λ, the
Kirchhoff boundary conditions tend to break down.

4.4. Off-Axis Behaviour

We now wish to generalize to off-axis observation points. Although Equation (30) can
be evaluated exactly for points on the axis, unfortunately this cannot be done in general;
thus, we wish to approximate it. In [57,64], we approximated it to the Fresnel diffraction
integral, which has analytic solutions in terms of Lommel functions. We called this the
pseudo-paraxial approximation. However, as the NA increases, the field calculated by
the Fresnel diffraction integral departs from that predicted by the Debye integral (angular
spectrum) method. Therefore, here we choose to approximate to the scaled Debye–Wolf
(sDW) approximation, as the (unscaled) Debye–Wolf (DW) form provides better agreement
for higher NAs and large Fresnel numbers than the pseudo-paraxial approximation [57,71]:

UsDW = − ik2 f 2

2(w + k f )
exp(iw)

∫ α

0
2J0

(
v

sin θ

sin α

)
exp

[
− iu

2
sin2(θ/2)
sin2(α/2)

]
sin θ dθ, (61)

where the optical coordinates u, v, w are scaled as follows:

u = 4kZ sin2(α/2), v = kR sin α, w = kW, (62)

by the mappings z → Z, ρ → R, z → W to approximate r in Equation (31) by

r − f ≈ W − R sin θ cos ϕ − 2Z sin2 θ

2
= (W − Z)− R sin θ cos ϕ + Z cos θ. (63)

Note the opposite sign of u in Equation (61) as compared with the collimated case in
Equation (11). This is consistent with the fact that for the collimated case u was defined
as positive and increasing towards the aperture, as in Figure 3. The diffraction integral no
longer has variables in the Bessel and complex exponential functions of the simple forms
ρ, ρ2, as they are in the paraxial Debye or the Fresnel approximations. Along the axis, v = 0,
it reduces to the Ks of Equation (38).

For the (unscaled) DW equation, then, Z = z, R = ρ, and W = z, and it is valid for
high NAs in the scalar approximation, though only for large values of the Fresnel number.
Thus, the normalized axial intensity is [sin(u/4)/(u/4)]2 regardless of the value of α, even
up to α = 180◦; however, the transverse intensity in the focal plane varies from an Airy
disk [2J1(v)/v]2 for small α to (sin v/v)2 for both α = 90◦ and α = 180◦.

For smallish α such that sin θ ≈ 2 sin(θ/2), Equation (61) reduces to the pseudo-paraxial
form, with analytic solutions provided in terms of Lommel functions. For large Fresnel
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numbers, Z = z, R = ρ, and W = z, meaning that v = kρ sin α, and for a marginal ray
subtending an angle of α we have

kz − u
2
= kz

(
1 − 2 sin2 α

2

)
= kz cos α, (64)

by which it can be seen that axial scaling is more correct than the paraxial treatment in Born
and Wolf, which gives kz − u/2 = kz(1 − sin2 α) = kz cos2 α [14].

For very small α, sDW reduces to the fully paraxial form when cos α ≈ 1. This is the
case for the mapping z → Z, u = kz sin2 α discussed by Li [79].

4.5. The Debye–Wolf (DW) Integral

Bertilone provides an analytic expression for the focal field for the (unscaled) DW case
for α = 90◦ [60,61]. Then,

U(ρ, z) = − i
±k
√

z2 + ρ2

{
e±ik

√
z2+ρ2

+ J0(kρ)− 2U0

[
k
(
±
√

z2 + ρ2 − z
)

, kρ

]}
, (65)

where U0 is a Lommel function of two variables and
√

z2 + ρ2 is taken as ±ve for ±z.
This expression is equivalent to the (unscaled) Debye–Wolf integral. Useful properties
of the Lommel function are that U0(y, 0) = cos(y/2) and U0(z, z) = [J0(z) + cos z]/2.
A numerically calculated contour plot of the intensity was presented earlier by Carter,
who provided a plot for α = 30◦ as well [42]. The intensity in the focal region, calculated
directly from Bertilone’s expression, is shown as contours in Figure 8d [86], where it is
compared with the paraxial Debye case (i.e., for small α) in (a) and with the nonparax-
ial DW plots for 30◦ and 60◦ in (b) and (c). For α = 90◦, v = kρ and u = 2kz; thus,
k
√

z2 + ρ2 =
√

v2 + (u2/4). While the overall features of the contour plots are all similar,
there are differences in their sidelobe structures. Carter’s plot for α = 90◦ shows that the
overall pattern of the maxima and minima in intensity exhibit alignment of features along
lines of constant v and along circles with the centre at the focus [42].
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Figure 8. Contours of constant intensity in the focal region of a focused scalar wave diffracted by
a circular aperture in the Debye approximation: (a) for a small semi-angular aperture α, (b) for the
nonparaxial Debye case for α = 30◦, (c) for the nonparaxial Debye case for α = 60◦, and (d) for
α = 90◦, computed from the analytic expression in Equation (65). The intensity at the focal point is
normalized to unity. An analytic plot for α = 90◦ was first shown in [86].
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4.6. The Scaled Debye–Wolf (sDW) Case

In the sDW case, for the illuminated region we match r and its approximation at the
three critical points in the stationary phase expansion of the integral; note, however, that
we do not use an asymptotic evaluation of the integral. For observation points close to the
geometrical focus, even though the stationary phase asymptotic method cannot be used,
the expansion is still valid. The two critical points of the second kind give

k(g1 − f ) =w − u
2
+ v = kW − 2kZ sin2 α

2
+ kR sin α,

k(g2 − f ) =w − u
2
− v = kW − 2kZ sin2 α

2
− kR sin α, (66)

where g1, g2 are the maximum and minimum distances of the observation point from the
aperture edge

g1,2 =
[
( f + z)2 + ρ2 − 4 f z sin2 α

2
± 2 f ρ sin α

]1/2
. (67)

Adding and subtracting, we have

k(g1 + g2 − 2 f ) = 2
(

w − u
2

)
=2k

(
W − 2Z sin2 α

2

)
= 2kA,

k(g1 − g2) = 2v =2kR sin α, (68)

where A = W − 2Z sin2(α/2). The second of these equations defines R and v valid for the
whole of the focal region, whether illuminated or shadow:

R =
g1 − g2

2 sin α
=

2 f ρ

g1 + g2
; v = k(g1 − g2) =

2k f ρ sin α

g1 + g2
. (69)

Surfaces of constant R are hyperboloids of one sheet:

ρ2

R2 − (z + f cos α)2

f 2 − R2 = sin2 α. (70)

Close to the axis, such that (g1 + g2) ≈ 2g, we have R ≈ f ρ/g, v = k f ρ sin α/g. If α
is small, then the surfaces of constant R tend to cones with the vertex at the centre of the
aperture and R ≈ ±ρ f /( f + z), agreeing with Li and Wolf [50].

