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Abstract: This paper studies constructing advanced effective materials using arrays of
circular radially-anisotropic (RA) cylinders. Homogenization of such cylinders is considered
in an electrodynamic case based on Mie scattering theory. The homogenization procedure
consists of two steps. First, we present an effectively isotropic model for individual cylinders,
and second, we discuss the modeling of a lattice of RA cylinders. Radial anisotropy brings us
extra parameters, which makes it possible to adjust the desired effective response for a fixed
frequency. The analysis still remains simple enough, enabling a derivation of analytical
design equations. The considered applications include generating artificial magnetism
using all-dielectric cylinders, which is currently a very sought-after phenomenon in optical
frequencies. We also study how negative refraction is achieved using magnetodielectric
RA cylinders.
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1. Introduction

Much theoretical and experimental work has been done in research on advanced artificial
electromagnetic metamaterials in recent years [1]. One of the major objectives has been the realization
of a negative refractive index, which is required for constructing a perfect lens [2,3]. However, negative
refraction does not manifest in naturally-existing materials. Instead, it requires a double-negative (DNG)
medium, where both material parameters, permittivity ε and permeability µ, are simultaneously negative.
Negative permittivity is observed for some metals at optical and UV frequencies, making them capable
of supporting plasmonic waves and resonances. The study of plasmonics [4] has hence been closely
related to metamaterials research.

Negative µ is still something that needs to be achieved artificially using, for instance, split-ring
resonators (SRR) [5]. However, metallic structures are usually lossy, and as their performance is largely
based on geometric details, their response becomes anisotropic, and they are only applicable for a certain
polarization and certain angles of incidence. In the visible regime, metals also lose their conductivity
and become plasmonic. That is, creating a homogeneous material with negative refraction for visible
light requires optical magnetism, which is not naturally available nor realizable using conducting
metallic structures.

Therefore, an alternative approach has been to consider all-dielectric metamaterials based on Mie
resonances [6–8]. Dielectric materials usually have lower losses, and their dispersion is more moderate in
comparison to metals, making the possible applications more broadband. Their analysis is based on Mie
scattering theory, which can be analytically applied for 3D spheres and 2D cylinders [9,10]. However,
other geometries have been considered, as well. The efforts toward achieving optical magnetism
are extensively reviewed in [11], and experimental results have been reported, e.g., for spheres [12]
and cubes [13].

Effective materials based on Mie resonances consist of collections of resonant particles. This
homogenization procedure was considered for a cubic lattice of spheres by Gans and Happel [14] already
in 1909 (In German), and their result was applied for rain drops by Stratton [15] in 1930. However, the
paper of Lewin [16] from 1947 is nowadays much better known. Since then, many others have followed
this approach [17–26]. Using only isotropic dielectric spheres, the DNG condition is very difficult to
achieve. Therefore, different authors have considered, e.g., magnetodielectric spheres [19], spheres of
two different sizes [22,23] and layered structures [21,25,26].

Already earlier, magnetic activity and negative permeability were predicted for high-permittivity
(ferro)dielectric cylinders [6]. Furthermore, [27–30] apply the Mie theory for circular cylinders, which
is also our approach in this paper. Dynamic polarizability tensors of circular cylinders are studied
in [31,32], and [33] gives a more general overview on the cylindrical Mie resonances. A more
mathematical approach to the homogenization problem is given, e.g., in [34]. Again, achieving the DNG
condition using only dielectric cylinders seems challenging. Therefore, [30] suggests a hierarchical
approach of using two kinds of cylinders of different size scales. Unlike for spheres, the response
of cylinders depends on the polarization. In [27], it is speculated how, by combining both transverse
electric (TE) and transverse magnetic (TM) resonances, a DNG region can be achieved using only
high-permittivity dielectric rods. However, [35] experimentally shows that the DNG condition can be
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achieved for such rods using only TM polarization, where the electric field is parallel to the cylinder
axis. On the other hand, [36] reports numerical results that question the validity of this homogenization
approach.

Moreover, experimental results for THz-range negative µ have been reported for non-circular
dielectric rods [37], and [38] numerically considers optical DNG condition for hybrid stacked
rectangular rods.

