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Abstract: In indoor visible light communication (VLC), the received signals are subject to severe
interference due to factors such as high-brightness backgrounds, long-distance transmissions, and
indoor obstructions. This results in an increase in misclassification for modulation format recognition.
We propose a novel model called VLCMnet. Within this model, a temporal convolutional network
and a long short-term memory (TCN-LSTM) module are utilized for direct channel equalization,
effectively enhancing the quality of the constellation diagrams for modulated signals. A multi-mixed
attention network (MMAnet) module integrates single- and mixed-attention mechanisms within a
convolutional neural network (CNN) framework specifically for constellation image classification.
This allows the model to capture fine-grained spatial structure features and channel features within
constellation diagrams, particularly those associated with high-order modulation signals. Experi-
mental results obtained demonstrate that, compared to a CNN model without attention mechanisms,
the proposed model increases the recognition accuracy by 19.2%. Under severe channel distortion
conditions, our proposed model exhibits robustness and maintains a high level of accuracy.

Keywords: modulation format recognition; convolutional neural network; visible light communication;
attention mechanism; channel equalization

1. Introduction

Direct current biased optical orthogonal frequency division multiplexing (DCO-OFDM)
is a mature modulation technique widely adopted in indoor visible light communication
(VLC) systems. To ensure optimal transmission performance and reliability, adaptive mod-
ulation should be carried out according to different channel conditions; hence, the receiver
must autonomously detect and identify the modulation format of the received signals.
However, challenges, such as high-brightness environments, long-distance transmission,
and indoor obstructions, significantly reduce the signal-to-noise ratio (SNR), which, in turn,
affects modulation format recognition (MFR) performance. Therefore, automatic modulation
recognition methods under low SNR conditions have gained increasing attention.

Modulation format recognition techniques are generally classified into two categories:
likelihood-based methods and feature-based methods [1]. Likelihood-based approaches,
although typically characterized by higher accuracy, often require substantial amounts of
prior information and higher computational complexity. Feature-based methods rely on
extracting key features from the signals, such as higher-order accumulations [2], sequence
features [3], and image features [4]. These methods generally exhibit higher computational
efficiency, and their recognition results tend to be more interpretable and analyzable.
However, improper feature selection can lead to decreased recognition performance.

Initially, the modulation format recognition technique rapidly developed in the field
of radio communications [5–7]. In recent years, numerous machine learning algorithms
have also made strides in the field of MFR in optical communications [8–13]. While
inputting time-series signals can capture the complete dynamic characteristics of signals
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over time, severe noise interference may cause modulation features to become blurred, thus
increasing the difficulty of recognition. Constellation diagrams, by mapping signals onto
discrete points, present unique patterns for different modulation formats; hence, utilizing
constellation diagrams for modulation format recognition can mitigate the impact of noise.

Zhen. Z et al. employed an improved AlexNet [14] to classify constellation diagrams of
the same six modulation formats, achieving a recognition accuracy of 77.45% across the SNR
range of 0 dB to 15 dB. The incorporation of data augmentation (DA) operations was able
to further improve the recognition accuracy to 88%, showcasing the potential of advanced
image processing techniques in optical communication. Ma et al. [15] investigated a blind
modulation format recognition method based on constellation diagrams derived from
channel estimation in an OFDM system. They employed a combination of a peak density
clustering algorithm and K-nearest neighbor (KNN) regression. At an OSNR of 30 dB and
above, high-order modulation signals achieved a recognition accuracy of 80%. However,
studies regarding low OSNR environments were not conducted.

Some research efforts are focusing on the preprocessing of constellation diagram
features. W. Liu [16] proposed a novel modulation classification scheme for optical com-
munications. Within an SNR range of 0 dB to 15 dB, the original constellation diagrams
are preprocessed into density constellation maps, which are used for classifying six dif-
ferent modulation formats. Due to the reduced Euclidean distance in normalized density
constellation diagrams, the accuracy rate at an SNR of 0 dB is merely 54%. In addition,
a fan-beam projection algorithm to handle constellation diagrams was presented in [17].
Wei et al. [18] utilized probabilistic constellation shaping to modify the distribution of
signal constellation points, aiming to enhance the quality of constellation diagrams and
enhance recognition accuracy.

