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Abstract: Linear accelerators delivering high brightness electron beams are essential for 

driving short wavelength, high gain free-electron lasers (FELs). The FEL radiation output 

efficiency is often parametrized through the power gain length that relates FEL performance 

to electron beam quality at the undulator. In this review article we illustrate some approaches 

to the preliminary design of FEL linac-drivers, and analyze the relationship between the 

output FEL wavelength, exponential gain length and electron beam brightness. We extend 

the discussion to include FEL three-dimensional effects and electron beam projected 

emittances. Although mostly concentrating on FELs based upon self-amplified spontaneous 

emission (SASE), our findings are in some cases highly relevant to externally seeded FELs. 

Keywords: free electron laser; gain length; electron beam brightness 

 

1. Introduction 

The physics of Free Electron Lasers (FELs) dates back to the 1970s [1–3] and is extensively treated 

in several recent textbooks (see for example [4–6]) and reviews [7–9], and supported by experimental 

results at several FEL facilities around the world that have exhibited lasing at wavelengths from the 

ultra-violet (UV) to hard X-rays [10–16]. The success achieved by FEL facilities in the light source user 

community in the last 10 years is confirmed, also, by the inclusion of a Session devoted to “FEL 

Applications” in many editions of the International Free Electron Laser Conference. Such interchanges 

allow the accelerator and FEL community to stay in touch with the most advanced experimental 

techniques and results based on FEL sources. Similarly, the user community is exposed to advances in 

FEL physics and experimental methods that might open new frontiers in scientific research. Thus, it is 
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not surprising that a journal such as Photonics by MDPI would include technical works by both the 

accelerator and FEL scientific community. This review article recalls in a ready-to-use form various 

merit functions of high gain Self-Amplified Spontaneous Emission (SASE) FELs [17–20], in the  

one-dimensional (1-D) monochromatic electron beam approximation. Hereafter, “high gain” refers to 

the electron beam-radiation collective instability that results in an exponential growth of laser  

intensity [18,20–24]. The definition and the physical meaning of FEL merit functions forms the content 

of Section 2. These functions are used in Section 3 to illustrate three different approaches to the 

preliminary design of an FEL linac-driver. In Section 4, the electron beam parameters are condensed in 

one invariant of linear particle dynamics, the six-dimensional energy-normalized electron beam 

brightness. This brightness is shown to be highly correlated with the minimum obtainable wavelength 

of efficient FEL emission. Section 5 elaborates the relationship between electron beam brightness and 

so-called 3-D FEL effects. Since at this point the discussion had been limited to local properties 

(longitudinal “slice” parameters) of the electron bunch, the physics of FEL drivers is further extended to 

the characteristics of the electron beam as a whole, namely, to longitudinally “projected” parameters. 

Guidelines for the optimization of the newly defined “3-D, z-projected” electron beam brightness and FEL 

power gain length are reviewed in Section 6. We end by summarizing our conclusions in Section 7. 

2. Merit Functions of High Gain Free Electron Lasers 

The amplification of coherent SASE FEL intensity along the undulator is initiated by incoherent 

undulator emission. Lasing at the FEL fundamental wavelength has its maximum intensity at the same 

undulator on-axis central spontaneous emission wavelength: 

 2

2
1

2

u
wa


  


 (1) 

Here  is the relativistic Lorentz factor for the electron beam mean energy, u the undulator period length, 

aw = K for helically- and aw = K/2 for planar-polarized undulator, where  

K  eB0u/(2mec) = 0.934B0[T]u[cm] in practical units, is the so-called undulator parameter, B0 the 

undulator peak magnetic field, and e and me the electron charge and rest mass, respectively, and c the 

speed of light in vacuum. K is linearly proportional to the electron’s amplitude of transverse oscillation 

in the undulator field and is typically in the range 1–5 for reasonable gain. Equation (1) is often referred 

to as the FEL “resonance condition” since it selects, for any undulator period and magnetic field strength, 

the necessary electron beam mean energy E for lasing at . 

In the so-called 1-D, cold limit, where electron beam energy spread, transverse emittance and radiation 

diffraction effects are all neglected, the radiation peak power at the resonant wavelength grows exponentially 

along the undulator with a gain length LG = u/(43). Here  is the “FEL parameter” [20] and is intimately 

related to the Pierce parameter relevant to the physics of microwave tubes [25]: 
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with p being the plasma frequency, I the electron bunch peak current, IA = 17045 A the Alfven current, 

x the standard deviation of the (assumed round) electron beam transverse size; aw was defined in 
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Equation (1) and [JJ] is the undulator-radiation coupling factor [26], equal to 1 for a helical undulator, 

and to  for a planar undulator where J0 and J1 are Bessel’s functions of the first kind with 

argument . Typically   10−3 in the UV wavelength regime but may drop to 10−4 in 

the X-ray regime for kA-current beams. If the undulator length Nuu, with Nu being the number of 

undulator periods, is equal or longer than 20 LG, the conversion of electrons’ kinetic energy to photon 

energy considerably enlarges the electron beam energy spread, with an eventual reduction in the FEL 

gain; the associated FEL power saturates at a level Psat  1.6EI/e. In spite of the low FEL extraction 

efficiency relative to the electron beam power (because  << 1), an electron beam at multi-GeV energies 

and kA-scale peak currents is able to produce GW-scale radiation peak powers. For SASE devices, the 

value of  also defines the approximate number of undulator periods Nsat  1/ and the length Lsat  u/ 

necessary to reach saturation. The normalized spectral bandwidth at saturation is  presuming 

a more or less monoenergetic electron beam with little z-correlated energy spread.  

The longitudinal evolution of the fine structure of the SASE FEL spectrum is determined by the 

longitudinal slippage of the radiation over the electrons, since the FEL resonance condition in Equation (1) 

requires that the radiation move ahead by one resonant wavelength per undulator period. This condition 

ensures a synchronized energy exchange between electrons and photons. The electrons’ energy 

modulation is then transformed into density modulation (“micro-bunching”) by the intrinsic energy 

dispersion associated to the wiggling motion in the undulator, and by the possible addition of dedicated 

magnetic insertions interleaving the undulator segments. The total slippage at the end of the undulator 

line is sL = Nu and usually  1 m for hard X-rays,  10 m for extreme-UV and soft  

X-rays, and larger than tens of m at UV wavelengths. An optimum longitudinal overlap of electrons 

and photons requires that the total undulator slippage length be shorter than the electron bunch length. 