In this article, we suggest a composite metamaterial, where the inclusions are circular
magnetodielectric radially-anisotropic (RA) cylinders. The electrostatic analysis of RA cylinders is
considered in [39,40], and the Mie theory is applied for them in [41–43]. Papers [41] and [40]
consider using cylindrical RA shells for cloaking purposes, whereas [42,43] focus on the peculiarities
of light scattering from plasmonic RA cylinders. For the analysis, occurrence and applications of 3D
radially-anisotropic spheres, see [44,45] and the references therein. Mie resonances of anisotropic
spheres have also been studied in [46], but the anisotropy is given with respect to rectangular coordinates.
Herein, we study how the intrinsic material parameter components affect the Mie resonances of RA
cylinders and consider the retrieval of the effective parameters εeff and µeff of a homogenized lattice
of cylinders.

The homogenization process of RA cylinders builds on different levels, as depicted in Figure 1. As
a realization of an RA cylinder, we can consider a structure that consists of either adjacent sectors or
concentric layers of two or more materials. If the number or alternating sectors/layers is large enough
and the intrinsic details of the cylinder are very small with respect to the wavelength, the cylinder shows
different responses in radial and tangential directions. Such structures could then be modeled radially
anisotropically with material parameters of dyadic form, ε and µ, whose components are constants in
cylindrical coordinates. A similar case of internal homogenization of a layered 3D sphere is studied
in [47]. Building on Mie scattering theory, we first model an individual cylinder effectively isotropically,
which can also be referred to as internal homogenization (see Figure 1a).

The second level of homogenization is to consider an infinite square lattice of cylinders with lattice
constant d, which is further modeled as an effective medium with material parameters εeff and µeff, as
shown in Figure 1b. The objective of this paper is to show that these effective parameter values can be
tailored for a certain frequency by tuning the occurrence of the electric and magnetic Mie resonances
of the individual RA cylinders by appropriately choosing the components of the intrinsic dyadics ε and
µ. The real virtue of radial anisotropy is that it provides useful extra parameters, but the geometry itself
remains canonical. Hence, the scattering analysis for RA cylinders is not significantly more complicated
compared with the ordinary isotropic case.

This paper approaches the problem from a theoretical point of view, that is, for instance, considering
possible realizations of the suggested structures in Figure 1a with given material parameter values is
left out of scope at this stage. We, however, aim to find configurations with material parameter values
within a somewhat feasible range. Neither do we consider any specific frequency range, but the results
are scalable as far as the unit cell size d can be considered much smaller than the wavelength of
impinging fields. The possible applications that we consider include creating and tuning an artificial
magnetic response using all-dielectric cylinders, which would prove very useful in the visible range,
where natural magnetism is negligible. Another intriguing objective is double-negative (DNG) materials.



Photonics 2015, 2 512

In previously-mentioned articles, the DNG effect is usually sought without considering the actual εeff

and µeff values. Our magnetodielectric RA approach instead aims at being able to tune the desired
effective material parameter values at the desired frequency. Especially, our target is to make the effective
material parameters satisfy εeff = µeff = −1, which gives us negative refractive index n = −1, being the
well-known condition for the perfect lens [2,3].

or

model
RA

ε, µ

(internal)

homogenization

εc, µc

(a) Homogenization of individual cylinders

εc

µc

unit cell

d ≪ λ

ρc

(external)

homogenization
εeff

µeff

(b) Homogenization of a lattice of cylinders

Figure 1. Schematic illustration of the homogenization procedure. RA, radially-anisotropic.

2. Scattering from an RA Cylinder

The material parameters for a cylindrical RA medium are given in the most general form as:

ε = ε0(ερuρuρ + εϕuϕuϕ + εzuzuz) (1)

µ = µ0(µρuρuρ + µϕuϕuϕ + µzuzuz) (2)

In the following, we study time-harmonic plane wave scattering from a circular RA cylinder using
time convention ejωt. Let the axis of the cylinder be along the z-axis and the incoming wave propagate
into the positive x-direction. The cylinder is surrounded by free space with wave number k0 = ω

√
ε0µ0.

The full scattering problem is solved as a superposition of two orthogonal polarizations.
For TEz polarization, the fields of the incoming wave propagating in x-direction are given as:

Hinc = uzH0ze
−jk0x (3)

Einc = uy
k0
ωε0

H0ze
−jk0x (4)

Hence, only the material parameter components ερ, εϕ and µz are visible to the impinging wave, and
the cylinder can actually be considered magnetically isotropic.
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For TMz polarization, the incoming fields are:

Einc = uzE0ze
−jk0x (5)

Hinc = −uy
k0
ωµ0

E0ze
−jk0x (6)

and the required material parameters are µρ, µϕ and εz, that is the cylinder seems only
magnetically anisotropic.

