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Abstract: We described a novel handheld device (termed FMTPen) for three-dimensional 

(3D) fluorescence molecular tomography (FMT). The FMTpen is characterized by its 

bendable structure and miniaturized size (10 mm in diameter) that can be potentially used as an 

intraoperative tool for the detection of tumor margins and for image-guided surgery. Several 

phantom experiments based on indocyanine green (ICG), an FDA approved near-infrared 

(NIR) fluorescent dye, were conducted to evaluate the imaging ability of this device. Two 

tumor-bearing mice were systematically injected with tumor-targeted NIR fluorescent probes 

(NIR-830-ATF68-IONP and NIR-830-ZHER2:343-IONP, respectively) and were then imaged 

to further demonstrate the ability of this FMT probe for imaging small animals. 
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1. Introduction  

Surgery is one of the most effective and widely used procedures in treating different forms of 

human cancers, in which accurate identification of tumor margins play a critical role to the results of 

surgery treatment. One of the major challenges in the surgery is that often surgeon fail to remove the 

entire tumor, leaving behind tumor-positive margins, metastatic lymph nodes, and/or satellite tumor 

nodules. Ultrasound (US), magnetic resonance imaging (MRI) and computed tomography (CT) have 
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been widely used clinically to detect these various cancers [1−4]. Although each of these traditional 

imaging techniques has its advantages, they usually have low specificity and sensitivity in the 

detection of small tumors, or poor temporal resolution to achieve really-time imaging in surgery. 

Over the past several years, there has been exponential increase in the use of non-targeted or 

targeted exogenous fluorescence makers in clinical applications and biological research. It also has 

prompted the development of several fluorescence imaging approaches [5−10]. A common fluorescence 

imaging method is the planar fluorescence reflectance imaging (FRI), which was developed to in vivo or 

ex vivo image fluorescence in animal or human models of various diseases [11−13]. Several recent studies 

have shown the clinical importance of this technique for intraoperative tumor imaging and image-guided 

surgery [14−17]. Despite the simplicity of the operation, the applicability of this technique has been 

limited by the poor spatial and depth resolutions. To overcome these limitations, near-infrared 

fluorescence molecular tomography (FMT) has been developed and evolved as an important molecular 

imaging tool [18,19]. Being a convenient and cost-effective optical imaging modality, FMT can 

provide accurate visualization and quantification of the three-dimensional (3D) distribution of 

fluorescent targets deep inside turbid tissue. So far, FMT has been widely used in biomedical research 

and clinical studies including cancer imaging, drug delivery, stem cell trafficking, and enzyme activity 

monitoring [20−23]. 

In this study, we present a novel FMT system based on a miniaturized handheld probe called the 

FMTPen, for intraoperative tumor imaging and image-guided surgery. This probe is highly suitable for 

the detection of small tumor lesions in the surgical cavity based on the miniaturized size (10 mm in 

diameter) and bendable structure. Several phantom and animal experiments have been performed to 

validate the imaging ability of this instrument. 

2. Materials and Methods 

The schematic of the handheld FMT probe system is shown in Figure 1. The laser beam generated 

by a continuous-wave (CW) 780 nm diode laser (Openxt, HL7301MG, Japan) was used as the light 

source. The excitation light beam from the laser diode (LD) was focused by a lens with 10 cm focus 

length (Thorlabs, NJ, USA), and sequentially delivered to each optical fiber in the source fiber array 

through a high-speed motorized scanning mirrors system (Thorlabs, GVS212, NJ, USA). For each 

source position, the emission fluorescence light from the detection fiber array was then collected by a  

1024 × 1024 pixels deep-cooled CCD camera (Princeton Instrument, Trenton, NJ, USA) coupled with 

an 830 nm band-pass filter with 32 nm bandwidth (Edmund Optics, NJ, USA).  

The insert in Figure 1a shows a photograph of the FMTPen, which is miniaturized with 10 mm 

diameter and equipped with a metal jacket outside to protect the optical fiber bundles when bending. 