The complexity and nonlinearity of VLC channels result in the received signal’s
constellation diagram deviating from a standard lattice structure with each constellation
point appearing stretched inward toward the center [19]. Pre-distortion [20–23] is a valid
equalization scheme for compensating the memory nonlinearity. Nevertheless, some
additional physical circuits must be devised to assist the pre-distortion at the transmitter.
Unlike the fomer method, nonlinear post-equalization (NPE) is a superior and cost-effective
technique as it can address the comprehensive nonlinearity of the LED and optical channel
cascade. H. Chen et al. [24] introduced a collaborative time-frequency deep neural network
(TFDNet) to mitigate nonlinear distortions in VLC systems. Miao et al. [25] also presented
a model-driven deep learning (DL) equalization scheme aimed at resolving severe channel
impairment issues. In [26], a CRNN-based equalizer employing a combined method of
CNN and LSTM was proposed, which achieved an accuracy rate of 90% for identifying
quadrature phase shift keying (QPSK) signals when the SNR exceeded 10 dB. However, the
symbol error rate rose above 30% when the SNR fell below 0 dB. To simplify the model,
Costa et al. [27] proposed a channel equalization scheme based on a one-dimensional CNN,
which eliminated the need for channel estimation interpolation operations. But the bit error
rate (BER) increased to 1% at 4 dB. A novel equalizer based on a gated recurrent unit (GRU)
neural network was introduced for the first time to mitigate both linear and nonlinear
distortions in carrier-less amplitude phase (CAP) band-limited VLC systems [28]. A hybrid
temporal CNN with frequency domain assistance was employed to enhance the nonlinear
compensation efficiency of the CAP underwater VLC system [29]. Nonetheless, the training
datasets utilized in these research works consisted of real-numbered signals that were
not down-sampled, thus lacking direct relevance to the efficiency of complex-valued VLC
systems, leading to limited generalization capacity. Moreover, the up-sampling factor
further adds to the computational complexity.

In summary, we choose constellation diagrams as the primary feature for addressing
the MFR problem in indoor visible light communication, and employ channel equalization
to restore the constellation diagrams. This paper introduces a novel model, termed the
visible light communication modulation recognition network (VLCMnet), which consists
of TCN-LSTM and MMAnet modules. It leads to increased robustness of the modulation
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format recognition model, enabling accurate signal identification even under harsh channel
conditions. The major contributions of this paper are as follows:

(1) A novel channel equalization model is proposed, named TCN-LSTM. Firstly, a tem-
poral convolutional network (TCN) [30] is used to extract deep local features from
the signal, followed by a two-layer LSTM network that screens critical information
and suppresses noise. The model significantly improves the quality of constellation
diagrams at low SNR.

(2) At the recognition stage, a constellation diagram classifier based on a multi-mixed
attention network (MMAnet) is proposed. It integrates shallow feature extraction,
single attention, and hybrid attention mechanisms, possesses multi-scale feature
fusion capabilities, and effectively captures crucial spatial structure and channel
features within constellation diagrams, thereby significantly boosting the model’s
recognition performance.

The rest of this paper is organized as follows: Section 2 introduces the indoor visible
light communication system based on DCO-OFDM. Section 3 provides a detailed descrip-
tion of the principles behind the TCN-LSTM and MMAnet models. Section 4 discusses the
performance advantages and disadvantages of our proposed MFR model from multiple
perspectives. Finally, we conclude the full article in Section 5.

2. DCO-OFDM System

The DCO-OFDM system comprises a transmitter, intensity modulation, a direct detec-
tion (IM/DD) channel, and a receiver. A common modulation scheme is M-ary quadrature
amplitude modulation (M-QAM), as shown in Figure 1. The VLCMnet model proposed
in this paper serves as an intelligent channel equalization and modulation format identifi-
cation module within the receiver. The modulation formats studied in this paper include
M-QAM (where M = 4, 8, 16, 32, 64).

Figure 1. VLCMnet-based modulation format recognition framework for DCO-OFDM. (a) Transmitter
side of the visible system. (b) IM/DD channel. (c) MFR based on VLCMnet. (d) Receiver.

At the transmitter end, firstly, M-QAM and constellation mapping are adopted to
generate OFDM symbols. The information bits are mapped into real-valued symbols and
the inserted cyclic prefix. Then, the bipolar baseband signal x(n) is transformed into a
unipolar signal by adding a direct current (DC) bias. Finally, the light-emitting diodes
(LEDs) are used to generate modulated unipolar light signals. The IM/DD channel consists
of a modulator at the transmitting end, a transmission medium, and a photodetector at the
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receiving end. During transmission along the optical link, the signal is subject to additive
white Gaussian noise (AWGN) interference. Taking all these factors into account, the output
y(n) of the channel can be expressed as:

y(n) = RPD × f {(x(n) + IDC) ∗ h1(n)} ∗ h2(n) + ε(n), (1)

where h1(n) represents the memory effect nonlinearity compensation of the LED, and
h2(n) denotes the channel impulse response (CIR) function of the optical propagation link.
RPD stands for the photoelectric conversion coefficient of the photodiode (PD), and IDC

signifies the DC component. ε(n) represents the Gaussian distribution channel noise. The
∗ indicates convolution. A range of diverse input current values were chosen to measure
the real output brightness of the LEDs corresponding to each input current value. The
errors between the measured data and the curves were reduced to a minimum using the
least squares method. This enabled the identification of the polynomial function that most
accurately matched the data points. The coefficients of the third-order polynomial were
established as 0.2855–1.0886, 2.0565, and −0.0003. The function f (·) adopted to describe
the memoryless nonlinear response of the LED can be calculated by:

f (x) = 0.2855x3 − 1.0886x2 + 2.0565x − 0.0003. (2)