The slippage accumulated per one radiation gain length, LC = 3LG(/u) = /(4), is often called the 

“cooperation length” [27]: it is the longitudinal distance over which radiation coherence is preserved. A 

high gain SASE FEL output pulse consists of a number of power spikes in both the temporal and 

frequency regime approximately equal to the number of cooperation lengths contained in the electron 

bunch length. Near saturation, each individual spike has reasonably high coherence but there is 

essentially no coherence from spike to spike. Consequently, a SASE FEL radiation pulse is not Fourier 

transform limited, except when the electron bunch length is shorter than the cooperation length (in which 

case the extracted power efficiency is significantly smaller than the long bunch case). 

Equation (2) applies to a monochromatic electron beam of non-zero transverse size, perfectly 

superimposed on the photon beam along the entire undulator. Realistic electron beams, however, have 

non-zero transverse emittances and energy spread, and the emitted radiation is affected by diffraction. 

Not surprisingly, all these effects act so as to reduce the effective  and thus the FEL performance from 

the hypothetical 1-D limit. Equation (1) suggests that the amplification rate of the FEL signal (gain) 

decreases as the energy spread of electrons distributed over one cooperation length increases. Once the 

spread in the longitudinal velocities of the electrons becomes sufficiently large to cause significant  

de-bunching over one power gain length, the FEL gain process strongly diminishes. Consequently, the 
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FEL gain grows exponentially as far as the following numerical condition applies to the beam fractional 

energy spread [28]:  

 (3) 

This spread in longitudinal velocities has two major sources: (1) the incoherent energy spread that is 

“uncorrelated” with the particle longitudinal position inside the bunch, and (2) the non-zero transverse 

emittance. The incoherent energy spread is typically in the range 0.1 to several MeV at the undulator, 

depending upon the manipulation of the electron energy distribution at low energy and the bunch length 

compression strength applied in the upstream accelerator to reach the target peak current. At this point, it 

is convenient to introduce some of the jargon used in electron beam dynamics. If an energy-to-longitudinal 

position correlation along the bunch is established before lasing—henceforth named “energy chirp”—as 

needed for magnetic compression and/or caused by longitudinal wakefields,  adds to the correlated 

energy spread and the resulting quantity, evaluated over a user-defined fraction of the bunch duration, is 

called “slice” energy spread. It is worth noticing that, in the presence of energy chirp, Equation (3) 

applies to the energy spread defined over a cooperation length or, with a stronger constraint, over the 

undulator slippage length. Energy spread and transverse emittances integrated over the entire bunch 

length are called “projected”, as opposite to their “slice” (local) counterparts. Equation (3) also holds as 

a rule-of-thumb for externally seeded FELs. For such devices, it additionally implies that for a given 

seed laser wavelength and undulator parameter, the electron beam mean energy should not deviate from 

its nominal resonant value by more than a fractional difference /2 (more exactly, larger deviations lead 

to the local resonant wavelength falling out of the nominal FEL gain bandwidth). 

Equation (3) refers both to the true energy spread and to the effective energy spread associated with 

the square of beam transverse angular divergence [29]. Beam divergence scales as (uwith uthe 

average betatron function along the undulator and the geometrical electron beam transverse emittance 

(the two parameters are measured in the same plane; the divergences in the two planes add in quadrature). 

At the same time, in order to minimize emittance effects and to ensure optimal transverse overlap of the 

co-propagating radiation and electron beam, the electron beam trajectory, transverse size and angular 

divergence must be controlled with steering and quadrupole magnets that are interleaved between the 

undulator segments (similarly, the individual undulator magnet pole strengths and overall magnetic 

centerline tilt must also be carefully controlled but we will not discuss those issues here). The most 

efficient electron-photon beam interaction occurs when the transverse beam phase space area and 

distribution matches that of the radiation, whereas the transverse electron beam size scales as 

(uConsiderations of both the maximum allowable effective energy spread and the transverse 

overlap lead to an rms value of  that must be smaller than, or of the same order as, that of the  

diffraction-limited photon beam [30]: 

 (4) 

in order to maximize the FEL gain; this emittance value limit also optimizes the FEL transverse 

coherence. The aforementioned opposing scaling laws with u, instead, suggest that there is some 

optimal value of u (for any given and ) that maximizes the FEL gain. At longer wavelengths, where 

diffraction effects can be important, one must also keep the effective Rayleigh range associated with the 
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electron beam area, which scales as u, comparable to or greater than LG. This diffraction constraint 

sets another lower limit to the value of u, apart from technological or transport limits. 

As is well known, the horizontal (vertical) emittance is the area occupied by the particle ensemble in 

the x, x’ (y, y’) phase space, which is roughly the product of the transverse beam size and the transverse 

angular divergence. According to Liouville’s theorem, its energy-normalized value is a constant of 

motion during acceleration in absence of dissipative forces and cross-dimensional coupling effects such 

as transverse/longitudinal emittance coupling or exchange schemes not covered by this review. In 

practice, the lower limit for the transverse emittance is set at the injector exit, beyond which the space charge 

forces become quite small and no longer act to rearrange the particles in phase space [31]. 

As was pointed out in [32], the three aforementioned conditions on energy spread, transverse 

emittance and diffraction length plus the resonance condition are not independent. At longer wavelengths 

(i.e., 100 nm), one may find that due to important diffraction effects, there comes a point where 

there are diminishing returns from decreasing the transverse emittance and optimizing uas compared 

with increasing the peak current. In the hard X-ray regime, where the electron beam energies are higher, 

technologically it might not be possible to decrease u below a certain value. In this case, however, 

radiation diffraction effects are much less important and the combination of lower emittance and higher 

peak current usually gives better FEL performance.  

3. Approaches to FEL Linac-Driver Design 

3.1. Pulse Length-Driven Approach 

Strategies to design an FEL linac-driver strongly depend on the emphasis of the light source 

characteristics (intensity vs. bandwidth vs. wavelength tuning, etc.), and on the available or  

cost-allowable infrastructure (undulator length, linac length, etc.). Among many parameters, the FEL 

pulse duration is often the critical factor determining the electron beam parameters at the undulator and, 

to some extent, at the electron source. 