However, the problem needs to be solved mathematically only once, since due to the duality of
electromagnetic fields [48], the orthogonal solution is obtained by substitution:

E→ −H, H→ E, ε↔ µ (7)

Therefore, in the following, the analysis and all of the computational results are presented only for
the TEz polarization. This can be seen as a continuation from our previous RA studies [40,45], where
permittivity ε is always assumed anisotropic. Even though our analysis remains purely theoretical and
speculative considering the actual realization of the suggested material configurations, depending on
the frequency range, physically-available materials usually offer a wider variety of realizable values for
permittivity than for permeability, which also supports choosing this polarization. Note that all of the
results are applicable also for the TMz polarization transformed by the aforementioned simple duality.

2.1. Full-Wave Solution

Following [41–43], we solve the scattering coefficients for a TEz polarized plane wave that is incident
on an RA cylinder with radius ρc. The incoming time-harmonic magnetic field with unit amplitude,
H0z = 1, is given as:

Hz,inc = e−jk0x = e−jk0ρ cos(ϕ) =
∞∑

n=−∞

(−j)nJn(k0ρ)ejnϕ

= J0(k0ρ) + 2
∞∑
n=1

(−j)nJn(k0ρ) cos(nϕ), ρ > ρc

(8)

We write the scattered magnetic field as:

Hz,scat = −a0H(2)
n (k0ρ)− 2

∞∑
n=−1

an(−j)nH(2)
n (k0ρ) cos(nϕ), ρ > ρc (9)

where the negative sign follows from the notation of van de Hulst [9] and Bohren and Huffman [10].
Inside the RA cylinder, the magnetic field is:

Hz,in = b0J0(kinρ) + 2
∞∑
n=1

bn(−j)nJnγ(kinρ) cos(nϕ), ρ < ρc (10)

where γ =
√
εϕ/ερ and kin =

√
εϕ
√
µzk0.
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The tangential components of the corresponding electric field are:

Eϕ,inc =
jk0
ωε0

[
J ′0(k0ρ) + 2

∞∑
n=1

(−j)nJ ′n(k0ρ) cos(nϕ)

]
, ρ > ρc (11)

Eϕ,scat = − jk0
ωε0

[
a0H

(2)
0
′(k0ρ) + 2

∞∑
n=1

an(−j)nH(2)
n
′(k0ρ) cos(nϕ)

]
, ρ > ρc (12)

Eϕ,in =
jkin

ωε0εϕ

[
b0J

′
0(kinρ) + 2

∞∑
n=1

bn(−j)nJ ′nγ(kinρ) cos(nϕ)

]
, ρ < ρc (13)

and the continuity of the tangential fields:

Hz,inc +Hz,scat = Hz,in

Eϕ,inc + Eϕ,scat = Eϕ,in

at ρ = ρc yields for the coefficients:

an =

√
µzJn(x)J ′nγ(mx)−√εϕJnγ(mx)J ′n(x)

√
µzH

(2)
n (x)J ′nγ(mx)−√εϕJnγ(mx)H

(2)
n
′(x)

(14)

bn =

√
εϕH

(2)
n (x)J ′n(x)−√εϕJn(x)H

(2)
n
′(x)

√
µzH

(2)
n (x)J ′nγ(mx)−√εϕJnγ(mx)H

(2)
n
′(x)

(15)

where m =
√
µz
√
εϕ and x = k0ρc is the size parameter of the cylinder. Note that, in the case of an

isotropic non-magnetic cylinder, the scattering coefficients an reduce to the ones of [9] and [10], but have
an opposite sign compared with the ones obtained in [42] and [43]. Hence, the extinction, scattering and
absorption efficiencies Qext, Qscat and Qabs, respectively, are obtained from the Equation (14) as [10]:

Qext =
2

x
Re

{
a0 + 2

∞∑
n=1

an

}
(16)

Qscat =
2

x

(
|a0|2 + 2

∞∑
n=1

|an|2
)

(17)

Qabs = Qext −Qscat (18)

Based on the aforementioned duality of electromagnetic fields Equation (7), the scattering coefficients
for TMz polarization are given as:

aTM
n =

√
εzJn(x)J ′nτ (`x)−√µϕJnτ (`x)J ′n(x)

√
εzH

(2)
n (x)J ′nτ (`x)−√µϕJnτ (`x)H

(2)
n
′(x)

(19)

where τ =
√
µϕ/µρ and ` =

√
εz
√
µϕ. Equations (16)–(18) are directly applicable for Equation (19)

as well.