As the modulation frequency increases, the modulation efficiency of the LED gradually
decreases, exhibiting a low-pass filter effect. The pulse response h1(n) can be represented as:

h1(n) = exp(−2πn f0), (3)

where f0 denotes the 3 dB cut-off frequency. Considering that light travels through multiple
reflections and scatterings before reaching the receiver, a multi-path propagation model
for VLC channels is established using ray tracing methods. The channel impulse response
h2(n) is related to the path length and number of reflections for each individual ray and
can be calculated as follows:

h2(n) =
Nr

∑
i=1

piδ(n − τi), (4)

where Nr represents the number of rays received by the detector, pi denotes the optical
power of the ith ray, and τi signifies the delay of the ith ray. The impulse response of a
photodetector can be approximately modeled as the product of a Dirac delta function and
the photoelectric conversion coefficient RPD , given by the following formula:

hPD(n) = RPDδ(n). (5)

The output signal y(n) is affected by the memoryless nonlinearity of the light-emitting
diodes and multipath effects in the optical transmission link, causing the constellation
points to deviate from their intended grid locations, resulting in degraded constellation
diagram quality. Therefore, channel equalization techniques are needed to improve the
distribution of points on the constellation diagram, bringing it closer to the ideal state.

In this paper, the VLCMnet model first employs an integrated neural network model
to accomplish the task of channel equalization, following which it utilizes constellation
diagrams along with the neural network model for modulation format recognition. The
system unmaps the signal based on the category information outputted by the model to
recover the original information bits.

3. Proposed Method

This section outlines the architecture and components of VLCMnet, a novel approach
for modulation format recognition in VLC systems. We detail the overarching structure
of VLCMnet, followed by specific discussions on the roles and functionalities of the TCN-
LSTM and MMAnet modules within our system.
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3.1. Overall Architecture of VLCMnet

As illustrated in Figure 1c, VLCMnet’s architecture integrates three primary compo-
nents: a TCN-LSTM module signal equalization module, a signal preprocessing module,
and a MMAnet module. Firstly, the TCN-LSTM module reconstructs y(n) into x′(n). Sub-
sequently, preprocessing operations, such as removing the CP and generating constellation
diagrams, are performed. Finally, through the extraction of constellation diagram features
by MMAnet, the modulation format is recognized.

3.2. TCN-LSTM for Channel Equalization

In the channel, noise and multipath fading cause diffusion and displacement of points
on the constellation diagram. To mitigate these adverse effects, we propose the TCN-
LSTM model to achieve channel equalization, as shown in Figure 2. This is because LSTM,
although powerful, is not particularly adept at capturing local features in both space and
time for transient distortions in communication channels. The TCN network complements
LSTM’s limitations in this regard.

Figure 2. The hierarchical structures of TCN-LSTM.

The model training process is as follows: Using a sliding window to segment the input
signal, the sequence y(n) is fed into five residual modules in TCN to be computed. Each
module consists of one-dimensional dilated convolutions, causal convolutions, weighted
normalization, and one-dimensional convolutional residual connections. By expanding the
receptive field and alleviating gradient vanishing, noise-induced point spread and constel-
lation map distortion can be recognized and mitigated. The output from the TCN network
further undergoes processing by two layers of LSTMs. The first LSTM layer captures
short-term and local dependencies within the signal sequence, removing easily discernible
high-frequency noise or periodic disturbances. The second LSTM layer more effectively
captures long-range temporal dependencies, demonstrating increased robustness when
dealing with non-stationary noise and abrupt signal changes. The model employs the mean
squared error (MMSE) as its loss function. Through training, the fully connected layer
outputs predict results x′(n), aiming to restore the original transmitted data sequence x(n)
as closely as possible.

3.3. MMAnet for Modulation Format Recognition

Traditional convolutional neural networks, relying solely on local convolution oper-
ations, are unable to fully capture the global spatial layout and structural relationships
in constellation diagrams. A single attention mechanism can only focus on one aspect of
the features, whereas multiple attention mechanisms can extract features from multiple
perspectives, constructing a more complex nonlinear model that enhances the model’s
expressive capability. We propose the MMAnet model, aimed at enhancing the accuracy
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of MFR in severely distorted channel environments. It comprises three main modules: a
shallow feature extraction (SFE) module, a multi-channel mixed attention (MCMA) module,
and a feature fusion classification (FFC) module, as shown in Figure 3.

Figure 3. The overall network framework of our proposed MMAnet.

The input data consist of constellation diagrams after preprocessing steps such as
channel equalization and CP removal. The training samples are denoted as XC , which
are composed of vectors [x, y], where x represents a grayscale matrix of the constella-
tion diagram with dimensions 64 × 64, and y indicates the corresponding modulation
format type.

The SFE module is composed of three convolutional layers. Through this module,
the raw constellation diagrams undergo a progressive extraction and transformation of
features from lower to higher levels, culminating in the output vector XS .

The MCMA submodule is the key component of the MMAnet module. It consists of
two single attention (SA) submodules and one mixed attention (MA) submodule, as shown
in Figure 4. After the input image XS undergoes processing through the SA modules, crucial
features XSA2 are extracted from critical regions on the constellation diagram. Subsequently,
the MA submodule focuses channel attention and spatial attention onto feature responses
across different channels, as well as the positions and adjacency relationships among
the constellation points. Ultimately, this enables the classification model to enhance its
understanding of the modulation signal characteristics, outputting effective features XM .