Figure 1b shows a photograph of the end face of FMTPen. The corresponding pattern of source and 

detector positions is shown in Figure 1c. As Figures 1b, c show, sixty-one optical fiber bundles are 

fixed with epoxy in a uniform arrangement, in which twenty-nine (red) are used as optical source and 

thirty-two (green) as detectors. The diameter of each optical fiber bundle is 0.8 mm. For each 

experiment, the exposure time of the CCD camera was different depending on the intensity of the 

fluorescence intensity from the target. A binning of 4 × 4 pixels was then used to improve the  



Photonics 2015, 2 281 

 

 

signal-to-noise ratio (SNR). A Labview program was used to control the entire data acquisition. The 

data acquisition time is about 2 min depending on the exposure time of the CCD camera. 

 

 

Figure 1. (a) Schematic of the FMTPen system; (b) photograph of the end face of 

FMTPen; and (c) corresponding arrangement of the sources (red) and detectors (blue). 

Three-dimensional (3D) fluorescence images were reconstructed using an iterative finite element 

based algorithm that was described in detail previously [24−26]. Briefly, the finite element method is 

used to discretize the diffusion equations describing propagation of both excitation and emission light 

in tissue. This method also obtains the matrix representations capable of inverse problem solution. 

Fluorescence images are recovered by iteratively solving the forward equations and updating the 

optical/fluorescent property distributions from presumably uniform initial estimates of these properties. 

In this study, a 3D finite element mesh with 4928 nodes and 24660 tetrahedral elements was used for 

all the image reconstructions. The calculation required up to 8 minutes. 

3. Results and Discussion 

3.1. Phantom Experiments 

To validate the ability of this FMTPen, several sets of phantom experiments using indocyanine 

green (ICG)-containing targets with different depth and contrast were performed. A cylindrical 

background phantom (30 cm in diameter and 20 cm in height), consisted of TiO2 solution, India ink, 

and 2% Agar powder, and had an absorption coefficient of 0.01 mm−1 and a reduced scattering coefficient 

of 1.0 mm−1. A small ICG-containing cylinder was placed at different depth of the background phantom to 

simulate the target. 

Figure 2 shows the reconstructed FMT images (along transverse and sagittal planes) of a small 

cylindrical target (2 mm in diameter and 2 mm in height) with ICG concentrations of 2 µm (a) and 

5µm (b) imbedded at different depths (1 mm to 4 mm). The black dashed circle or square in each 

image indicates the exact target location. From Figure 2, we can see that the target was well 

reconstructed at a depth of up to 4 mm, while we note that the target size was overestimated slightly 

due to strong light scattering. The lateral resolution of FMTPen is ~2 mm. While this resolution is 

lower than some of the existing high resolution imaging modalities like CT and MRI, it is sufficient to 
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enable surgeons to identify possible residual small tumor lesions in the cavity after surgery. The 

maximum depth resolution of this imaging probe (∼5–6 mm) is limited by the largest source-detector 

separation given in this probe. More discussion on spatial resolution of FMT can be found in our 

previous works [24,26,27]. 

 

Figure 2. Fluorescence molecular tomography (FMT) images for a target having different 

indocyanine green (ICG) concentrations ((a) 2µM and (b) 5 µM) at different depths (1 mm 

to 4 mm). 

 

Figure 3. FMT images for a target having different ICG contrast (3:1, 5:1 and 7:1) relative to the 

background at a depth of 2 mm. 
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Figure 3 shows the reconstructed FMT images of a target having 3, 5 and 7 times ICG concentration 

relative to the background (target depth =2 mm). Againthe black dashed circle or square indicates the 

exact target location. As can be seen, the target can be well reconstructed even with an ICG contrast as 

low as 3:1. While some artifacts are observed in these cases, the imaging quality is improved with the 

increased ICG contrast. 

3.2. Animal Experiments 

To further demonstrate the imaging ability of this miniaturized FMT probe, two tumor-bearing mice 

with the use of different targeted contrast agents were imaged. An ovarian tumor model was 

established by injecting 5 × 104 of SKOV3 luciferase gene positive human ovarian cancer cells 

orthotopically (right side) and subcutaneously (left side), respectively. 