The FEL pulse duration is typically specified by users in facilities relying on SASE, whilst its  

lower-limit is set by the duration of the external seed laser, such as in High Gain Harmonic Generation 

(HGHG) schemes [10,15,16,33–37]. In both cases, the electron bunch duration at the undulator should 

be longer than the required FEL pulse duration because of effects such as FEL slippage in SASE FELs, 

arrival time jitter, and multi-stage cascade in HGHG FELs. As an example in the soft X-rays, a 100 fs 

SASE FEL pulse duration (full width) may require a  150 fs electron bunch duration at the undulator. 

Then, in a second step, we must specify the minimum FEL power at the shortest fundamental 

wavelength we want to reach and/or we are able to detect. A wavelength of, say 1 nm, allows us to 

estimate the required undulator parameter and the beam energy through the resonance condition in 

Equation (1): we come out with K 1, u 2.5 cm and  5000. Wavelength and beam energy also 

determine the upper value of the allowable beam normalized transverse emittance as in Equation (4), 

i.e., 0.4 m rad. The minimum required FEL peak power at saturation, e.g., 1 GW, provides the minimum 

peak current after total compression.  has not been defined yet, but we may guess a value around 10−3 

for it, in the soft X-rays; thus we require I [A] = Psat[GW]/(1.6E[GeV])  1.25 kA. It is worth noting 
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that typically   10−3–10−4 in the XUV wavelength range, which implies a peak current usually higher 

than 100 A at the undulator. 

In a third step, peak current times electron bunch duration gives the minimum required bunch charge, 

Q 0.2 nC. Bunch charge and normalized emittance help in turn to estimate the electron bunch duration 

at the injector (typically the higher the line charge density, the higher the transverse emittance) and, as 

a consequence, the total bunch length compression factor to reach the aforementioned peak current. From 

the practical point of view, several picosecond-long bunches generated by photo-injectors show a 

normalized emittance (in m rad) proportional to the square or the cubic root of the total charge (in nC) [38]. 

A standard photo-injector design can therefore provide a bunch not shorter than 5 ps FWHM for  

Q = 0.2 pC. The initial peak current turns out to be of the order of 40 A, and the total compression factor 

should be equal or larger than 30 to reach 1.2 kA at the undulator. 

A fourth step includes the estimation of the allowable uncorrelated energy spread at the injector 

(again, the higher the line charge density, the higher the energy spread). Its final value has to be compared to 

the FEL parameter in Equation (3). Since the final energy spread is linearly proportional to the compression 

factor, it sets an upper limit to the final peak current. This picture is actually complicated in practice by the 

artificial increase of energy spread before compression by means of a “laser heater” [39–41]. This device 

helps to minimize the microbunching instability that would otherwise strongly grow along the acceleration 

and compression stages, at the expense of FEL performance. The energy spread induced by a laser heater 

may be of the order of few tens of keV rms, typically dominating the few keV rms “natural” energy 

spread of the beam at the injector exit [42]. The final beam energy spread (uncorrelated) might therefore 

be close to, or smaller than, 1 MeV in our example; it will be larger in multi-GeV machines. That value 

fits well with   1  10−3 (Equation (2) for u = 7 m). We finally get LG = 1.1 m, and the saturation 

length is 17 m. This kind of design strategy inevitably needs several iterations for convergence to a 

satisfactory and self-consistent set of the accelerator and electron beam parameters. Alternative 

approaches are discussed in the following two subsections.  

3.2. Wavelength-Driven Approach (with Some Wavelength Tuning) 

The fundamental wavelength of FEL emission and its tuning range is in most cases one of the earliest 

design parameters put on the table by the potential users. Not unlike the previous scenario, we assume  

= 1 nm with similar undulator characteristics, K 1, u 2.0 cm. The resonance electron energy turns out 

to be around 2 GeV (Equation (1)). The beam energy could be higher if we require greater saturated FEL 

intensity, or if we chose a longer undulator period. Unlike in the previous discussion, these estimates 

will be subject to fine-tuning in the following steps. 

An additional requirement from users is that, for example, of a range in FEL output wavelength, up 

to, say, max 5 nm. We decide that this tuning range will mainly be provided by adjustable gap 

undulators (alternatively, the beam energy could be varied). To this purpose, we adopt the hybrid 

permanent magnet undulator model that relates the peak magnetic field to the undulator period and the 

undulator gap, g [43]: , with g in units of mm and  

u in cm. The technological limit of a minimum gap, e.g., gmin = 6 mm, provides an upper limit to the 

achievable undulator field and, thus, of the undulator parameter, Kmax  2. These values of Kmax and max 
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provide a new estimate for the electron beam energy. If the undulator period is now also left free to be 

adjusted, the FEL resonance condition provides the equation  = (u; max, Kmax(u)), by which the 

longer the period, the higher the required beam energy. This relationship is substituted in the resonance 

equation for min = min(u; (u), Kmin)  1 nm; we also adopt a lower limit to K, e.g., 1.5, in order to 

prevent the gain length from becoming too large. From the condition min = min(u; (u), Kmin)  1 nm 

we obtain an undulator period around 2.8 cm, which corresponds in turn to the beam energy of 2.85 

GeV. Going back in our reasoning, Kmax = 4.5 is required to ensure lasing at 4.8 nm, for an undulator 

gap of 6 mm. 

By fixing the electron beam energy and the minimum lasing wavelength, we determine the highest 

allowable normalized emittance value, i.e., 0.5 m rad, which satisfies the mode overlap condition. A 

square root law with the charge (see above) suggests Q = 0.25 pC for, say, 8 ps FWHM long bunch at 

the injector. Since we have no specific requirements on the FEL output power, an initial guess of 1 kA 

bunch peak current, which is consistent with all other beam parameters in the previous subsection, is 

reasonable. The total compression factor then turns out to be 30 and the final energy spread is likely of 

the order of 1 MeV. We are now able to compute 1-D parameters of lasing in SASE mode. At 1 nm we 

obtain  = 0.9  10−3, LG = 1.4 m, and a peak power at saturation of 3 GW over approximately  

0.27 ps FWHM pulse duration. 