Figure 4. The architecture of the proposed MCMA module.

The SA module employs a single attention mechanism to process constellation dia-
grams. It consists of a convolutional block attention module (CBAM) and two convolutional
layers. To enhance the model’s ability to learn complex and subtle features in constellation
charts, here, we use two consecutive single-attention modules in series with the aim to
realize multi-level feature extraction and dynamically adjust the focus on different features.
Input feature XS first passes through the channel attention module (CAM) in CBAM, using
average pooling and max pooling techniques to compress the spatial dimensions of the
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input features. Subsequently, the compressed feature vectors are processed through two
fully connected layers. Finally, the generated channel attention coefficients vector Mc(XS)
is element-wise multiplied with the original input feature map XS to produce a weighted
feature map X′

S. The computation formula is as follows:

Mc(XS) = σ[MLP(AvgPool(XS))] + MLP[MaxPool(XS)]
=σ(W1(W0(XS

c
avg))) + W1(W0(XS

c
max)),

(6)

X′
S = Mc(XS)⊗ XS, (7)

where W0 and W1 are the weight parameters of the two fully connected layers, respectively.
After filtering out redundant information, the spatial attention module (SAM) focuses

on the spatial layout of feature maps pertaining to different modulation formats. Firstly,
by performing global average pooling and global maximum pooling on the input feature
maps, spatial feature statistics information at different scales is obtained. Finally, two fully
connected layers are employed to generate the attention weight map. The formula for the
output X

′′
S is:

Ms(X′
S) = σ( f 7×7([AvgPool(X′

S); MaxPool(X′
S)])) (8)

X′′
S = Ms(X′

S)⊗ X′
S. (9)

After obtaining the attention weight maps, further processing is carried out through
two subsequent convolutional layers to maintain the depth of the entire network and refine
and transform the features guided by attention. The output vector from the first-stage SA
module is denoted as XSA1 . This process is then repeated, culminating in the final output
referred to as XSA2 .

The feature maps are fed into the MA module, which is capable of integrating feature
information across different scales, thereby enabling the model to adapt to variations in
constellation diagrams under varying channel conditions. The MA module consists of a
CBAM as well as a squeeze-and-excitation networks (SE) submodule. The input vector XSA2

undergoes processing by the CBAM to generate an attention weight map XM1 . Following
this, the output vector XM2 is produced through two convolutional layers. The SE module
enhances the dynamic selection and amplification of features within the constellation
diagram of the input modulated signal. Initially, after the convolutional operations, an
output vector U is obtained, consisting of C feature maps, each with dimensions H × W.
Each uc represents the cth two-dimensional matrix within U. Subsequently, the squeeze
operation, achieved through global average pooling, maps the output dimension from
H × W × C to a 1 × 1 × C matrix, which is the statistical vector of global information for
each channel. Finally, the excitation operation carried out by the two fully connected layers
performs nonlinear transformations to model and reweight the importance of each channel.
The formula for calculating each channel attention weight vector s is:

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)), (10)

where Fex represents the dynamic weighting function for channel features. z denotes
the input feature map, W1 signifies the weight matrix of the reduction layer, and W2
represents the weight matrix of the expansion layer. δ denotes the rectified linear unit
(ReLU) activation function, and σ represents the sigmoid activation function. Fscale denotes
a scale adjustment operation function. sc refers to the cth element of the attention weight
vector, while uc represents the feature of the cth channel in the input feature map. The final
output XM is derived as:

XM = Fscale(uc, sc) = scuc. (11)

The FFC module consists of a flattening layer and a dense layer. The constellation
map features XM extracted by the preceding module undergo nonlinear transformations
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within the FFC, followed by the computation of matching probabilities through the Softmax
activation function to generate the output ŷ. The computation formula is as follows:

ŷi = so f t max(o) = exp(oi)
∑k exp(ok)

. (12)

The output of training samples is represented using one-hot encoding, denoted as
y = [y1, y2, ..., y5]

T . The highest predicted value in ŷi is taken as the output category yP ,
which represents the category of the modulation format.

4. Results and Discussion
4.1. Experiment Details

The VLC experimental setup encompasses an array of equipment, including a source
computer, an arbitrary function generator, an amplifier, a bias-T, an LED, a photodiode,
and a mixed-domain oscilloscope. The parameters for these components are meticulously
outlined in Table 1.

Table 1. Devices and parameters of the VLC system prototype.

Device/Parameter Value

Arbitrary function generator Tektronix AFG3152C
Amplifier Mini-Circuits ZHL-6A-S+

Bias-T SHWBT-006000-SFFF
PD PDA10A-EC

Responsivity of PD 0.44 A/W at 750 nm
Mixed-domain oscilloscope Tektronix MDO

Power of LED 7.35 W

The entire model training involves TCN-LSTM for channel equalization on received
signals, as well as MMAnet for classifying the generated constellation diagrams. Table 2
lists the configurations of the training parameters. It also presents the training parameters
of the original 9-layer CNN before the algorithmic improvements.