The first line of Equation (68) contains both W and Z, and as such cannot be solved
independently for these. We note that on the axis it reduces to Equation (39), meaning
that wρ=0 = kz and ψ = w − u/4. However, for the illuminated region there is a third
critical point corresponding to matching up the values at the maximum or minimum of the
two sides of Equation (63), resulting in an additional equation. For the left-hand side, this
corresponds to a direct undiffracted ray passing through the geometrical focal point along
the line FP in Figure 5. For the right-hand side, we find the maximum or minimum of the
right-hand side of Equation (63). Therefore, the third equation is

±
√

z2 + ρ2 = (W − Z)±
√

Z2 + R2. (71)

Eliminating W using the first line of Equation (68), we have

f ±
√

z2 + ρ2 − (g1 + g2)/2 = m = ±
√

Z2 + R2 − Z cos α, (72)

where we have introduced the variable m, a function of the observation point, which is zero
at the geometrical focal point. We take +

√
z2 + ρ2 for Z ≥ 0 and −

√
z2 + ρ2 for Z < 0.

Equation (72) can then be written as a quadratic equation in Z:

Z2 sin2 α − 2mZ cos α + (R2 − m2) = 0 (73)
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and solved for Z in terms of m using Equation (69):

Z =
m cos α ±

√
m2 − R2 sin2 α

sin2 α

=
1

4 sin2(α/2)

m
(

1 − tan2 α

2

)
±
(

1 + tan2 α

2

)√
m2 − 4 f 2ρ2 sin2 α

(g1 + g2)2

, (74)

where we take the positive square root for Z > 0; ρ ≤ z tan α (inside the shadow edge) or
Z < 0; ρ > z tan α (outside the shadow edge) and the negative root for Z > 0; ρ > z tan α
(outside) or Z < 0; ρ ≤ z tan α (inside). On the shadow edge, m = ±R sin α = Z tan α sin α.

The corresponding quadratic equation in the axial optical coordinate u is

u2 − 2km
(

1 − tan2 α

2

)
u +

(
1 + tan2 α

2

)2
v2 = 4(km)2 tan2 α

2
, (75)

and its solution for u is

u = km
(

1 − tan2 α

2

)
± k
(

1 + tan2 α

2

)√
m2 − 4 f 2ρ2 sin2 α

(g1 + g2)2 . (76)

Along the axis, g1 = g2 = g and v = 0. Then, w = kz and u = 2k( f + z − g), as in
Equation (37) for the Ks theory. Simply, u = 2km or Z = m/[2 sin2(α/2)], where we take
the positive/negative roots in Equations (74) and (76) for positive/negative z, respectively.

In addition, for W we have

W =
g1 + g2

2
− f +

1
2

m
(

1 − tan2 α

2

)
±
(

1 + tan2 α

2

)√
m2 − 4 f 2ρ2 sin2 α

(g1 + g2)2

. (77)

Contour plots for R/ f and Z/ f are shown in Figure 9 for different values of α, while
contours of W/ f are shown in Figure 10. The plots cover the domain within a sphere of
radius f . For R/ f and Z/ f , contours for constant Z/ f and W/ f are shown in green and
blue for Z < 0 and Z > 0, respectively. In particular, we note that for higher NA the sDW
version of Ks can predict the field strength before (i.e., to the left of) the aperture plane,
whereas RSI, RSII, and Kp cannot.

Although the third critical point is only present for the illuminated region, we can
consider extrapolation into the shadow region as a type of analytic continuation. The slope
of the contours for Z/ f is continuous at the shadow edge. For Z/ f = 0 or W/ f = 0, the
two contours do not match up completely in each case, but agree well for ρ/ f < 0.2. This
value of ρ/ f corresponds to a larger value of v as N f increases or α decreases. A magnified
contour plot of a smaller region is shown in Figure 11. On this scale, the two contours
for Z/ f = 0 are almost indistinguishable; only one, Z/ f = 0(−), is shown in the plot.
However, even for α = 10◦ the contours of constant Z/ f are noticeably curved, unlike in
the paraxial treatment of Li and Wolf [50].

As we have mentioned, the Debye approximation is only valid for regions near the
focus [73]. Even for small values of α, e.g., 10◦, the Debye approximation breaks down for
distances from the focal point that are a substantial fraction of f , although of course for
large f the intensity is very small in this case. For small α, the surfaces for Z/ f = 0 and
W/ f = 0 are approximately spherical, with a radius of 1, agreeing with [52]. The radii of
curvature increase with α, becoming planar for α = 90◦. In fact, the radius of curvature of
Z or W for small ρ is approximately equal to f / cos α. For small α, the contours become
approximately flat for z/ f ≈ 0.3, which reduces to the aperture plane z/ f = 0 for α = 90◦.
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Figure 9. Contours of R/ f (in red) and Z/ f (in green for Z/ f < 0 and blue for Z/ f > 0) for the
scaled Debye–Wolf theory for diffraction of a spherical wave by a circular aperture: (a) α = 10◦,
(b) α = 30◦, (c) α = 60◦, (d) α = 90◦. The black contour is for A/ f = [W − 2Z sin2(α/2)]/ f = 0. The
shadow edge is also indicated in black.
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theory for diffraction of a spherical wave by a circular aperture: (a) α = 10◦, (b) α = 30◦, (c) α = 60◦,
(d) α = 90◦. The black contour is for A/ f = 1.
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Figure 11. A magnified view of the contours of R/ f (in red) and Z/ f (in green for Z/ f ≤ 0 and
blue for Z/ f > 0) for the scaled Debye–Wolf theory for diffraction of a spherical wave by a circular
aperture: (a) α = 10◦, (b) α = 30◦, (c) α = 60◦, (d) α = 90◦. The shadow edge is indicated in black.
The contours for Z/ f = 0 provided by the two alternative expressions in Equation (74) are almost
identical at this scale.

The values of Z/ f and W/ f along the shadow edge are shown in Figure 12, where
rP =

√
z2 + ρ2. The behaviour of Z is qualitatively similar to the variation along the axis,

as shown in Figure 6.
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Figure 12. The variations in (a) Z/ f , (b) W/ f and (c) A/ f = [W − 2Z sin2(α/2)]/ f along the shadow
edge. Here, rP =

√
z2 + ρ2. Lines are coloured orange for α = 10◦, green for α = 30◦, blue for

α = 60◦, and purple for α = 90◦.
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In the far field, when Z ≫ f and R ≪ Z, we have

m ≈ 2Z sin2 α

2
+

R2

2Z
, (78)

which can be written as a quadratic equation in Z

4Z2 sin2 α

2
− 2mZ + R2 = 0 (79)

and solved for Z in terms of m:

Z =
m

2 sin2(α/2)

[
1 − f 2ρ2 sin2(α/2)

g2m2

]
, (80)

where g is defined in Equation (35). In a similar way, the quadratic equation in the axial
optical coordinate u is

u2 − 2kmu +
(

1 + tan2 α

2

)
v2 = 0, (81)

and its solution for u is

u = 2km

{
1 −

[
1 + tan2(α/2)

]
v2

4(km)2

}
. (82)

For m, in terms of the spatial coordinates, for z ≫ f and ρ ≪ z we have

m = f +
√

z2 + ρ2 − (g1 + g2)/2

≈ f + z +
ρ2

2z
− g −

(
g2 − f 2 sin2 α

)
ρ2

2g3

=( f + z − g) +
ρ2

2g3z

[
g3 − z( f cos α + z)2

]
, (83)

meaning that for Z we have

Z =
2 f z

f + z + g

{
1 +

ρ2( f + z + g)
16 f g3z2 sin2(α/2)

[
2g3 − 2z( f cos α + z)2 − f g( f + z + g)

]}
. (84)

This expression for Z predicts the behaviour of Z near the optical axis in the far field.
We find that the curvature of the contours of constant Z reduce as z increases, then changes
sign, reaches a maximum value, and decays as 1/z. The position of the sign change agrees
well with Figure 9 for α = 10◦ or 30◦. For α = 60◦, it does not agree, probably because z/ f
is not sufficiently large for the approximations to be valid.