3.3. Cost-Driven Approach 

Another approach to the design of an FEL linac driver might be that of minimizing the size of 

infrastructures, linac and undulator length in primis, in order to be cost effective. Once again, we start 

with a target output radiation wavelength of 1 nm. Although the electron beam geometrical emittance 

and fractional energy spread are expected to improve with the beam energy, the “equivalent” undulator 

length needed to reach a certain wavelength gets longer as the beam energy increases. We therefore 

proceed in the opposite direction and choose the minimum beam energy that is compatible with the 

shortest feasible undulator period. Very short periods can be provided by in-vacuum undulators and can 

be as short as 15 mm, with K  1, typically at the expense of a very small tuning range in K.  

Equation (1) is used to deduce a beam energy of 1.7 GeV (alternatively, we could have chosen, e.g.,  

K  2 to obtain a beam energy comparable to that estimated in the previous approaches, but with a much 

higher radiation flux). It is worth mentioning that other, more recent solutions for shortening the 

undulator period and therefore using electron bunches with much lower energy, could be considered for 

a more aggressive, cost-effective FEL design, such as microwave, superconducting, and optical 

undulators [44–47].  

Staying for the moment with the in-vacuum undulator, Equation (4) tells us that the normalized 

emittance must be equal to, or smaller than, 0.3 m rad. As an initial guess, we assume a bunch charge 

of 100 pC, and an initial bunch duration of 5 ps FWHM. The initial bunch peak current is therefore 

around 20 A. If we were able to have   0.5  10−3, then the peak current at the undulator to reach  

1 GW of power at saturation would be higher than 740 A, and the needed compression factor larger than 

35 (for a 0.14 ps long bunch). In this case, the final fractional rms energy spread should not exceed 0.5 

MeV (Equation (3)). We now compute  as in Equation (2) and find that it is 0.8  10−3 for u = 7 m, 

not far from our initial guess. In this case LG = 0.9 m, and the SASE saturation length is shorter than 20 m.  
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4. Six-Dimensional Electron Beam Brightness 

4.1. Definition 

The 6-D normalized electron beam brightness may be defined as the total bunch charge divided by 

the product of the rms horizontal, vertical and longitudinal normalized emittances. In general, we may 

define the brightness locally, i.e., either for each bunch slice (in this case, the brightness depends on the  

z-coordinate inside the bunch) or for the entire bunch, thus involving the bunch total charge and 

projected emittances. The normalized longitudinal emittance scales as the product of bunch length and 

absolute energy spread. The transverse normalized emittances are invariant under acceleration and linear 

transport, presuming collective effects, such as space charge, may be neglected. The same is true for the 

longitudinal normalized emittance if the energy spread is uncorrelated, i.e., without any chirp.  

The presence of nonlinear motion and collective effects along the beam delivery system may dilute 

the normalized emittances from their values at the injection point. We introduce an effective degradation 

factor  in each plane of the particle motion so that  and

 with obvious notation. We are now able to relate the 6-D normalized 

brightness at the undulator, Bn,f, to that at the linac injection, Bn,0 [48]: 

 
(5) 

In the ideal case of vanishing nonlinear and collective effects,  in Equation (5), and 

thereby the 6-D normalized brightness is preserved at the injector level under acceleration and linear 

bunch length compression. We remark that even in the absence of emittance degradation, the normalized 

5-D electron beam brightness given by Bn,f  E, is not invariant under compression: it is actually linearly 

proportional to the total bunch length compression factor. 

4.2. Scaling Laws 

The importance of electron beam brightness for FELs [49] is underlined by Equation (2) for , which 

is defined in terms of electron beam energy, peak current and transverse beam size. Since a smaller 

transverse emittance is usually associated with shorter FEL wavelengths, and since we can observe a 

qualitative proportionality between transverse emittance and Bn,f, we wonder if we could establish any 

relationship between Bn,f, and . This is done below, neglecting for the moment any emittance dilution, 

by substituting Equation (1) and Equation (4) into Equation (5), and assuming the electron beam 

transverse emittance (equal in the two planes) equals the diffraction limit of Equation (4):  
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It is worth noticing that the ratio I/E is invariant under acceleration (whereas the peak current and 

the energy spread must be evaluated at the same location along the accelerator) and compression when 

collective effects are ignored, so that, for any given set of undulator characteristics, shorter  require 

higher Bn,f. This is confirmed empirically in Figure 1, where Bn,f of designed and existing single-pass 
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linac-driven FEL facilities, is shown as function of the maximum photon energy (i.e., minimum 

fundamental wavelength) from UV to X-rays (inferred or measured data are taken from [49] and updated 

to 2013). Moreover, Figure 1 shows Bn,f evaluated for projected and slice emittances (where the slice 

length is approximately one tenth of the total bunch duration, and located in the bunch core). A gap of 

one or two orders of magnitude occurs typically between the two brightness values. This is mainly due 

to the dilution of the transverse projected emittances and of the slice energy spread generated by 

correlations between different slice coordinates [48]. The closer the projected and the slice brightness, 

the more efficient the FEL process is going to be, since most of the electrons will be distributed in 

identical manner in 5-D (x,x’,y,y’,) phase space along the bunch. Usually, a smaller gap between the 

projected and the slice brightness is gained at the expense of the flexibility of the FEL facility in 

wavelength, intensity, polarization, etc. It is a remarkable achievement of the FEL community that the 

physics and computer model of these facilities have found an excellent confirmation in their operation 

over a relatively wide range of parameters. 

 

Figure 1. Six-dimensional normalized electron beam brightness vs. maximum photon energy 

at fundamental FEL emission, for facilities in the ultra-violet (UV) to X-rays, designed (blue) 

or running (red). Data taken from [49] and updated to 2013. From lower to higher energies, 

now-running facilities are: SPARC (Italy), SDUV-FEL (China), FLASH-I (Germany), 

FERMI (Italy), LCLS (USA), SACLA (Japan). The brightness refers to the projected (circle) 

or slice value in the bunch (diamond).  