Table 2. Network training parameters.

Parameters TCN-LSTM CNN MMAnet

Optimizer Adam Adam Adam
Learning rate 0.0001 0.00001 0.00001

Epochs 2000 200 200
Datatype Sequence Image Image

Loss fuction mse categorical_crossentropy categorical_crossentropy
Activation function tanh softmax softmax

Batch size 64 32 32

The training dataset consists of 21,000 constellation diagrams, while the testing dataset
includes 5250 constellation diagrams. The data were collected from received signals
under 21 different SNR conditions ranging from −10 dB to 30 dB with an interval of
2 dB. Both the original CNN and the MMAnet models have their input data undergo an
image preprocessing procedure before training, including cropping, grayscale conversion,
and normalization. First, the CV2 library is utilized to resize the images to a dimension
of 64 × 64. Following this, transformation is applied to obtain grayscale images of the
constellation diagrams. Lastly, each pixel value is divided by 255. The experiments were
executed using Python 3.9 and Keras 2.6.0 on an NVIDIA GeForce RTX 3060 GPU (NVIDIA,
Santa Clara, CA, USA).
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4.2. Evaluation Metrics

To quantitatively assess the performance of our model, we employed standard evalua-
tion metrics, including the loss value, accuracy, recall, F1-score, kappa coefficient, and mean
average precision (mAP). The kappa coefficient measures the consistency between model
predictions and true labels (values range from 0 to 1, with higher values indicating superior
consistency). The mAP represents class-wide average precision, which is calculated by a
weighted average, combining the recall and precision of each class. The formulas for these
metrics are as follows:

mAP = 1
n

n
∑
1
(AP)i, (13)

kappa = (p0 − pe)/(1 − pe) = (
n
∑

i=1
xii/N −

n
∑

i=1
xi+x+i/N2)/(1 −

n
∑

i=1
xi+x+i/N2), (14)

where xii denotes diagonal elements in the confusion matrix, xi+ , x
+i represent the sum

of the row and column elements for i, respectively, and N is the total element count. p0

denotes the agreement observed, while pe denotes the agreement expected by chance.

4.3. Channel Equalization Effects on Classification Performance

We trained a 9-layer CNN model as our baseline for evaluating VLC modulated
signal recognition capabilities. The detailed structural parameters of this benchmark
model are shown in Table 3. The classification performance of the benchmark model
was compared with classical image classification networks, including Googlenet, Vgg16,
Alexnet, and Resnet.

Table 3. Parameter settings of CNN.

Layer Filters Kernel Size Layer Filters Kernel Size

Conv2D-1 64 7 × 7 MaxPooling \ 2 × 2
MaxPooling \ 2 × 2 Conv2D-6 256 3 × 3
Conv2D-2 128 3 × 3 Conv2D-7 256 3 × 3
Conv2D-3 128 3 × 3 MaxPooling \ 2 × 2
Conv2D-4 64 3 × 3 Conv2D-8 64 5 × 5
Conv2D-5 64 3 × 3 Conv2D-9 64 5 × 5

The experiments were performed with five prevalent convolutional neural network
models for modulation recognition without channel equalization, respectively. Figure 5
presents a comparative analysis of their test accuracies. There is a uniform improvement in
recognition accuracy across all models as SNR increases. The CNN model performs best,
followed by Googlenet. When the SNR is higher than 26 dB, all models can achieve an
accuracy of 100%. The CNN model achieves a modulation recognition accuracy of 80%
when SNR is 14 dB, which represents an improvement of about 2 dB to 8 dB over the other
four models. But at SNRs below 10 dB, the recognition accuracies are below 60%. Due
to the possibility of noise masking the unique time-frequency characteristics inherent in
different modulation signals, the challenge of improving recognition accuracy persists.
Consequently, we deploy a TCN-LSTM model at the receiver end with the objective of
enhancing the quality of the constellation diagrams.

After adding the TCN-LSTM module, both the CNN and Googlenet models achieved
an average accuracy improvement of over 6%, as depicted in Figure 6. In the range from
0 dB to 10 dB, the CNN model exhibited significant performance enhancement. At an
SNR of 6 dB, the CNN model reached an accuracy close to 100%. The threshold of the
signal-to-noise ratio required for accurate signal recognition by the CNN model dropped
by 14 dB compared to Googlenet.

The changes in constellation diagrams before and after equalization can be observed
in Figure 7. The first row of this figure shows the constellation diagrams of the five
modulated signals without channel equalization. It visually illustrates that noise-induced
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point spreading diminishes the clarity between adjacent constellation points. After channel
equalization by TCN-LSTM, the amplitude and phase distortions introduced by the channel
are significantly mitigated. The constellation points are more clustered, the distribution
becomes more regular, and the edge clarity improves. Therefore, it becomes easier to
distinguish the modulated signals, especially the 8QAM signals.

Figure 5. The recognition accuracy of five models on test samples at various SNRs.

Figure 6. A comparison of modulation recognition accuracy before and after incorporating the
TCN-LSTM module into both the CNN and GoogleNet models.