While the approach used thus far fares well for the illuminated region, the definitions of
Z and W become more inaccurate as we move into the shadow region. This is because there
are only two critical points in the shadow region. We have defined A = W − 2Z sin2(α/2),
and can see from Equation (68) that because constant A corresponds to constant (g1 + g2), the
surfaces of constant A are oblate spheroids (surfaces of rotation of ellipses about their minor
axes) with equations

ρ2

(A + f )2 +
(z + f cos α)2

A2 + 2A f + f 2 cos2 α
= 1. (85)

The corresponding contours of A/ f are shown in Figure 13. For small α, A ≈ W; if
Z = 0, then A = W. On the optical axis, from Equations (37), (68) and (62) we have

Z =
f + z − g

2 sin2(α/2)
; W = z; A = g − f . (86)
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The value of A/ f along the shadow edge is shown in Figure 12c.
If A/ f = 0, then

z =

(
− f +

√
f 2 − ρ2

)
cos α. (87)

The contour for A/ f = 0 is indicated in Figures 9 and 10. In all cases, this contour lies
between the corresponding green and blue contours for both Z/ f = 0 and W/ f = 0. Z is
small when A = 0; therefore, we propose taking as an approximation that Z = 0, u = 0 for
points in the region between the two alternative contours for Z = 0, meaning that W = A.
In this region, the intensity is very weak anyway, and small values of u result in only a
small effect on the intensity. For the conventional Airy disk, the intensity for u = 0 falls off
quickly, as 1/v3. Interestingly, we find that when A = 0, the two solutions for m are equal
and opposite in sign; thus, their mean is zero.
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Figure 13. Contours of A/ f = [W − 2Z sin2(α/2)]/ f for the scaled Debye–Wolf theory for diffraction
of a spherical wave by a circular aperture: (a) α = 10◦, (b) α = 30◦, (c) α = 60◦, (d) α = 90◦.

For this choice of values, Figure 14 shows the variation in R/ f , Z/ f , and W/ f
along three lines of constant z (z = −0.2 f , 0 f , 0.2 f ) and for four values of α equal to
10◦, 30◦, 60◦, 90◦, as indicated by colour. For z = 0, there is a nonlinear variation in R as
a function of ρ (except for α = 90◦, when it is linear) and Z = 0, W = 0. The nonlinearity
decreases as α increases. For z = 0.2 f , Z/ f and W/ f exhibit break points at the shadow
edge, marked by small circles; for z = −0.2 f , the behaviour is more complicated for Z/ f
and W/ f . There are up to three break points, located at the shadow edge and the two
points where Z = 0. Between these, we assign Z = 0 and W = A.
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Figure 14. Plots of R/ f (top row), Z/ f (middle row), and W/ f (bottom row) along lines of constant
z/ f ((left column) z = −0.2 f , (middle column) z = 0, and (right column) z = 0.2 f ), shown for
different values of α (indicated by colour, orange α = 10◦, green α = 30◦, blue α = 60◦, and purple
α = 90◦) Break points are indicated by small circles.

This choice of Z/ f and W/ f in the shadow region is only one possible strategy.
Another alternative is to take contours of both Z/ f and W/ f in the shadow region to be
the same shape as contours for A/ f , with the magnitude chosen such that the contours
are continuous with those in the illuminated region at the shadow edge. We call this the
corrected scaled Debye–Wolf theory (csDW). Figure 15 shows contours of constant Z/ f
and W/ f for α = 30◦ and 60◦. Note that there are now no gaps in the coverage, unlike the
previous stategy (sDW), which had a problem with the region around Z/ f = 0, W/ f = 0.
csDW works well for negative z/ f , as the contours are smooth through the shadow edge.

However, for positive z/ f the contours of constant Z/ f have a different shape, mean-
ing that there is a discontinuity of the slope at the shadow edge. Preliminary numerical
calculations have shown that the proposed choice of sDW results in better predictions than
csDW near the shadow edge for positive z.

In fact, the shape of the contours in the illuminated region for z/ f < 0 is very similar to
that of the contours of A/ f , and could be approximated by contours in A/ f scaled to match
on the optical axis. We call this the approximate sDW theory (asDW). Setting gs = (g1 + g2)/2,

the z coordinate of the contour on the optical axis is za = − f cos α ±
√

g2
s − f 2 sin2 α, where

the negative sign is taken if za < − f cos α. Then, we have

2Z sin2(α/2) = za + f − gs; W = za. (88)

Contours of constant Z/ f and W/ f for α = 30◦ and 60◦ are shown in Figure 16. For
z/ f < 0, the contours agree well with those for sDW and csDW. For z/ f > 0, however, the
contours for Z/ f in particular, although agreeing on the optical axis, exhibit curvatures of
opposite sign.

The case for α = 90◦ is interesting. As there is no shadow region, the three critical
points are valid everywhere, and Bertilone’s analytical solution for the field in the DW
case is available. The equations for the optical coordinates also simplify, meaning that
Z = ±

√
m2 − R2 and g1,2 =

√
( f ± ρ)2 + z2.
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Figure 15. Plots showing contours of constant Z/ f (left column: a and c) and W/ f (right column:
b and d) for α = 30◦ (top row: a and b) and α = 60◦ (bottom row: c and d) for the csDW theory.
Colours: illuminated region, blue z > 0, green z < 0; shadow region, purple.
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asDW theory.
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4.7. The Pseudo-Paraxial Approximation

In this paper, we have considered the scaled Debye–Wolf approach for approximating
the focused field in the finite Fresnel number case as a scaled high-NA field. In a previous
paper [64], we studied the pseudo-paraxial theory for a finite Fresnel number, which is
not as accurate at high NAs but has the advantage that the analytical Lommel solution is
available. This pseudo-paraxial theory is based on the generalized Fresnel approximation,
i.e., a quadratic fit of the DW theory is made, matching up at the critical points. It is
interesting to compare these two solutions, namely, the sDW and the pseudo-paraxial
approximation to Ks. In the pseudo-paraxial approximation, the k(r − f ) in Equation (63)
is matched to the parabola −us2/2 + vs cos ϕ + w, where s is a radial variable normalized
to unity at the aperture edge θ = α. The critical points corresponding to the aperture edge
are the same as for sDW, as in Equation (66); thus, the values of R, v are the same as those
in Equation (68). The third critical point satisfies the condition

±k
√

z2 + ρ2 = w +
v2

2u
= k

(
W +

R2 cos2(α/2)
2Z

)
; (89)

thus, eliminating w,

km =
u2 + v2

2u
. (90)