So as  is a fundamental parameter for a given experiment, () determines the efficiency of the 

electron-to-photon energy transfer in the undulator at that wavelength. In general, a large  is desired at 

any  because this implies a shorter gain length, or a higher FEL power at saturation. Some restrictions 

to the upper value of  may be considered in a SASE FEL that targets a relatively narrow spectral 

bandwidth because in this kind of FEL, the output bandwidth is also proportional to . We can explicit 

the dependence of  on Bn,f by substituting Equation (6) into Equation (2), similarly to what was done in [50] 
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for the longitudinal brightness. We impose 4 = , re-define the energy spread in Equation (6) like the rms 

value of , and consider a specific, typical value K = 1 in a helical undulator. Finally we get: 

,
][

][][
016.0

3/1

2,

3/1

3/1

3/4











m

A
B

m

nmGeVE
fn

u 





   

(7) 

from which we see that the strongest dependence of  is on the electron beam energy. The latter is easy 

to be increased with a longer linac or higher accelerating gradient RF structures, but it is also quite 

expensive. It is worth noting that since the FEL resonance condition in Equation (1) imposes   1/E2, 

 is not expected to vary much when  is made short, and in fact we typically have   10−3–10−4 in the 

entire XUV range (i.e.,   0.1–100 nm). Equation (7) can be further manipulated and  written as a 

function of the electron beam transverse and longitudinal parameters at the undulator, whereas still we 

retain 4 =  and K = 1: 
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Equation (8) tells us that, in order to have  large at any given , it is always convenient to increase 

the peak current, while there is no practical convenience in reducing the emittance below the diffraction 

limit, because this would reduce  with much improvement neither in the FEL output power, nor in the 

FEL transverse coherence. 

5. Gain Length and Electron Beam Slice Parameters 

5.1. Three-Dimensional Gain Length 

The optimization of an FEL design usually involves minimization of the FEL power gain  

length [20,32]. For many years, FEL theories that include 3-D effects have been proposed [51,52] to 

predict the gain length and other FEL parameters when the 1-D approximation falls short of a realistic 

physics model. In recent times, two analytical models [53–55] have been commonly used to estimate the 

so-called 3-D gain length, LG,3D that takes into account the electron beam non-zero transverse emittance, 

energy spread and radiation diffraction in SASE FELs. For the sake of brevity, in the remainder of this 

article we will neglect the detuning parameter [53]. In those models, the emittance and the energy spread 

are those of a longitudinal slice of the electron bunch. The slice length is assumed to be of the order of 

the FEL cooperation length, thus typically much shorter than the total bunch duration. An additional  

3-D effect involving the projected electron distributions, which is the impact of transverse deviations of 

the electron bunch’s trajectory from its reference path in the undulator on LG, was modeled in [56] and 

experimentally studied in [57]. This Section will treat the FEL slice dynamics only; the projected 

dynamics is postponed to the next Section. 

For a given set of electron beam and undulator parameters, the analytical model for 3-D FEL effects 

given in [53] by M. Xie allows the minimization of LG,3D as function of the average betatron function in 

the undulator, presuming the electron beam is well-matched to the design optics. According to [53], the 

3-D power gain length is:  
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(9) 

with  a polynomial expression of three additional parameters, d,  and , addressing, respectively, 

the effects of radiation diffraction, the electron beam transverse emittance and uncorrelated energy 

spread. For the Reader’s convenience, we report here also the 19 coefficients used in Equation (9):  

a1 = 0.45, a2 = 0.57, a3 = 0.55, a4 = 1.6, a5 = 3, a6 = 2, a7 = 0.35, a8 = 2.9, a9 = 2.4, a10 = 51, a11 = 0.95, 

a12 = 3, a13 = 5.4, a14 = 0.7, a15 = 1.9, a16 = 1140, a17 = 2.2, a18 = 2.9, a19 = 3.2. 

The electric field gain length defined by E. Saldin et al. in [54,55], instead, is the result of an analytical 

approach in which the undulator average betatron function has already been optimized to minimize it. It 

is worth noting that the equivalent power gain length is a factor 2 smaller than the expression given  

in [54] and thus it turns out to be: 
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(10) 

Figures 2–4 show a remarkable agreement between the power gain length computed with the two 

models, as well as for the optimum betatron function, with a maximum discrepancy of 20%. The 

comparison relies on the baseline parameters in Table 1. 

  

Figure 2. Minimum 3-D power gain length (left) and optimum betatron function (right) as 

function of the FEL fundamental wavelength, for the M. Xie (circles) and E. Saldin  

et al. (dots) formulas. 
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Figure 3. Minimum 3-D power gain length (left) and optimum betatron function (right) as 

function of the slice rms energy spread at the undulator, for the M. Xie (circles) and  

E. Saldin et al. (dots) formulas. 

  

Figure 4. Minimum 3-D power gain length (left) and optimum betatron function (right) as 

function of the slice normalized transverse emittance at the undulator, for the M. Xie (circles) 

and E. Saldin et al. (dots) formulas. 

Table 1. List of parameters for SASE FEL used to compare M. Xie [53] and  

E. Saldin et al. [54] 3-D power gain length. 

Parameter Value Unit 

Energy 2.8 GeV 

Peak Current 2.5 kA 

Norm. Trasv. Emittance, rms 2.0 m rad 

Energy Spread, rms 1.0 MeV 

Undulator RMS Parameter, K 1  

Undulator Type Planar  

Undulator Period Length 20 mm 

Fundamental Wavelength 1.0 nm 
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5.2. Gain Length and Electron Beam Brightness 

Given the substantial equivalence of the two aforementioned definitions of LG,3D, in the following we 

will use that of M. Xie as it provides the additional degree of freedom on u. We will now analyze the 

dependence of LG and LG,3D on the electron beam parameters, also taking advantage of the brightness 

definition in Equation (5). As for the 3-D case, an exact dependence of LG,3D on the brightness would 

lead to an excessively complicated expression with poor physical meaning. Instead, we prefer to look at 

the individual dependence of d,  and  on the electron beam parameters. Minimizing the three 

parameters translates into the minimization of , thus of LG,3D. Since LG is just inversely proportional to 

, we have from Equation (2): 
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The M. Xie 3-D perturbative terms previously introduced in Equation (9) turn out to be: 
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(12) 

In Equation (12), we underline the dependence upon the “variables” peak current, emittance and  

(that relates to the resonance condition); all other symbols have been intended to be considered as fixed 

parameters. All 3-D terms are minimized by larger peak currents and smaller normalized (transverse) 

emittance, with the sole exception of the diffraction term that, instead, is minimized by a larger 

emittance. We show in Figure 5 the dependence of d,  and  on I and n as given in Equation (12). 