(a) 4QAM (b) 8QAM (c) 16QAM (d) 32QAM (e) 64QAM

(f) 4QAM (g) 8QAM (h) 16QAM (i) 32QAM (j) 64QAM

Figure 7. Comparing the constellation diagram quality for modulated signals under two conditions.
(a–e) Without TCN-LSTM. (f–j) With TCN-LSTM.
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The following experiments illustrate the effect of our proposed channel equalization
model on the overall recogniton accuracy of the different modulated signals. Figure 8
presents a detailed comparison of the performance differences before and after combining
the TCN-LSTM model with the CNN model, leading to the following conclusions:

(1) After adding a TCN-LSTM module for channel equalization prior to modulation
recognition, the modulation recognition accuracy of 4QAM, 8QAM, 16QAM, 32QAM,
and 64QAM increased by 4.2%, 1.7%, 8.1%, 6.8%, and 6.1%, respectively. The TCN
model efficiently extracts both local and global temporal features, which contributes
to the attenuation of high-frequency noise. The LSTM, through its gating mechanism,
captures time-contextual information within the signal. Two models are cascaded to
achieve complementary advantages.

(2) There are differences in recognition accuracy among the various signal types. Lower-
order QAM modulation formats generally exhibit higher recognition accuracy. Higher-
order modulation signals tend to suffer from more misclassifications or missed detec-
tions compared to lower-order modulation. The main reason is that lower-order QAM
constellation diagrams have simpler distributions and larger point spacings. Due to
interference, such as burst noise and multipath fading, the constellation diagrams of
16QAM, 32QAM, and 64QAM become more alike due to blurring.

(3) There are two noteworthy recognition results. After channel equalization, there is
only a marginal improvement in the recognition accuracy for 8QAM. The recognition
rate for 32QAM remains higher than that of 16QAM and 64QAM. The underlying
reason is that the constellation pattern of 8QAM distinctly differs from those of other
signals. Even under poor channel conditions that cause blurriness in the constella-
tion diagrams, 8QAM is relatively easier to discern. For 16QAM and 64QAM, their
constellation diagrams are arranged in a square lattice pattern, making them quite
similar in shape. The 32QAM scheme is composed of two orthogonally superimposed
16QAM constellation diagrams. It possesses unique boundary shapes at the points of
maximum and minimum amplitudes and thereby has relatively higher distinctions.

Although the use of the TCN-LSTM model proposed in this paper to accomplish
channel equalization results in more time-consuming training of the entire modulation
recognition model, the prediction execution time of the TCN-LSTM + CNN model during
testing is only 0.35 s longer than that of the CNN model alone. In summary, while the
introduction of the TCN-LSTM model has indeed led to an increase in the overall average
accuracy of the CNN model from 0.795 to 0.838, its performance remains unsatisfactory
when dealing with the recognition of higher-order modulation formats. Therefore, deeper
mining of constellation diagram features for higher-order modulation formats is needed.

Figure 8. Prediction accuracy for different modulation formats across all SNRs.
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4.4. MFR Performance Analysis Based on VLCMnet

In this section, the modulation format recognition model employs the sub-module
MMAnet of our proposed VLCMnet model, which introduces a multi-attention mechanism
into the original 9-layer CNN model. Based on the experimental results, we initially
assessed the models using the loss function, followed by conducting a comparative analysis
of the recognition accuracy of different models, and ultimately analyzed the differences
in constellation diagram features extracted by the convolutional layers before and after
the attention mechanism is integrated. The specific network structure and corresponding
output dimensions are presented in Table 4.

Table 4. The structural parameters of MMAnet.

Layer Name Output Shape

SFE

Conv2d-1 (64, 64, 64)
MaxPooling2D (32, 32, 64)

Conv2D-2 (32, 32, 128)
Conv2D-3 (32, 32, 128)

SA1
cbam_block1 (32, 32, 128)

Conv2D-4 (32, 32, 64)
Conv2D-5 (32, 32, 64)

SA2
cbam_block2 (32, 32, 64)

Conv2D-6 (32, 32, 256)
Conv2D-7 (32, 32, 256)

MA

cbam_block3 (32, 32, 256)
Conv2D-8 (32, 32, 64)
Conv2D-9 (32, 32, 64)
Se_block (32, 32, 64)

FEC Flatten (65, 536)
Dense (5)

The following compares the convergence speed and fitting degree of the CNN and
MMAnet models. The curves showing the change in training and validation losses are
displayed in Figure 9. For both models, the validation losses do not notably exceed the
training losses, indicating no signs of overfitting. MMAnet reaches a loss value of 0.05 at the
50th generation and converges after the 100th generation, suggesting a faster convergence
rate compared to CNN. The validation loss curve for CNN exhibits slight oscillations, and
its validation loss is on average 0.1 higher than that of MMAnet, indicating that CNN is
less capable of learning from data with substantial noise compared to MMAnet.