Photonics 2015, 2 515

2.2. Asymptotes of the Scattering Coefficients

The first magnetic and electric TEz resonances of the cylinder are revealed by the scattering
coefficients:

a0 =

√
µzJ0(x)J ′0(mx)−√εϕJ0(mx)J ′0(x)

√
µzH

(2)
0 (x)J ′0(mx)−√εϕJ0(mx)H

(2)
0
′(x)

(20)

and:

a1 =

√
µzJ1(x)J ′γ(mx)−√εϕJγ(mx)J ′1(x)

√
µzH

(2)
1 (x)J ′γ(mx)−√εϕJγ(mx)H

(2)
1
′(x)

(21)

respectively. Note that whereas a0 is only a function of εϕ and µz, the coefficient a1 also depends
on ερ in a rather indirect way through γ =

√
εϕ/ερ. At the long-wavelength limit, where x � 1,

the Equations (20) and (21) can be approximated by asymptotic forms, and the connection between
the material parameters and the scattering coefficients becomes much simpler. Applying the following
limiting forms of the small-argument Bessel and Hankel functions [10,43]:

Jν(x) ≈ xν

2νΓ(ν + 1)
(22)

J ′0(x) ≈ −x
2

(23)

H
(2)
0 (x) ≈ −j 2

π
ln
(x

2

)
(24)

H
(2)
1 (x) ≈ j

2

πx
(25)

we obtain:

a0 ≈ j
π

4
(µz − 1)x2 (26)

a1 ≈ j
π

4

√
ερ
√
εϕ − 1

√
ερ
√
εϕ + 1

x2 (27)

In other words, for cylinders small enough, the first coefficient a0 depends only on permeability µz
and the second one a1 only on permittivities ερ and εϕ.

3. Homogenization Approach for RA Cylinders

The homogenization procedure that we consider for RA cylinders consists of two different levels (see
Figure 1). First, we find the effective isotropic parameters for a single cylinder. We start from the static
limit and then expand the approach into electrodynamics using the asymptotes of the Mie scattering
coefficients. Finally, we consider a composite medium consisting of an array of RA cylinders, whose
effective material parameters are estimated using the Maxwell Garnett mixing rule. We further stress
that we only consider the TEz polarization, where the electric field is perpendicular and the magnetic
field parallel to the axis of the cylinder. Therefore, the obtained effective permittivities always refer to
the components transverse to the cylinder axis, and the effective permeabilities are the z-components
that are parallel to the cylinder.
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3.1. Homogenization of an Individual Cylinder

The coefficient a1 in Equation (27) can also be seen in the form:

a1 ≈ j
π

8
αx2 (28)

in agreement with [31,32], where:

α = 2

√
ερ
√
εϕ − 1

√
ερ
√
εϕ + 1

= 2
εc,stat − 1

εc,stat + 1
(29)

is the normalized quasi-static polarizability of the RA cylinder. The static effective permittivity of the
cylinder:

εc,stat =
√
ερ
√
εϕ (30)

is the geometric average of the RA permittivity components [40,42,43]. This means that from the outside,
the anisotropic cylinder is observed effectively isotropic. In the static limit, the observed permeability is
naturally just µc,stat = µz.

The next step is to replace the original material parameters ερ, εϕ and µz in Equations (26) and
(27) by frequency-dependent dispersive effective parameters εc(x) and µc(x) and assume that within the
considered range of x, the cylinder is electrically small enough, such that these expressions correspond
to the exact values of a0 and a1 computed using Equations (20) and (21). That is:

a0 ≈ j
π

4
(µc(x)− 1)x2 (31)

a1 ≈ j
π

4

εc(x)− 1

εc(x) + 1
x2 (32)

from which we get approximate formulas for the frequency-dependent effective parameters εc and µc of
an individual RA cylinder as:

εc(x) ≈ πx2 − j4a1
πx2 + j4a1

(33)

µc(x) ≈ 1− j 4a0
πx2

(34)

If the aim is to make the effective permittivity and permeability of a single cylinder be equal for a
certain size parameter x, εc(x) = µc(x), the scattering coefficients must satisfy:

a0 =
2a1πx

2

πx2 + j4a1
(35)