In this case, current and emittance are treated as independent variables, which means that bunch charge 

and/or compression factor are not kept constant. All other parameters are defined in Table 1. Since 

diffraction is typically more important at longer wavelengths than at those in the  

X-ray regime, FELs lasing at wavelengths shorter than 10 nm are mainly sensitive to  and . That 

is, the FEL gain is larger for a lower normalized emittance and energy spread, and for a higher peak 

current electron beam. A compromise between these three parameters will, to a certain extent, optimize 

the gain at the shortest wavelengths. 

Figure 5 does not take into account the impact of incoherent energy spread and, in a more general 

sense, the 6-D electron beam brightness upon the 3-D dynamics. First, we have to consider that, 

experimentally, peak current, normalized emittance and energy spread are inter-dependent. We have 

previously pointed out that the lower limit for the normalized emittance value is set at the injector exit, 

where it strongly depends on the bunch charge: n  Q, where  was empirically found to be in the 

range 1/2–1/3 (see for example [38]). At the same time, I  Q through the compression factor, C. If the 

longitudinal emittance is approximately preserved, that is the product of bunch length and absolute 

uncorrelated energy spread is constant through the accelerator, then we also have     I. The latter 
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approximation typically holds when a laser heater is adopted to increase the uncorrelated energy spread 

of the beam at the injector’s exit in order to suppress the microbunching instability (see Section 3.1). It may 

also happen, however, that the larger the C to reach the desired I, the larger the laser heater-induced energy 

spread is in order to damp the microbunching instability. In practice, a trade-off can be found between 

the strength of magnetic compression (i.e., peak current) and laser heater action (i.e., energy spread). 

The interplay of transverse emittance, peak current, and energy spread on the 6-D brightness will be 

elucidated in the next section. For the moment, let us note that, according to Equation (5), Bn,f is an 

invariant under acceleration, linear transport and compression, because it is the product of two invariants, 

n and I/E. The latter is the ratio of peak current and absolute energy spread evaluated at the same 

location along the accelerator. Let us suppose of fixing  = 1 nm in our FEL design,  

 = 2 GeV and K  1. We may then start specifying n 1 m rad with Equation (4),  0.1% with 

Equation (3), and I larger than a few hundred Ampere, in order to have enough FEL intensity in a few 

gain lengths. A unique value for Bn,f is therefore determined according to Equation (5). Looking at  

Figure 1, the value of Bn,f is expected to be in the range 1016–1017 A/m2/0.1%. We now wonder if it 

may be convenient, for a fixed target value of Bn,f, to design our FEL driver in order to (un)balance the 

invariant n vs. the invariant I/E. That is, lower peak current or larger energy spread can be accepted at 

the expense of smaller emittance, and vice versa. Figure 1 suggests that this makes sense if the variation 

of those parameters remains within the hyperspace defined by Equations (2), (3) and (4). 

   

Figure 5. Contour plot of (from left to right) d,  and  as function of electron bunch peak 

current and rms normalized transverse emittance (see Equation (12)). All other beam and 

undulator parameters are listed in Table 1. 

A quantitative guideline to such balance can be found below, where d,  and  are expressed as 

function of Bn,f; by doing so, we make evident their dependence on the emittance (the transverse 

invariant) and the fractional energy spread (which contains the information on the longitudinal invariant).  
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Figure 6 shows d,  and  in the emittance and energy spread space, according to Equation (13). 

Now Bn,f is kept fixed and therefore larger emittance or energy spread implies larger peak current. Not 

surprisingly, d and  does not depend much on the energy spread, while they ask for opposite 

optimization of the emittance value. On the contrary, the right plot in Figure 6 for  suggests there is 

some room for balancing emittance and energy spread. Last but not least, one should consider that a 

lower energy spread favors narrow bandwidth FEL emission in externally seeded FELs, and higher 

harmonic content of the electron bunching in both SASE and seeded FELs. This is an additional, 

fundamental consideration that brings to our attention the importance of Bn,f for FEL performance (thus 

spectral properties in addition to intensity) instead of individual beam parameters, independently optimized.  

   

Figure 6. Contour plot of (from (left) to (right)) d,  and  as function of electron bunch 

fractional energy spread and normalized transverse emittance (all rms values, see Equation 

(13)). All other beam and undulator parameters are listed in Table 1. 

6. Importance of Electron Beam Projected Emittance  

6.1. Considerations for FEL Operation 

The physical meaning of the cooperation length is that the FEL coherence develops locally over 

relatively short fractions of the electron bunch length. For realistic electron beams, the slice emittance 

and slice energy spread may vary significantly along the bunch and thus produce local regions where 

lasing may or may not occur. One could therefore argue that only slice electron beam quality is of 

interest, with each slice being as long as the FEL slippage length. In practice, however, other 

considerations related to the electron beam control and optimization of the FEL performance justify an 

optimization of both slice and projected beam emittances [49,58,59]. In the following, we extend the  

3-D gain length theory to include the influence of the projected transverse emittance. For an inclusion 

of the projected longitudinal emittance the Reader is kindly referred to [48]. 

The need to control beam size and angular divergence along the undulator calls for measurements 

and the manipulation of the electron beam Twiss (envelope) parameters, which must be matched to the 

design Twiss parameters [60–62]. As a practical matter, optics matching is routinely performed 

experimentally by measuring the projected electron bunch transverse size [63]. From an operational 

point of view, it is therefore important to ensure that the projected transverse emittances and Twiss 

parameters be as close as possible to the slice ones, because this guarantees that most of the bunch slices 

are matched to the design optics and that they overlap in the transverse phase space. During beam 
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transport and acceleration, at least two collective effects threaten locally to offset bunch slices in the 

transverse (and longitudinal) phase space, namely coherent synchrotron radiation (CSR) and geometric 

transverse wakefields (GTW) (for a review of these topics, see for example [49]). Specific optics designs 

can be adopted to minimize these collective effects.  

We also want to stress why the projected emittance can be considered a good marker for  

externally-seeded FEL performance. In HGHG FELs, the harmonic emission originates with a coherent 

electron energy modulation induced by an external laser, that interacts with the electron beam in a short, 

relatively longer period undulator (the “modulator”). Modulation at the seed laser wavelength provides, 

with the additional aid of a dedicated dispersive magnet, a microbunching rich in harmonic content. The 

electron beam finally radiates in a shorter period, longer undulator (the “radiator”). Output HGHG FEL 

properties reflect the high longitudinal coherence of the seeding laser, which can be tens to hundreds of 

femtoseconds long. In order to maximize the FEL parameter (Equation (2)) and the peak current, the 

final bunch duration is commonly specified to be only as long as the seed laser duration plus some room 

for accommodating the shot-to-shot arrival time jitter of the electron bunch with respect to the seed laser. 