Figure 9. Comparison of CNN and MMAnet loss function curves.
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Our proposed algorithm can enhance the recognition accuracy of modulation formats
in indoor visible light communication under severe channel distortion. Table 5 presents the
accuracy and mAP values of six models across a range of SNRs from 0 dB to 12 dB. The
experimental results demonstrate that, under extremely adverse channel conditions (SNRs
of 0 dB and 4 dB), the VLCMnet model achieves recognition rates exceeding those of other
models by more than 7%, and also shows an improvement of over 6% in mAP for various
categories of modulation formats. At an SNR of 12 dB, all six models are virtually capable
of correctly identifying all sample categories in the test set.

Table 5. Comparison of test accuracies for six models under different SNRs.

SNR (dB) 0 4 8 12 Average

ACC

TCN-LSTM + Alexnet 0.648 0.724 0.916 0.984 0.782
TCN-LSTM + Resnet 0.684 0.802 0.968 0.996 0.799
TCN-LSTM + Vgg16 0.728 0.824 0.985 1 0.814

TCN-LSTM + Googlenet 0.732 0.902 0.988 1 0.822
TCN-LSTM + CNN 0.788 0.922 1 1 0.838

VLCMnet 0.933 0.992 1 1 0.948

mAP

TCN-LSTM + Alexnet 0.674 0.743 0.934 0.994 0.791
TCN-LSTM + Resnet 0.712 0.825 0.984 1 0.812
TCN-LSTM + Vgg16 0.752 0.847 1 1 0.826

TCN-LSTM + Googlenet 0.754 0.914 1 1 0.833
TCN-LSTM + CNN 0.822 0.941 1 1 0.847

VLCMnet 0.936 1 1 1 0.955

The TCN-LSTM channel equalization algorithm plays a pivotal role here. Concurrently,
it is noted that MMAnet adopts a hybrid attention mechanism, dynamically allocating atten-
tion weights to the most critical channels and spatial locations, enabling the model to better
focus on key spatial regions that determine the position and distribution of constellation
points, thereby ignoring background noise or other non-critical spatial information. So this
model improves its fine-grained parsing capability of constellation diagrams, subsequently
boosting both recognition accuracy and stability.

The VLCMnet model demonstrates a more accurate ability to identify multi-level QAM
modulation formats even under severe channel distortion, indicating that the MMAnet
submodule enhances the feature representation of the constellation diagram. We perform
feature map visualization on the convolutional layers of both the TCN-LSTM + CNN model
and the VLCMnet model. The experimental analysis examines the capacity of both models
to capture fine-grained constellation diagram features at an SNR of 4 dB, as shown in
Figure 10.

(a) 4QAM (b) 8QAM (c) 16QAM (d) 32QAM (e) 64QAM

(f) 4QAM (g) 8QAM (h) 16QAM (i) 32QAM (j) 64QAM

Figure 10. (a–e) Feature maps of the constellation diagrams extracted by CNN. (f–j) Feature maps of
the constellation diagrams extracted by VLCMnet.
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The feature maps of CNN have distinct features in 4QAM and 8QAM, and the detailed
features in 16QAM, 32QAM, and 64QAM are not obvious. In contrast, there are numerous
regions with varying color depths in VLCMnet. The internal features of the 16QAM,
32QAM, and 64QAM constellation diagrams are assigned different weights. It indicates
that after incorporating multiple attention mechanisms, the convolutional layers focus
more intently on the image areas that are most crucial for the recognition task, resulting
in clearer and more pronounced feature outlines and structures within the feature maps,
which are related to the arrangement patterns and distribution shapes of the constellations
for different signals. Consequently, the VLCMnet model successfully captures intricate
edge and interior features in the constellation diagrams, thereby enhancing the model’s
generalization capability.

4.5. The Impact of Multi-Attention Mechanisms on VLCMnet Performance

In this section, we discuss the impact of multiple attention mechanisms on the modu-
lation format recognition performance of the VLCMnet model. Here, the model without
any attention mechanism is denoted as (Base), the model using only a single attention
mechanism is referred to as (W/O MA), the model employing only a mixed attention mech-
anism is termed (W/O SA), and the model using multi-attention mechanisms is denoted as
(With All).

As shown in Figure 11, when different attention mechanisms are incorporated into
the classification model, the accuracy for recognition consistently surpasses that of models
with no attention mechanisms. Within the SNR range from −10 dB to 0 dB, the recognition
accuracy can be improved by more than 15%.

Figure 11. An analysis of ablation experiments on the modulation recognition model with the
inclusion of different attention mechanisms.

To evaluate the effect of different attention mechanisms on the recognition performance
for each modulation format, an ablation study was conducted on 5250 test samples. The
classification confusion matrix is shown in Figure 12.

(1) As shown in Figure 12a, without attention mechanisms, the features extracted from the
convolutional layers tend to be susceptible to noise and irrelevant feature interference.
While the model demonstrates relatively high accuracy in recognizing lower-order
modulations, particularly 8QAM, there exist numerous errors in recognizing higher-
order modulations. For instance, 154 instances of 16QAM are misclassified as 64QAM.