Figure 4 shows the reconstructed FMT images along the transverse and sagittal planes for a  

tumor-bearing mouse Intraperitoneal (IP) injected with 290pmole NIR-830-ATF68-IONP, a peptide 

conjugated molecular probe loaded with both near-infrared dye and iron oxide nanoparticles that can 

target tumor cell receptors [28,29]. We can see that the tumors are well reconstructed in both cases. 

The outcomes also show that the subcutaneous tumor has more distribution of targeted nanoparticles 

than orthotopic tumor. 

 

Figure 4. FMT images of a tumor-bearing mouse using NIR-830-ATF68-IONP: 

photograph of the mouse (middle), transverse and sagittal FMT slices of subcutaneous 

tumor (left), transverse and sagittal FMT slices of orthotropic tumor (right). 

Figure 5 presents reconstructed FMT images along transverse and sagittal planes for a tumor-

bearing mouse IP-injected with 1000pmole NIR-830-ZHER2:343-IONP. Our previous work has 

shown that near-infrared dye labeled ZHER2:342 conjugated IONPs (NIR-830-ZHER2:342-IONP) 

was specifically targeted to primary and metastatic tumors in an orthotopic human ovarian cancer 

xenograft model. These tumors produced strong imaging signals for FMT, photoacoustic tomography 

(PAT) and magnetic resonance imaging (MRI) [21,30]. In this study, two tumors were also well 

detected using FMTPen. 
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Figure 5. FMT images of a tumor-bearing mouse using NIR-830-ZHER2:343-IONP: photograph of 

the mouse (middle), transverse and sagittal FMT slices of subcutaneous tumor (left), (right) transverse 

and sagittal FMT slices of orthotropic tumor (right). 

The primary advantage of FMTPen presented in this study is its miniaturized size (only 10 mm in 

diameter) and bendable structure, which makes this tool well suited for imaging in a small surgical 

cavity. Meanwhile, both the phantom and animal experiments have demonstrated that FMTPen has a 

good depth resolution of up to 5−6 mm and a high sensitivity of 3:1 contrast. Such depth resolution 

and sensitivity would enable a surgeon to find residual small tumor lesions that would be hard to be 

detected by the use of other imaging modalities. This is significant since the completeness of tumor 

removal during surgery is considered of utmost importance in achieving a cure. To the best of our 

knowledge, the FMTPen described here has been the smallest handheld FMT imaging probe so far. 

Due to these advantages, FMTPen offers a great potential to be an effective tool for intraoperative 

tumor imaging. By improving the rate of complete tumor removal in surgery, FMTPen would benefit 

a large number of patients. In addition, it would significantly reduce the cost in the management of 

cancer patients.  

While the results shown are encouraging, we realize that there are still some improvements needed 

in order to translate this technique into human applications. The image reconstruction time was limited 

by CPU-based computer system. Graphic processing units (GPU) based parallel reconstruction 

algorithm can be developed to accelerate the image reconstruction, which was proved to be a powerful 

tool in our previous work [31]. In addition, the time desired for data acquisition needs to be 

significantly reduced to perform real-time image-guided surgery. Data acquisition time in this study, 

was limited by the exposure time of the CCD camera varying with target depth and contrast agent 

concentration to achieve optimal signal-to-noise ratio. In future, photomultiplier tubes (PMT) array can 

substitute for the CCD camera to speed up the data acquisition process due to their fast response time 

in microseconds and high sensitivity at low light levels. Despite these limitations, a more sophisticated 

and real-time intraoperative imaging technique is expected in the near future. 
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4. Conclusions 

In summary, we have presented a miniaturized FMT probe (FMTPen) and evaluated it with both 

phantom and animal experiments. The results obtained have shown that the FMTPen offers a great 

potential to develop a handheld probe for intraoperative tumor imaging due to its high sensitivity, 

miniaturized size (1 cm diameter) and bendable structure. Our further goals are to apply the FMTPen 

for intraoperative imaging in breast cancer surgery. 
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