3.2. Homogenization of Composite Media Consisting of RA Cylinders

Moreover, the effective parameters for a lattice of cylinders can be estimated. Assume the cylinders
are embedded in a background with εb = µb = 1. Provided the cylinders remain electrically small
and the area fraction p = πρ2c/d

2 is small enough (see Figure 1b), the effective permittivity εeff can be
approximated using the Maxwell Garnett mixing formula [49] as:

εeff = 1 + 2p
εc − 1

εc + 1− p(εc − 1)
= 1− j 8pa1

πx2 + j4pa1
(36)



Photonics 2015, 2 517

As the magnetic field is parallel to the cylinder axes, the effective permeability µeff is just the average
over the cross-sectional area.

µeff = pµc + (1− p) = 1− j 4pa0
πx2

(37)

If we want the effective permittivity and permeability of the lattice of cylinders to be equal, εeff(x) =

µeff(x), the coefficients must satisfy:

a0 =
2a1πx

2

πx2 + j4pa1
(38)

Note the surprisingly small difference between Equations (35) and (38).
However, considering many metamaterial applications, it is usually important to obtain the certain

given values for the real parts of the material parameters. If we rewrite the expressions (33) and (34) as
εc = ε′c − jε′′c and µc = µ′c − jµ′′c , with a0 = a′0 + ja′′0 and a1 = a′1 + ja′′1, we obtain:

εc ≈
π2x4 − 16(a′21 + a′′21 )

(πx2 − 4a′′1)2 + 16a′21
− j 8a′1πx

2

(πx2 − 4a′′1)2 + 16a′21
(39)

µc ≈ 1 +
4a′′0
πx2
− j 4a′0

πx2
(40)

for a single cylinder, and:

εeff ≈ 1 +
8pa′′1(πx2 − 4pa′′1)− 32p2a′21

(πx2 − 4pa′′1)2 + 16p2a′21
− j 8pa′1(πx

2 − 4pa′′1) + 32p2a′1a
′′
1

(πx2 − 4pa′′1)2 + 16p2a′21
(41)

µeff ≈ 1 +
4pa′′0
πx2

− j 4pa′0
πx2

(42)

for the lattice of cylinders.
Let us assume the original material parameters ερ, εϕ and µz are purely real, so that the coefficients

can be conveniently written as:

an =
Un

Un − jVn
=

U2
n

U2
n + V 2

n

+ j
UnVn

U2
n + V 2

n

= a′n + ja′′n (43)

where:

Un =
√
µzJn(x)J ′nγ(mx)−√εϕJnγ(mx)J ′m(x) (44)

Vn =
√
µz Yn(x)J ′nγ(mx)−√εϕJnγ(mx)Y ′n(x) (45)

are real-valued. In this case, Equations (41) and (42) with (43) provide us a design rule to fix the real
parts of the effective material parameters by adjusting the original RA parameters ερ, εϕ and µz for a
chosen cylinder size parameter x and area fraction p. For µ′eff, we obtain:

µ′eff(εϕ, µz, x, p) = 1 +
4pU0V0

πx2(U2
0 + V 2

0 )
(46)

For ε′eff, the equation becomes slightly more complicated as:

ε′eff(ερ, εϕ, µz, x, p) =
π2x4(U2

1 + V 2
1 )2 − 16p2(U2

1V
2
1 + U4

1 )

π2x4(U2
1 + V 2

1 )2 − 8pπx2(U3
1V1 + U1V 3

1 ) + 16p2(U2
1V

2
1 + U4

1 )
(47)



Photonics 2015, 2 518

Herein, our approach to find the suitable parameters is to first fix the desired values of ε′eff and µ′eff, the
corresponding size parameter x and the lattice filling fraction p. Note that ε′eff does not necessarily have
to equal µ′eff. We could also choose different size parameters x for ε′eff and µ′eff. This would mean that the
desired values for ε′eff and µ′eff are obtained at different frequencies, as the physical size of the cylinder
must still remain the same. Then, either µz or εϕ is fixed, and the other one is solved from Equation (46).
Finally, the remaining parameter ερ can be solved using Equation (47).