(2) Figure 12b shows that the recognition performance improves a little if only the SA
module is introduced into VLCMnet. The number of misclassifications for higher-order
modulations decreases but not significantly. The recognition accuracy of 64QAM is
almost unchanged. It is easily confusedly recognized as 16QAM and 32QAM, possibly
due to inadequate extraction of spatial structure features within the distribution of
constellation points.
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(3) Figure 12c shows that when solely the MA module is incorporated, VLCMnet exhibits
a better enhancement in recognition performance compared to when only the SA
module is added. The recognition accuracy for all five modulation formats improves.
In particular, the recognition accuracy of 64QAM is improved by 11%. The proportion
of 64QAM being misclassified as 32QAM notably declines.

(4) Figure 12d demonstrates that the inclusion of both SA and MA modules in VLCMnet
is more helpful in improving the model performance. The misclassification between
16QAM and 64QAM is further reduced. The recognition accuracy for higher-order
modulations increases by more than 13% compared to the Base model.

(a) Base (b) W/O MA

(c) W/O SA (d) With All

Figure 12. Confusion matrixes at Base, W/O MA, W/O SA, and With All.

In summary, VLCMnet is able to concentrate on critical point-position features via
its SA module and simultaneously attend to key spatial structures in the distribution of
constellation points through its MA module, thereby enhancing the model’s recognition
accuracy and robustness, particularly for higher-order QAM modulation signals.

4.6. Comprehensive Evaluation of Model Performance

This section first discusses the impact of system transmission data volume indicators
on model performance and subsequently conducts a comparative analysis of the gener-
alization capability and network complexity among six models. The IFFT length and the
carrier count represent the number of subcarriers used by the transmitter to generate OFDM
symbols and actually carry the data payload.

As shown in Figure 13a, the recognition accuracy of the model increases with growth
in the IFFT length. When the carrier count is 256 and the IFFT length is 2048, the model
performance outperforms other combinations of carrier counts. However, both parameter
values should not be excessively large, as this can lead to oversampling, causing severe point
overlapping in the constellation diagram, which, in turn, reduces the recognition accuracy.

The Rx data length refers to the length of the effective data payload at the receiver
end. As illustrated in Figure 13b, when the Rx data length ranges from 20,000 to 60,000, the
model accuracy generally exhibits an upward trend as the data length increases. The model
performs optimally at a length of 41,600. However, excessive increase in the Rx data length
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can, conversely, introduce more noise and redundant information, reducing the clarity of
the constellation diagram and recognition accuracy.

(a) (b)

Figure 13. (a) Comparison of recognition accuracy for different channel parameters. (b) Comparison
of recognition precision for different Rx data length.

In the following, the MMAnet module within the VLCMnet model is replaced with
five alternative convolutional neural networks, and a comprehensive comparison of the
classification performance and complexity differences among these models is presented, as
shown in Table 6. The model complexity is assessed using million floating-point operations
per second (MFLOPs) and the number of parameters. The generalization ability of the
model is evaluated using the F1-score, recall, and accuracy metrics.

Table 6. Comparison of the comprehensive performance of the models.

Method MFLOPs Parameters (M) Recall F1 Accuracy

Alexnet 43.19 21.59 0.783 0.781 0.782
Resnet 42.56 21.28 0.801 0.800 0.799
Vgg16 33.75 16.88 0.816 0.815 0.814

Googlenet 12.01 6.01 0.823 0.822 0.822
CNN 3.2 1.6 0.839 0.838 0.838

MMAnet 3.9 1.9 0.949 0.948 0.948

The experimental results indicate that MMAnet achieves higher precision with rela-
tively lower computational requirements. Although CNN has the lowest complexity, its
accuracy is 11% lower than that of MMAnet. The precision and complexity of Googlenet
are moderate. AlexNet and Vgg16 are both complex models and show inferior precision.
Therefore, the proposed model in this paper possesses good generalization capabilities, fast
training speed, and convenient model deployment.

In Section 4.3, it is reported that the average accuracy achieved by a 9-layer CNN model
for modulation recognition was only 0.795, whereas our proposed VLCMnet reaches an
accuracy of 0.948, representing a 19.2% improvement over the CNN model. This indicates
that the model effectively mitigates channel-induced interference and accurately captures
and discriminates key features of different modulation formats.

5. Conclusions

In this paper, we propose the VLCMnet model for DCO-OFDM systems, an integrated
deep learning-based network model aimed at addressing the problem of low accuracy in



Photonics 2024, 11, 403 17 of 18

modulation format recognition under severe channel distortion conditions. We analyze the
model characteristics from several aspects, including the changes in model performance
before and after channel equalization, the effects of different attention mechanisms on
model performance, the model complexity, and the effects of the system input parameters.
The experimental results show that the TCN-LSTM module effectively extracts temporal
and frequency local features of the signals, and performs repair on impaired signals. The
MMAnet module introduces a multi-attention mechanism in the CNN, which captures
diverse feature information from distinct subspace perspectives, and contributes to improv-
ing recognition accuracy. In summary, the modulation format recognition model presented
in this paper can effectively reduce the confusion and misclassifications for higher-order
modulation formats. It exhibits strong robustness, computational efficiency, and effective-
ness. This model plays a significant role in promoting the task of modulation recognition
under complex channel environments.
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