In this way, we obtain quadratic equations for u or Z:

u2 − 2kmu + v2 = 0,

4Z2 sin2 α

2
− 2mZ + R2 cos2 α

2
= 0, (91)

and solve for u or Z in terms of m:

u = km ±
√
(km)2 − v2,

Z =
m ±

√
m2 − R2 sin2 α

4 sin2(α/2)
, (92)

which reduce to the corresponding Equations (74) and (76) for either small α or on the
axis. The intensity along the axis is identical to that in the sDW case, and the intensity
along the shadow edge is similar for α = 10◦ or α = 30◦. However, plots of Z/ f and
W/ f (Figure 17) show that the behaviour is quite different from the sDW case, even for
α = 10◦. Contours of constant small value of Z/ f have an opposite sign of the curvature
than the sDW case, which means that, although they are the same as sDW close to the
axis where the contours are flat, there is actually only a single point, at the geometrical
focus, where Z/ f = 0 and u = 0. Unlike sDW, there is a region between the two contours
for W/ f = 0 corresponding to different signs of the square roots where the two solutions
provide different values for W/ f . These factors suggest that the pseudo-paraxial treatment
is useful only in the illuminated region or close to it. The contours are similar, though more
detailed, when compared to those shown in our previous paper (which were only shown
for off-axis illumination) [64]. In our earlier paper, the expressions for Z, W were provided
in terms of p, q, as in Equation (20) of this paper, whereas in the notation used in the present
paper this is (q2 − p2) = (g1 − g2) and (p2 + q2) = 2m.
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Figure 17. Contours of R/ f (in red), Z/ f and W/ f (in green for Z/ f , W/ f < 0 and blue for
Z/ f , W/ f > 0) for the pseudo-paraxial theory for diffraction of a spherical wave by a circular
aperture: (a) R/ f and Z/ f , α = 10◦, (b) R/ f and Z/ f , α = 30◦, (c) W/ f , α = 10◦, (d) W/ f , α = 30◦.
The black contours in (c,d) are for A/ f = 1.

In the far field, z ≫ f , near to the axis ρ ≪ z,

Z ≈ m
2 sin2(α/2)

[
1 − f 2ρ2 sin2 α

4g2m2

]
, (93)

and

u ≈ 2km
{

1 − v2

4(km)2

}
. (94)

The parameter m is provided by Equation (83), meaning that Z becomes

Z =
2 f z

f + z + g

×
{

1 +
ρ2( f + z + g)

16 f g3z2 sin2(α/2)

[
2g3 − 2z( f cos α + z)2 − f g( f + z + g) cos2(α/2)

]}
. (95)

Although the curvature of the contours of Z for positive z in Figure 17 always has the
same sign, we actually find that the curvature changes sign at about z/ f = 3.3 (reducing as
α increases).

4.8. The Kirchhoff Diffraction Integral Performed over the Plane of the Aperture (Kp)

For Ks in Equation (34), we found that the amplitude along the optical axis is provided
by the destructive summation of equal contributions from a direct wave and a BDW,
agreeing with the concepts of Young’s BDW theory. Exact solutions for the amplitude along
the optical axis predicted by RSI, RSII, and Kp have been published as well [3,4,39,74]. It is
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found that all these solutions are of the same form, with only the relative strength of the
BDW differing; thus, we now write a general form,:

U(z) =− f
z
{exp(ikz)− C(z/ f ) exp[ik(g − f )]}

=− f
z

eikz
[
1 − C(z/ f )e−iu/2

]
, (96)

where C(z/ f ) denotes the strength of the BDW. Here, C can alternatively be expressed in
terms of u using Equation (47). As well as generalizing to these other diffraction theories,
this approach allows for investigation of different apodization functions. Then, the intensity
along the axis is

I =

(
u f
2z

)2
{

C2
[

sin(u/4)
u/4

]2

+

(
2
u

)2
(1 − C)2

}

= I0D2

{
C2

[
sin(u/4)

u/4

2
]
+

(
2
u

)2
(1 − C)2

}
. (97)

For the different diffraction theories, C(0) = 1 such that [1 − C(0)] = 0, and the
intensity at the geometrical focal point I0 is unchanged from that described for Ks in
Equation (53). Thus, the expressions for Ks in Equations (40) and (55) are easily modified.

RSI predicts positive focal shift at high NAs as a result of an incorrect assumed
boundary condition [3]. This is contrary to observations; nevertheless, we consider RSI
because it is a step towards calculating Kp. The value of C can be expressed in several
different forms: in terms of the sides f , g, z or angles α, β, δ of the triangle EFP with P on
the optical axis. The value of C for RSI or RSII depends on the obliquity factor cos α, cos β
for RSI and RSII, respectively, as well as on the change in the distance g. Wenow have

CRSI =
z(d + z)
g(g − f )

=
z(d + z)( f + g)

g(g2 − f 2)
=

( f + g)( f cos α + z)
g(2 f cos α + z)

=
2 cos β

cos α + cos β
cos2 δ

2

CRSII =
zd

f (g − f )
=

zd( f + g)
f (g2 − f 2)

=
( f + g) cos α

(2 f cos α + z)
=

2 cos α

cos α + cos β
cos2 δ

2

CKp =
z[( f + g)d + f z]

2 f g(g − f )
=

( f + g)[( f + g) cos α + z]
2g(2 f cos α + z)

= cos2 δ

2
(98)

The final expression for CKp is particularly simple, and is equal to the obliquity factor
for the Kirchhoff diffraction integral performed over the spherical wavefront, as disussed by
Kraus for the case of illumination by a diverging wave [63]. Then (1 − CKp)

2 is sin4(δ/2).
The expressions for CRSI and CRSII , however, do not seem to be simply related to the
amplitudes of the components of the integrals RSI and RSII corresponding to the centre
and edge of the aperture.

Plots of the variation in C2, D2, and (1 − C)2 with z/ f are shown in Figure 18. D2 is
responsible for shifting the maximum axial intensity towards the screen for Ks. Its variation
decreases as the NA increases. D2 is multiplied by C2 for RSI, RSII, and Kp. For RSI, C2

RSI
increases for positive z (more strongly for larger α), which has the effect of producing a
positive focal shift for high NA. On the other hand, C2

RSII increases for negative z, increasing
the negative focal shift. For Kp, C2

Kp maintains a value of about one over a large variation in
z/ f ; thus, the focal shift is negative and close to (slightly greater than) that predicted by Ks.
The value of (1 − C)2 at the geometrical focal point is zero in all cases. Closer inspection
shows that the relative strength of the complete second term of Equation (97) tends to zero
at the geometrical focal point unless N f = 0. Furthermore, it can be seen that (1 − CKp)

2

remains smaller for a longer distance along the optical axis than (1− CRSI)
2 or (1− CRSII)

2.
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Figure 18. (a) The variation in C2 with z/ f for RSI (red), RSII (blue), and Kp (green). Curves are
shown for α = 30◦ (solid line), α = 60◦ (dashed line), and α = 75◦ (chained line). The variation in
D2 = [2 f /( f + z + g)]2 is shown in purple. (b) The variation in (1 − C)2 with z/ f for RSI (red), RSII
(blue), and Kp (green). Curves are shown for α = 30◦ (solid line), α = 60◦ (dashed line), and α = 75◦

(chained line).