Consequently, high performance from a seeded FEL requires uniformity of the slice beam parameters 

over most of the bunch duration in order to ensure the same strength of lasing from different slices. Thus, 

seeded FELs also require a large value of Bn,f, the brightness referred to projected transverse and 

longitudinal emittances. 

6.2. 3-D Gain Length Including Projected Emittance 

GTW and CSR perturb individual bunch “macro-slices” both in transverse configuration and velocity 

space. Neglecting for the moment any slice emittance growth from the injector to the undulator, the 

projected emittance growth is entirely due to mismatch of the bunch macro-slices in the transverse phase 

space. We take this growth into account through the mechanism described by  

Tanaka et al. [56]. In that work, the authors identify two distinct processes that increase LG. In the 

literature, the first effect is referred to as the (lack of) electron-photon transverse spatial overlap along 

the undulator. The second one describes the accumulation of longitudinal phase error between electrons 

and radiation by virtue of the slowing down of individual electrons due to their local angular divergence. 

We recognize that the electrons’ angular divergence has two contributions: one is incoherent and due to 

the non-zero beam emittance as depicted in Xie’s [53] and Saldin’s [54] models; the other is coherent, 

originating from the possible tilt of the macro-slice centroids with respect to the reference trajectory. 

The coherent divergence adds to (and in some cases, surpasses) the incoherent one and may amplify the 

effect of bunching smearing. One source of coherent divergence occurs when each macro-slice is 

transversely kicked by collective effects in the linac and can move along the undulator on a trajectory 

different from that of other macro-slices. If  is the rms z-projected angular divergence of the 

macro-slice centroids at the undulator, and the charge transverse distribution at the undulator is matched 

to some design Twiss parameters, then the determinant of the so-called “sigma matrix” [64] computed 

at the undulator can provide the beam projected emittance as a function of  and u: 

2

coll
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coll



Photonics 2015, 2 333 

 

 

 
 

(14) 

with n,0, n,f being the initial (unperturbed) normalized and the final normalized emittance in the plane 

of interest, respectively, and  the relativistic Lorentz factor at the undulator. Tanaka’s formula for the 

gain length can be revised via the following ansatz to estimate the 3-D gain length in the presence of 

collective effects [48]: 

 (15) 

where LG,3D is the 3-D power gain length as calculated by Xie [53] and . The electron beam 

slice transverse emittance and the slice energy spread at the undulator are taken into account in LG,3D; 

the information on the projected emittance growth, which is uniquely determined by the initial beam 

parameters and the linac setting [58], is brought about by . The range of application of  

Equation (15) is < ; this describes the approximate physical picture in which larger values of 

are expected to inhibit the FEL process. Equation (15) aims to generalize Xie’s formalism, so that 

LG,coll reduces to LG,3D either for null collective effects = 0 or large u, for any pre-set emittance 

growth, as shown in Equation (14) and in Figure 7.  

 

 

Figure 7. Mechanism of emittance growth in the transverse phase space, due to kicks by 

collective effects (cartoon). (a) Two macro-slices are displaced along the direction of the 

kick with respect to an unperturbed macro-slice (inner centered ellipse). The projected 

emittance has grown (outer ellipse). (b) Same as in (a), after /2 betatron phase advance. 

The area of the outer ellipse remains constant after the kick. (c) The beam is matched at the 

entrance of the undulator to some design Twiss parameters. The optics is smooth in a way 

that Twiss parameters  and  vary little along the undulator (dashed outer ellipses). Since 

u is small, the macro-slices are largely dispersed within the angular divergence 

corresponding to  (solid line ellipse). (d) Same as in (c), but with u large. The 

macro-slices largely overlap within angular divergence, i.e.,  (solid line ellipse). 

Picture published in [48]. Copyright (2014) by The American Physical Society. 
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It is worth pointing out that Equation (15) aims primarily to identify the dependence of the gain length 

on the misalignment of bunch slices in the transverse phase space. In this sense, the  term at the 

denominator should be taken as indicative. The only experimental attempt, to the author’s knowledge, 

that was carried out to verify such a dependence was reported in [57]. There, a fitting was applied to 

experimental results and the resultant coefficient showed a deviation from the analytical model, even if 

the dependence on the projected emittance was confirmed. A discussion on the possible reasons behind 

the partial agreement of experimental results and the analytical model can be found in [48]. In general, 

one could imagine that the numerical coefficient at the denominator of Equation (15) depends in turn on 

the range of electron beam parameters under consideration. 

 

Figure 8. Gain length as function of the average betatron function in the undulator: analytical 

(lines) and from Genesis simulation results (symbols) (data from Table 1 in [44]). Error bars 

show the maximum variation of the gain length fit over several simulation runs. For each 

run used to fit Lg,coll (blue circles), several random distributions of the bunch’s macro-slices 

in the transverse phase space were generated. In this case, each distribution (in each 

transverse plane) corresponds to a normalized projected emittance of 2.3 m, while the slice 

emittance is 0.5 m for all slices. The projected beam size is forced to fit the average betatron 

function selected for that run. For the two other cases shown in the Figure, the projected and 

the slice normalized emittances are equal, with value 0.5 m (green triangles) and 2.3 m 

(red squares), respectively. The average betatron function used for the abscissa is the 

geometric mean of the horizontal and the vertical  averaged along the undulator. Picture 

published in [48]. Copyright (2014) by The American Physical Society. 

A quantitative comparison of LG,coll and LG,3D as function of u is shown in Figure 8. The  

Xie-defined gain length LG,3D was computed for beam slice normalized emittances of 0.5 m (green 

dashed-dotted line) and 2.3 m (red dashed line). In these cases the projected emittances coincide with 

the slice values since all slices are well aligned in phase space. A bunch slice was defined as long as  
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3 m, which is longer than the cooperation length (1 m), and sufficiently shorter than the undulator 

total slippage length (10 m). LG,coll was computed for a normalized slice emittance of 0.5 m but a 

2.3 m normalized projected emittance (blue solid line). The larger value of the latter is determined by 

the misalignment of the bunch slices in the phase space. The analytical predictions are in good agreement 

with the simulation results obtained with the Genesis code [65]. Most of UV and X-ray FELs tend to 

have u small in order to maximize the transverse overlap of electrons and photons in the undulator. 