3.3. Artificial Magnetism from All-Dielectric RA Cylinders

It is possible to create a magnetic resonance using purely dielectric RA cylinders just by setting εϕ
large enough. If this resonance is strong enough, even negative values of µ′eff are achievable. Let us
consider a case where the real part of the effective permeability of a lattice of all-dielectric RA cylinders
would be resonant, such that µ′eff = 0 for a certain value of the cylinder size parameter x. This parameter
should be chosen, such that the unit cells can be assumed small enough to ensure that the lattice is still
homogenizable. If the area fraction is chosen p = 0.2, which should be large enough considering the
effect of the individual cylinders in the effective Equations (36) and (37), but small enough to retain the
coupling between adjacent cylinders close to negligible to ensure the accuracy of the coefficients an and
the validity of Maxwell Garnett mixing rule. With the choice x = 0.15, the lattice period corresponds to
d ≈ λ/10.6 (see Figure 1b), which is assumed adequate in the following examples.

With these given parameters, the numerical solution of Equation (46) gives the required tangential
permittivity component εϕ ≈ 253. As the solution is based on the scattering coefficient a0, it does not
depend at all on the radial permittivity ερ, which can be chosen freely. Choosing ερ small enough, the
electric resonance of a1 occurs only at a much higher frequency, and in the vicinity of x = 0.15, the
obtained εeff remains close to the Maxwell Garnett estimate Equation (36), where εc is given by the static
value εc =

√
ερ
√
εϕ. For example, choosing ερ = 1 gives ε′eff ≈ 1.43. We can even make the lattice

electrically transparent by choosing ερ = ε−1ϕ , as found in [40]. Figure 2 presents the obtained µeff and εeff

using the aforementioned values ερ = 1, εϕ = 253, µz = 1, p = 0.2. The effective permeability shows
a Lorentz-type resonance crossing the zero at x = 0.15, whereas within the plotted range, permittivity
remains close to ε′eff ≈ 1.43 without noticeable dispersion.

3.4. Double-Negative Response from Magnetodielectric RA Cylinders

Let us then consider the possibility of having both ε′eff and µ′eff negative simultaneously. Especially,
we focus on the highly desirable case εeff = µeff = −1. Let us again choose p = 0.2 and the
condition ε′eff = µ′eff = −1 to occur at x = 0.15. Different RA configurations are presented in
Figure 3. It is mathematically possible to solve the required permittivity components to satisfy this
condition using only non-magnetic cylinders, choosing µz = 1. However, the required permittivity
values are not very realistic. The resonance of µ′eff again depends only on εϕ, which can be found
numerically from Equation (46) as εϕ ≈ 271. The electric resonance must then be adjusted by
ερ, which, however, affects the coefficient a1 Equation (21) only very weakly via the non-integer
order γ =

√
εϕ/ερ of the Bessel functions. Thus, the required ερ, obtained from Equation (47),
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Figure 2. Effective parameters µ′eff and ε′eff of a lattice of all-dielectric RA cylinders with
ερ = 1, εϕ = 253 and µz = 1 with area fraction p = 0.2. The lattice exhibits artificial
magnetism, and even negative values of µ′eff are achieved.

must be gigantic, in this case ερ ≈ 120, 200. Moreover, the resonance of ε′eff is unpractically
narrow (see Figure 3a).

To overcome this problem, we must allow the cylinder to have µz 6= 1. For example, the required
permittivities become ερ ≈ 1440 and εϕ ≈ 63.7 for µz = 5 (see Figure 3b), ερ ≈ 270 and εϕ ≈ 36.6

for µz = 10 (see Figure 3c), ερ ≈ 61.4 and εϕ ≈ 21.6 for µz = 20 (see Figure 3d), ερ ≈ 3.38 and
εϕ ≈ 5.80 for µz = 100 (see Figure 3e) and ερ ≈ 1.06 and εϕ ≈ 3.07 for µz = 200 (see Figure 3f).
From these results, we see that µz is the most effective parameter considering the scattering coefficients,
which is obvious, since the incoming magnetic field Hz is parallel to the (infinitely long) cylinders. By
choosing a larger µz, the required permittivity components respectively become smaller. Large µz shifts
the resonance of µ′eff into a smaller frequency, making the resonance also broader. The resonance of ε′eff

still remains quite narrow, which means that by the condition ε′eff = µ′eff = −1, the actual resonances are
shifted further apart, which only makes the design easier with more moderate permittivity values.