5. Discussion

It is commonly regarded that the RSI diffraction integral is superior to that of Kirchhoff,
mainly because it is self-consistent; for example, Osterberg and Smith state that “Conse-
quently, the authors have a strong preference for Rayleigh’s diffraction integral” [3]. While
RSI does provide a rigorously correct result for a given input field, in the present case,
where the input field is not known exactly, it provides results that are not in agreement with
experiments. Thus, the present study is one where RSI (or RSII) is not the most appropriate
solution. Many previous works have come to similar conclusions in cases where the input
field is not known exactly, and consequently prefer the Kirchhoff solution [2]. In this paper,
we have used an approximation 1/k f ≪ 1 to the Kirchhoff diffraction integral evaluated
over a spherical wavefront, which we call Ks, to calculate the field along the axis for a
convergent spherical wave diffracted by a circular aperture. The work is an extension of our
previous studies [64,71,74]. We have found that Kp provides on-axis results that are quite
similar to Ks. If we had not made the approximation in Ks, then integration over spherical
or planar surface should provide exactly the same result, as discussed by Kraus for the case
of diffraction of a divergent spherical wave [63]. This is because the amplitude provided
by the sum of contributions from the undiffracted wave and an edge scattered wave are
identical to the obliquity factors. In fact, Ks, Kp, RSI, and RSII all predict the same positions
for the axial zeros, unlike the two versions of the Fresnel approximation, FrA1 and FrA2.
This fact then leads to a generalized axial coordinate u that is valid for different Fresnel
numbers or NAs (Equations (37), (41) and (46)). A further approximation to Ks, aKs, is valid
for small axial distances from the geometrical focal point and has a simple algebraic form
(Equation (56)), allowing an analytic expression for the fractional focal shift to be obtained
(Equation (59)). The focal shift measured experimentally for low NA acoustic, microwaves,
and visible light systems agrees well with theoretical predictions [21–24,32,54]. Li and
Platzer provided results for Fresnel numbers less than 1 [54]. To the best of our knowledge,
detailed measurements for high NA have not been reported. For high NA and low Fresnel
number, the radius a of the aperture is necessarily quite small, and the theoretical treatment
could be validated using finite-difference time domain (FDTD) calculations.

We then went on to develop the optical coordinates for off-axis observation points for
nonparaxial focusing at high NA and finite Fresnel number. The optical coordinates v, u for
the diffraction of a converging spherical wave in the paraxial Debye regime are orthogonal
cylindrical coordinates proportional to ρ, z. The importance of the optical coordinates u and
v is that they allow for prediction of geometrical distortion of the focal field distribution and
axial scaling (for example, of the axial zeros in intensity) as system parameters are altered.
For high NA and/or finite Fresnel number, the optical coordinates describe a geometrical
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transformation that allows the position of different features of the diffraction pattern to
be determined. Unlike a previous paper [64], we do not assume that the focused field
is a geometrically distorted version of the Lommel (paraxial Debye) solution but rather
of the non-paraxial Debye case [71]. The appropriate geometrical transformation for the
illuminated region is derived for this sDW case. A notable observation is that surfaces of
constant defocus optical coordinate u are curved and approximately spherical, rather than
being planar, as predicted by Li and Wolf for the paraxial case [50]. Previously, we have
found this transformation to provide good predictions of the focused field in the shadow
region close to the shadow edge (v/u < 1.2), although it eventually fails further into the
shadow region. Nonetheless, the transverse optical coordinate v remains valid, and for
much of the shadow region where the intensity is not negligible the axial optical coordinate
is small and can be taken as zero, as it does not appreciably affect the amplitude.

Forms for the transverse optical cordinate v valid for systems of both high NA and
finite Fresnel number are provided in Equation (69). Forms for the optical coordinate u
along the axis valid for systems of both high NA and finite Fresnel number are provided
in Equations (37), (41) and (47). An approximate expression for u for points near the
geometrical focus is provided in Equation (56). All of the theories, namely, Ks, Kp, RSI,
and RSII, result in the same expression for the transverse optical coordinate v and for the
on-axis variation in the optical coordinate u, as these follow directly from the difference in
optical path between the axial and edge diffracted waves. Therefore, the optical coordinates
are applicable for the vectorial case as well. These coordinates reduce to the well-known
forms for both paraxial systems of finite Fresnel number and for nonparaxial systems in
which the Fresnel number can be assumed to be infinite.

We additionally discussed a different approach, csDW, that avoids the problem of sDW
near the contour for A = 0. This approach provides reasonable agreement for z/ f < 0, but
results in discontinuities of slope in the contours at the shadow edge for z/ f > 0. Another
approach, asDW, again agrees well for z/ f < 0 but provides a curvature of the opposite
sign compared with sDW for contours of Z/ f for z/ f > 0.

The optical coordinates for the sDW theory were then compared with those for the
pseudo-paraxial approach based on the generalized Fresnel approximation. Although these
agree with each other in the limiting case of α → 0, even for α = 10◦, the pseudo-paraxial
theory behaves well only within or near to the shadow edge. In particular, the value
Z/ f = 0 occurs only at the geometrical focal point.

The Kirchhoff diffraction integral performed over a spherical surface, Ks, was then
compared with Kp integrated over a planar surface and the two Rayleigh–Sommerfeld
integrals, RSI and RSII. On the axis, the field predicted by all of these is provided by
the sum of a central undiffracted component and a wave scattered by the aperture edge.
The intensity minima all agree with each other, but differ from the predictions of the
conventional Fresnel approximation. Kp, RSI, and RSII all predict non-zero minima, unlike
Ks, which includes the approximation 1/k f ≪ 1. As we have mentioned, applying the
Kirchhoff diffraction formula over the wave front but without the approximation provides
the same result as Kp on-axis. Off-axis, we are of the opinion that the Kirchhoff diffraction
formula performed over the wave front without approximation should not provide exactly
the same results for the field as Kp, as although the obliquity functions are the same,
different Kirchhoff approximations to the incident field are used. Neither RSI or RSII
provide predictions that agree with experimental observations as a result of the inaccuracy
of the assumed field in the aperture plane. The off-axis behaviour of the predictions of the
different approaches for high NA and low Fresnel number could be compared using FDTD.
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Abbreviations
The following abbreviations are used in this manuscript:

aKs approximate Kirchhoff diffraction formula, integrated over a spherical wavefront
asDW Approximate scaled Debye–Wolf
BDW Boundary diffracted wave
csDW Corrected scaled Debye–Wolf
DW Debye–Wolf
FrA1 Fresnel approximation 1, dividing by z
FrA2 Fresnel approximation 2, dividing by r
gFrA Generalized Fresnel approximation
HF Huygens–Fresnel integral
Kp Kirchhoff diffraction formula, integrated over a planar surface
Ks Kirchhoff diffraction formula, integrated over a spherical wavefront
RSI First Rayleigh–Sommerfeld diffraction formula
RSII Second Rayleigh–Sommerfeld diffraction formula
sDW Scaled Debye–Wolf

References
1. Daly, C.J.; Rao, N.A.H.K. Scalar Diffraction from a Circular Aperture; Kluwer Academic: Amsterdam, The Netherlands, 2000.
2. Stamnes, J.J. Waves in Focal Regions; Adam Hilger: Bristol, UK, 1986.
3. Osterberg, H.; Smith, L.W. Closed solutions of Rayleigh’s diffraction integral for axial points. J. Opt. Soc. Am. 1961, 51, 1050–1054.