Figure 8 suggests that a beam focusing less tight than foreseen for an ideal beam, might lead to better 

results for the situation of a highly diluted projected emittance.  

The physics depicted so far applies in principle to both SASE and externally seeded, high gain FELs 

because, independently from the FEL start-up signal, they both rely on the amplification of undulator 

radiation through the formation of bunching at the resonance wavelength. In practice, however, in a 

SASE FEL the entire bunch participates to lasing, while for externally seeded FELs generally only the 

seeded potion of the electron bunch is relevant to lasing. In other words, the present analysis applies only 

to the lasing (seeded) portion of the electron bunch. 

6.3. Optimization Study 

We assume that the CSR and the GTW kicks to be uncorrelated, therefore adding in quadrature. 

According to Equation (14), the final normalized (horizontal) emittance subject to the effects of CSR in 

n consecutive compression stages and to GTW in m linac sections, is provided by the determinant of the 

“sigma matrix” computed at the linac end [48]: 

 
(16) 

The identity of Equation (16) and Equation (14) allows us to compute  once u and n,f are 

known. The “kick factors” depend on the electron beam charge, duration, energy, and Twiss 

parameters. An expression for the kick factors is given in [48] but a discussion of their analytical 

derivation is too detailed for this article. Nevertheless, it is worthwhile to stress here that  have 

opposite dependence on the bunch length, whereas the former is larger for shorter bunches. This suggests 

that an optimum value for the bunch duration at the undulator can be found that minimizes the overall 

impact of CSR and GTW on the projected emittance and thus on Bn,f. Figure 9 shows the 5-D normalized 

brightness. The degradation factors introduced in Equation (5) now take into account the impact of CSR 

and GTW transverse kicks to the bunch slices as the beam travels along the accelerator. The dominant 

contribution of either CSR or GTW on the projected emittance and final brightness at the undulator 

depends not only on the electron beam parameters (approximately the same values were adopted in the 

FERMI [66] and the LCLS linac [67]), but also on the accelerator wakefield and the compression 

strength. In fact, once the initial bunch charge, duration, and emittance are defined, a larger compression 

factor will determine a shorter bunch along the downstream accelerator, thereby a weaker effect from 

GTW but also a larger emittance growth by CSR in the compressor itself. Moreover, similar electron 

beam parameters and compression strengths do not ensure the same final brightness in accelerators that 

adopt RF cavities of different internal geometry. The latter is strictly related to the strength of the GTW 
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that in Figure 9 is shown to dominate the brightness in FERMI (left plot), while it is almost transparent 

to beam quality in the LCLS case (right plot).  

  

Figure 9. Electron beam z-projected five-dimensional (5-D) brightness, as function of the 

bunch length compression factor, for a 250 pC beam in the FERMI (left plot) and the LCLS 

S-band linac (data from [67]). The nominal (unperturbed) brightness is in dashed line, the 

effective (perturbed) brightness is in solid line, coherent synchrotron radiation (CSR, circles) 

and geometric transverse wakefield (GTW, squares) dominated brightness is also shown. 

The dash-dot line identifies the operational compression factor. The two linacs differ in the 

strength of the GTW, which governs the brightness of the FERMI beam. CSR effects 

dominate in LCLS, instead, due to much stronger compression. Pictures published in [58]. 

Copyright (2014) by The American Physical Society. 

Figure 10 shows that an optimum can be found for the 6-D brightness as function of the compression 

factor. Compared to the 5-D brightness in Figure 9, the final uncorrelated energy spread (assumed to be 

linearly proportional to the compression factor) is now included. Bn,f is lowered w.r.t the ideal (invariant) 

case for the following reasons: at small C, a long bunch excites strong GTW, whilst at large C, CSR in 

the compressor becomes more important; also, an excess of energy spread is required by the laser heater 

to damp the microbunching instability. For beam and accelerator parameters similar to those in FERMI, 

an increase of the 3-D gain length by 15% w.r.t. the definition by M. Xie is predicted, due to degradation 

of the projected emittance; the slice emittance is assumed to be preserved as at the injector level. More 

dramatic effects on LG,coll are expected if the compression factor is not properly set in order to balance 

and partially cancel CSR and GTW kicks. 
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Figure 10. The final 5-D and 6-D normalized brightness and the collective angle are 

evaluated vs. the compression factor in BC1 (left panel), for a 500 pC bunch charge in the 

FERMI S-band linac (data from [48]). The 3-D gain length (right) is evaluated in the  

M. Xie sense and in presence of collective effects, for the same range of compression 

strengths. Pictures published in [48]. Copyright (2014) by The American Physical Society. 

7. Conclusions  

Merit functions of high gain SASE FELs have been reviewed for the 1-D; cold electron beam limit. 

They allow a preliminary estimation of electron beam and undulator parameters. Three different 

approaches to the design of an FEL linac-driver; depending upon FEL and user requirements; have been 

discussed. The dependence of the M. Xie-defined 3-D gain length on the electron beam 6-D normalized 

brightness has been analyzed; permitting a more detailed characterization of the electron bunch slice 

parameters. The model has further been extended to the inclusion of projected transverse emittances 

through a re-definition of the 3-D gain length; consistent with the well-known one of  

M. Xie when the projected beam parameters collapse to the slice values. This extended 3-D model allows 

the FEL designer to further optimize the design parameters; for example; Twiss parameters in the 

undulator and electron bunch length compression factor. 

In summary, the analysis provided in such a ready-to-use form highlights the need for different 

approaches to FEL design, primarily depending on the FEL wavelength. When bunch slice parameters 

are considered, the opposite dependence of the FEL gain length upon radiation diffraction and  

non-zero transverse emittance effects lead to an optimum value for the undulator average betatron 

function. An analogous compromise for the value of u must be reached when projected emittance 

growth due to CSR and GTW is also taken into consideration. In this case, the FEL 3-D, z-projected gain 

length may deviate considerably from the M. Xie value if the compression factor is not properly set. 
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