[CrossRef]
4. Li, Y. Predictions of Rayleigh’s diffraction theory for the effect of focal shift in high-aperture systems. J. Opt. Soc. Am. A 2008,

25, 1835–1842. [CrossRef] [PubMed]
5. Aime, C. Fresnel diffraction of multiple disks on axis: Application to coronagraphy. Astron. Astrophys. 2020, 637, A16. [CrossRef]
6. Basistiy, I.; Bazhenov, V.; Soskin, M.; Vasnetsov, M. Optics of light beams with screw dislocations. Opt. Commun. 1993,

103, 422–428. [CrossRef]
7. Khonina, S.N.; Ustinov, A.V.; Kovalyov, A.A.; Volotovsky, S.G. Near field propagation of vortex beams: Models and computation

algorithms. Opt. Mem. Neural Netw. 2014, 23, 50–73. [CrossRef]
8. Engelberg, J.; Levy, L. The advantages of metalenses over diffractive lenses. Nat. Commun. 2020, 11, 1991. [CrossRef]
9. Gonçalves, M.R.; Rozenman, G.G.; Zimmerman, M.; Efremov, M.A.; Case, W.B.; Arie, A.; Shemer, L.; Schleich, W.P. Bright and

dark diffractive focusing. Appl. Phys. B 2022, 128, 51. [CrossRef]
10. Weisman, D.; Carmesin, C.M.; Rozenman, G.G.; Efremov, M.A.; Shemer, L.; Schleich, W.; Arie, A. Diffractive guiding of waves by

a periodic array of slits. Phys. Rev. Lett. 2021, 127, 014303. [CrossRef]
11. Young, T. The Bakerian Lecture. Experiments and calculations relative to physical optics. Philos. Trans. R. Soc. Lond. 1804,

94, 1–16.
12. Airy, G.B. On the diffraction of an object-glass with circular aperture. Trans. Camb. Philos. Soc. 1835, 5, 283–291.
13. Lommel, E. Die Beugungserscheinungen einer kreisrunden Oeffnung und eines kreisrunden Schirmschens theoretisch und

experimentell Bearbeitet. Abh. Bayer. Akad. 1885, 15, 233–328.
14. Born, M.; Wolf, E. Principles of Optics, 1st ed.; Pergamon: Oxford, UK, 1959.
15. Nijboer, B. The diffraction theory of optical aberrations. Part I: General discussion of the geometrical aberrations. Physica 1943,

10, 679–692. [CrossRef]
16. Boersma, J. On the computation of Lommel’s functions of two variables. Math. Comput. 1962, 16, 232–238.
17. Rayleigh, J.W.S. On pin-hole photography. Philos. Mag. 1891, 31, 87–91. [CrossRef]
18. Rayleigh, J.W.S. On the passage of waves through apertures in plane screens, and allied problems. Philos. Mag. 1897, 43, 259–272.

[CrossRef]
19. Sommerfeld, A. Optics; Lectures on theoretical physics; Academic Press: New York, NY, USA, 1964.
20. Debye, P. Das Verhalten von Lichtwellen in der Nähe eines Brennpunktes oder einer Brennlinie. Ann. Der Phys. 1909, 30, 755–776.

[CrossRef]
21. Williams, A.O., Jr. Acoustic intensity distribution from a ‘piston’ source. II The concave piston. J. Acoust. Soc. Am. 1946,

17, 219–227. [CrossRef]
22. Fein, L. Ultrasonic radiation from curved quartz crystals. J. Acoust. Soc. Am. 1949, 21, 511–516. [CrossRef]
23. O’Neil, H.T. Theory of focused radiators. J. Acoust. Soc. Am. 1949, 21, 516–526. [CrossRef]
24. Lucas, B.G.; Muir, T.G. The field of a focusing source. J. Acoust. Soc. Am. 1982, 72, 1289. [CrossRef]
25. Andrews, C.L. Diffraction pattern of a circular aperture at short distances. Phys. Rev. 1947, 71, 777–786. [CrossRef]

http://doi.org/10.1364/JOSA.51.001050
http://dx.doi.org/10.1364/JOSAA.25.001835
http://www.ncbi.nlm.nih.gov/pubmed/18594642
http://dx.doi.org/10.1051/0004-6361/201937208
http://dx.doi.org/10.1016/0030-4018(93)90168-5
http://dx.doi.org/10.3103/S1060992X14020027
http://dx.doi.org/10.1038/s41467-020-15972-9
http://dx.doi.org/10.1007/s00340-022-07755-5
http://dx.doi.org/10.1103/PhysRevLett.127.014303
http://dx.doi.org/10.1016/S0031-8914(43)80016-1
http://dx.doi.org/10.1080/14786449108620080
http://dx.doi.org/10.1080/14786449708620990
http://dx.doi.org/10.1002/andp.19093351406
http://dx.doi.org/10.1121/1.1916318
http://dx.doi.org/10.1121/1.1906541
http://dx.doi.org/10.1121/1.1906542
http://dx.doi.org/10.1121/1.388340
http://dx.doi.org/10.1103/PhysRev.71.777


Photonics 2024, 11, 346 36 of 37

26. Bouwkamp, C.J. On the freely vibrating circular disk and the diffraction by circular disks and apertures. Physica 1950, 16, 1–16.
[CrossRef]

27. Bouwkamp, C.J. On the diffraction of electromagnetic waves by small circular disks and holes. Philips Res. Rep. 1950, 5, 401–422.
28. Bouwkamp, C.J. Theoretical and numerical treatment of diffraction through a circular aperture. IEEE Trans. Antennas Propag.

1970, AP-18, 152–176. [CrossRef]
29. Bouwkamp, C.J. Diffraction theory. Rep. Prog. Phys. 1954, 17, 35–100. [CrossRef]
30. Linfoot, E.H.; Wolf, E. Diffraction images in systems with an annular aperture. Proc. Phys. Soc. B 1953, 66, 145–149. [CrossRef]
31. Farnell, G.W. Calculated intensity and phase distribution in the image space of a microwave lens. Can. J. Phys. 1957, 35, 777–783.

[CrossRef]
32. Farnell, G.W. Measured phase distribution in the image space of a microwave lens. Can. J. Phys. 1958, 36, 935–943. [CrossRef]
33. Richards, B.; Wolf, E. Electromagnetic diffraction in optical systems. II Structure of the image field in an aplanatic system. Proc. R.

Soc. Lond. A 1959, 253, 358–379.
34. McCutchen, C.W. Generalized aperture and the three-dimensional diffraction image. J. Opt. Soc. Am. 1964, 54, 240–244. [CrossRef]
35. Kogelnik, H.; Li, T. Laser beams and resonators. Appl. Opt. 1966, 5, 1550–1567. [CrossRef] [PubMed]
36. Sherman, G.C. Application of the convolution theorem to Rayleigh’s integral formulas. J. Opt. Soc. Am. 1967, 57, 546–547.

[CrossRef] [PubMed]
37. Dainty, J.C. The image of a point for an aberration free lens with a circular pupil. Opt. Commun. 1969, 1, 176–178. [CrossRef]
38. Zemanek, J. Beam behavior within the near-field of a vibrating piston. J. Acoust. Soc. Am. 1971, 49, 181–191. [CrossRef]
39. Heurtley, J.C. Scalar Rayleigh-Sommerfeld and Kirchhoff diffraction integrals: A comparison of exact evaluations for axial points.

J. Opt. Soc. Am. 1973, 73, 1003–1008. [CrossRef]
40. Welford, W.T. Aplanatic hologram lenses on spherical surfaces. Opt. Commun. 1973, 9, 268–269. [CrossRef]
41. Papoulis, A. Ambiguity function in Fourier optics. J. Opt. Soc. Am. 1974, 64, 779–788. [CrossRef]
42. Carter, W. Band-limited angular spectrum approximating to a spherical wave field. J. Opt. Soc. Am. 1975, 65, 1054–1058.

[CrossRef]
43. Arimoto, A. Intensity distribution of aberration-free diffraction patterns due to circular apertures in large f-number optical

systems. Opt. Acta 1976, 23, 245–250. [CrossRef]
44. Harvey, J.E. Fourier treatment of near-field scalar diffraction theory. Am. J. Phys. 1979, 47, 974–980. [CrossRef]
45. Southwell, W.H. Validity of the Fresnel approximation in the near field. J. Opt. Soc. Am. 1981, 71, 7–14. [CrossRef]
46. Erkkila, J.H.; Rogers, M.E. Diffracted fields in the focal region of a convergent wave. J. Opt. Soc. Am. 1981, 71, 904–905. [CrossRef]
47. Li, Y.; Wolf, E. Focal shifts in diffracted converging spherical waves. Opt. Commun. 1981, 39, 211–215. [CrossRef]
48. Stamnes, J.J.; Spjelkavik, S. Focusing at small angular apertures in the Debye and Kirchhoff approximations. Opt. Commun. 1981,

40, 81–85. [CrossRef]
49. Sheppard, C.J.R.; Wilson, T. Effects of high angles of convergence on V(z) in the scanning acoustic microscope. Appl. Phys. Lett.

1981, 38, 858–859. [CrossRef]
50. Li, Y.; Wolf, E. Three-dimensional intensity distribution near the focus in systems of different Fresnel numbers. J. Opt. Soc. Am. A

1984, 1, 801–808. [CrossRef]
51. Born, M.; Wolf, E. Principles of Optics, 7th (expanded) ed.; Pergamon: Oxford, UK, 1999.
52. Wilson, T.; Sheppard, C.J.R. Imaging with finite values of Fresnel number. J. Opt. Soc. Am. 1982, 72, 15–18. [CrossRef]
53. Li, Y. Dependence of the focal shift on Fresnel number and f number. J. Opt. Soc. Am. 1982, 72, 770–774. [CrossRef]
54. Li, Y.; Platzer, H. An experimental investigation of diffraction patterns in low-Fresnel-number focusing systems. Opt. Acta 1983,

31, 1621–1643. [CrossRef]
55. Sheppard, C.J.R. Imaging in optical systems of finite Fresnel number. J. Opt. Soc. Am. 1986, A3, 1428–1432. [CrossRef]
56. Li, Y. Three-dimensional intensity distribution in low Fresnel number focusing systems. J. Opt. Soc. Am. A 1987, 4, 1349–1353.

[CrossRef]
57. Sheppard, C.J.R.; Matthews, H.J. Imaging in high aperture optical systems. J. Opt. Soc. Am. A 1987, 4, 1354–1360. [CrossRef]
58. English, R., Jr.; George, N. Diffraction from a circular aperture: On axis field strength. Appl. Opt. 1987, 26, 2760–2763. [CrossRef]

[PubMed]
59. Steane, A.M.; Rutt, H.N. Diffraction calcuations in the near field and the validity of the Fresnel approximation. J. Opt. Soc. Am. A

1989, 6, 1809–1814. [CrossRef]
60. Bertilone, D.C. The contributions of homogeneous and evanescent plane waves to the scalar optical field: Exact diffraction

formulae. J. Mod. Opt. 1991, 38, 865–875. [CrossRef]
61. Bertilone, D.C. Wave theory for a converging spherical incident wave in an infinite-aperture system. J. Mod. Opt. 1991, 38,

1531–1536. [CrossRef]
62. Kraus, H.G. Huygens-Fresnel-Kirchhoff wave-front diffraction formulation: Spherical waves. J. Opt. Soc. Am. A 1989, 6,

1196–1205. [CrossRef]
63. Kraus, H.G. Huygens-Fresnel-Kirchhoffwave-front diffraction formulations for spherical waves and Gaussian laser beams:

Discussion and errata. J. Opt. Soc. Am. A 1992, 9, 1132–1134. [CrossRef]
64. Sheppard, C.J.R.; Hrynevych, M. Diffraction by a circular aperture: A generalization of Fresnel diffraction theory. J. Opt. Soc.

Am. A 1992, A9, 274–281. [CrossRef]

http://dx.doi.org/10.1016/0031-8914(50)90112-1
http://dx.doi.org/10.1109/TAP.1970.1139646
http://dx.doi.org/10.1088/0034-4885/17/1/302
http://dx.doi.org/10.1088/0370-1301/66/2/312
http://dx.doi.org/10.1139/p57-084
http://dx.doi.org/10.1139/p58-100
http://dx.doi.org/10.1364/JOSA.54.000240
http://dx.doi.org/10.1364/AO.5.001550
http://www.ncbi.nlm.nih.gov/pubmed/20057590
http://dx.doi.org/10.1364/JOSA.57.000546
http://www.ncbi.nlm.nih.gov/pubmed/6027838
http://dx.doi.org/10.1016/0030-4018(69)90059-5
http://dx.doi.org/10.1121/1.1912316
http://dx.doi.org/10.1364/JOSA.63.001003
http://dx.doi.org/10.1016/0030-4018(73)90302-7
http://dx.doi.org/10.1364/JOSA.64.000779
http://dx.doi.org/10.1364/JOSA.65.001054
http://dx.doi.org/10.1080/713819241
http://dx.doi.org/10.1119/1.11600
http://dx.doi.org/10.1364/JOSA.71.000007
http://dx.doi.org/10.1364/JOSA.71.000904
http://dx.doi.org/10.1016/0030-4018(81)90108-5
http://dx.doi.org/10.1016/0030-4018(81)90332-1
http://dx.doi.org/10.1063/1.92198
http://dx.doi.org/10.1364/JOSAA.1.000801
http://dx.doi.org/10.1364/JOSA.72.001639
http://dx.doi.org/10.1364/JOSA.72.000770
http://dx.doi.org/10.1080/713821090
http://dx.doi.org/10.1364/JOSAA.3.001428
http://dx.doi.org/10.1364/JOSAA.4.001349
http://dx.doi.org/10.1364/JOSAA.4.001354
http://dx.doi.org/10.1364/AO.26.002360
http://www.ncbi.nlm.nih.gov/pubmed/20489876
http://dx.doi.org/10.1364/JOSAA.6.001809
http://dx.doi.org/10.1080/09500349114550851
http://dx.doi.org/10.1080/09500349114551701
http://dx.doi.org/10.1364/JOSAA.6.001196
http://dx.doi.org/10.1364/JOSAA.9.001132
http://dx.doi.org/10.1364/JOSAA.9.000274


Photonics 2024, 11, 346 37 of 37

65. Hrynevych, M. Diffraction Effects in Michelson Stellar Interferometry. Ph.D. Thesis, University of Sydney, Sydney, NSW,
Australia, 1992.

66. Andrés, P.; Martinez-Corral, M.; Ojeda-Castañeda, J. Off-axis focal shift for rotationally nonsymmetric screens. Opt. Lett. 1993,
18, 1290–1293. [CrossRef]

67. Hsu, W.; Barakat, R. Stratton-Chu vectorial diffraction of electromagnetic fields by apertures with application to small-Fresnel-
number systems. J. Opt. Soc. Am. 1994, A11, 623–629. [CrossRef]

68. Wang, W.; Friberg, A.T.; Wolf, E. Structure of focused fields in systems with large Fresnel numbers. J. Opt. Soc. Am. A 1995,
12, 1947–1953. [CrossRef]

69. Wang, W.; Wolf, E. Far-zone behavior of focused fields in systems with different Fresnel numbers. Opt. Commun. 1995, 119,
453–459. [CrossRef]

70. Forbes, G.W. Validity of the Fresnel approximation in the diffraction of collimated beams. J. Opt. Soc. Am. A 1996, 13, 1816–1826.
[CrossRef]

71. Sheppard, C.J.R.; Török, P. Dependence of focal shift on Fresnel number and angular aperture. Opt. Lett. 1998, 23, 1803–1804.
[CrossRef]

72. Sheppard, C.J.R.; Török, P. Effects of Fresnel number in focusing and imaging. Proc. SPIE 1999, 3729, 458–472.
73. Sheppard, C.J.R. Validity of the Debye approximation. Opt. Lett. 2000, 25, 1660–1662. [CrossRef] [PubMed]
74. Sheppard, C.J.R.; Török, P. Focal shift and the axial optical coordinate for high-aperture systems of finite Fresnel number. J. Opt.

Soc. Am. A 2003, 20, 2156–2162. [CrossRef]
75. Teng, S.; Liu, L.; Liu, D. Analytic expression of the diffraction of a circular aperture. Optik 2005, 116, 568–572. [CrossRef]
76. Lin, J.; Yuan, X.C.; Kou, S.S.; Sheppard, C.J.R.; Rodríguez-Herrera, O.G.; Dainty, J.C. Direct calculation of a three-dimensional

diffraction field. Opt. Lett. 2011, 36, 1341–1343. [CrossRef]
77. Kou, S.S.; Sheppard, C.J.R.; Lin, J. Evaluation of the Rayleigh-Sommerfeld diffraction formula with 3D convolution: The 3D

angular spectrum (3D-AS) method. Opt. Lett. 2013, 38, 5296–5299. [CrossRef] [PubMed]
78. Glückstad, J.; Madsen, A.E.G. New analytical diffraction expressions for the Fresnel–Fraunhofer transition regime. Optik 2023,

285, 170950. [CrossRef]
79. Li, Y. Three-dimensional intensity distribution in the far zone of focused fields in systems with different Fresnel numbers. J. Opt.

Soc. Am. A 2023, 40, 2197–2204. [CrossRef]
80. Murty, M.V.R.K. On the theoretical limit of resolution. J. Opt. Soc. Am. 1957, 47, 667–668. [CrossRef]
81. Zverev, V.A. Illumination distribution in the diffraction image of an off-axis point. Sov. J. Opt. Technol. 1986, 53, 451–454.
82. Gibson, S.F.; Lanni, F. Diffraction by a circular aperture as a model for three-dimensional optical microscopy. J. Opt. Soc. Am. A

1989, 6, 1357–1367. [CrossRef] [PubMed]
83. Sheppard, C.J.R.; Roberts, P.P.; Gu, M. Fresnel approximation for off-axis illumination of a circular aperture. J. Opt. Soc. Am. 1993,

A10, 984–986. [CrossRef]
84. Sheppard, C.J.R.; Hegedus, Z. Resolution for off-axis illumination. J. Opt. Soc. Am. A 1998, 15, 622–624. [CrossRef]
85. Sheppard, C.J.R.; Cooper, I.J. Fresnel diffraction by a circular aperture with off-axis illumination and its use in deconvolution of

microscope images. J. Opt. Soc. Am. A 2004, 21, 540–545. [CrossRef]
86. Sheppard, C.J.R.; Kou, S.S.; Lin, J. The Hankel transform in n-dimensions and its applications in optical propagation and

imaging. In Advances in Imaging and Electron Physics; Hawkes, P.W., Ed.; Academic Press: Burlington, NJ, USA, 2015; Volume 188,
pp. 135–184.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1364/OL.18.001290
http://dx.doi.org/10.1364/JOSAA.11.000623
http://dx.doi.org/10.1364/JOSAA.12.001947
http://dx.doi.org/10.1016/0030-4018(95)00255-7
http://dx.doi.org/10.1364/JOSAA.13.001816
http://dx.doi.org/10.1364/OL.23.001803
http://dx.doi.org/10.1364/OL.25.001660
http://www.ncbi.nlm.nih.gov/pubmed/18066307
http://dx.doi.org/10.1364/JOSAA.20.002156
http://dx.doi.org/10.1016/j.ijleo.2005.04.004
http://dx.doi.org/10.1364/OL.36.001341
http://dx.doi.org/10.1364/OL.38.005296
http://www.ncbi.nlm.nih.gov/pubmed/24322241
http://dx.doi.org/10.1016/j.ijleo.2023.170950
http://dx.doi.org/10.1364/JOSAA.504529
http://dx.doi.org/10.1364/JOSA.47.000667
http://dx.doi.org/10.1364/JOSAA.6.001357
http://www.ncbi.nlm.nih.gov/pubmed/2795290
http://dx.doi.org/10.1364/JOSAA.10.000984
http://dx.doi.org/10.1364/JOSAA.15.000622
http://dx.doi.org/10.1364/JOSAA.21.000540

	Introduction
	Historical Background
	The Fresnel Approximation
	The Two Traditional Forms for the Fresnel Approximation (FrA1 and FrA2)
	The Generalized Fresnel Approximation (gFrA)

	The Focused Case
	Focal Length and Fresnel Number
	Behaviour along the Optical Axis
	Focal Shift
	Off-Axis Behaviour
	The Debye–Wolf (DW) Integral
	The Scaled Debye–Wolf (sDW) Case
	The Pseudo-Paraxial Approximation
	The Kirchhoff Diffraction Integral Performed over the Plane of the Aperture (Kp)

	Discussion
	References