Moreover, we note that with small µz, the radial component ερ must be larger than the tangential
one εϕ, but with increasing µz, this inequality flips around. This means that in between, there is a µz
value, for which ερ ≈ εϕ. That is, the sought condition ε′eff = µ′eff = −1 can also be achieved using
an isotropic magnetodielectric cylinder. It can be numerically solved that the condition is satisfied with
ερ ≈ εϕ ≈ 9.94 and µz ≈ 53.6.

3.5. Effects of Different Design Parameters

We have studied the effective material parameters ε′eff and µ′eff of a lattice of RA cylinders as functions
of initial RA material parameters ερ, εϕ, µz, lattice area fraction p and cylinder size parameters x. As seen
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(b) ερ ≈ 1440, εϕ ≈ 63.7, µz = 5
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(c) ερ ≈ 270, εϕ ≈ 36.6, µz = 10
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(d) ερ ≈ 61.4, εϕ ≈ 21.6, µz = 20
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(e) ερ ≈ 3.38, εϕ ≈ 5.80, µz = 100
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(f) ερ ≈ 1.06, εϕ ≈ 3.07, µz = 200

Figure 3. Effective parameters µ′eff and ε′eff of a lattice of magnetodielectric RA cylinders
with area fraction p = 0.2. All configurations 3a–3f yield ε′eff = µ′eff = −1 at x = 0.15.
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from the presented results, it is relatively easy to tune the effective permeability µ′eff of the composite
consisting of RA cylinders. It is even possible to have negative permeability from purely dielectric
cylinders with only εϕ large enough, as seen in Figure 2. Moreover, allowing µz 6= 1, permeability µ′eff

can be effectively tuned by parameters µz and εϕ, whereas it is independent of radial permittivity ερ.
The effective permittivity ε′eff, instead, depends on all three parameters of the RA cylinders. Considering
achieving the double-negative response using small µz, the required ερ has to be respectively gigantic.
Therefore, allowing µz to be large, the desired magnetic and electric resonances can be tuned with more
moderate permittivity values.

The parameter x must be chosen small enough to ensure that the effective medium can be considered
homogeneous. This would mean that the lattice constant d should be at least of the order of λ/10 or
preferably even smaller. Shrinking x means bringing the cylinder resonances into lower frequencies,
which respectively requires increasing the material parameter values.

The lattice filling fraction p should also be kept small for two reasons. Firstly, the scattering
coefficients Equation (14) are derived for a single cylinder surrounded by free space. The cylinders
in the lattice must therefore be located wide enough apart to minimize the coupling between each other.
Secondly, it is known that the Maxwell Garnett mixing rule is only applicable for small fractions of
inclusions. On the other hand, making p larger helps to make the unit cell size electrically smaller, since
d = ρc

√
π/p (see Figure 1b). As seen from Equation (42), the value of p only affects the amplitude of

µ′eff, but for ε′eff (see Equation (41)), larger p both increases the amplitude and shifts the resonance into a
smaller frequency.

3.6. Omittance of Losses

A very important factor that we have neglected in the analysis above is the effect of material losses.
This is due to the simplicity of the analysis. Assuming purely real constituent material parameters
enables the simple division of scattering coefficients an into their real and imaginary parts, as shown in
Equation (43). Complex permittivity values also make the orders of Bessel functions Jnγ(x) complex,
which makes their numerical evaluation more complicated. Therefore, we leave the study of material
losses as an objective for future research and introduce the current analysis of the lossless case as a first
step towards understanding and evaluating the merits of the proposed structure.

The coefficients Equation (14) are complex numbers, and hence, the obtained εeff Equations (41)
and µeff (42) are complex-valued. Considering the material parameters, the principle of causality also
states that a resonant real part requires a resonant imaginary part. In this particular case of resonant
magnetodielectric inclusions, the effective parameters follow the Lorentz dispersion model. However,
the imaginary parts are only significant in the vicinity of the resonances, and in this article, we have
only considered and presented the real parts. The imaginary parts of the effective parameters εeff and µeff

must naturally arise from the losses of the intrinsic material parameters ερ, εϕ and µz. Therefore, the
presented model for tuning the real parts of the effective medium should be seen as an approximation in
the case of negligibly small material losses.

Considering the case in Figure 3 of achieving the condition ε′eff = µ′eff = −1 that is required for
superlensing, the losses are especially detrimental [50–52]. Therefore, the two last configurations (see
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Figure 3e and 3f) are the most suitable, since the actual resonances occur on lower frequencies and
around the point where ε′eff = µ′eff = −1 the dispersion of the curves is more moderate. This also implies
that the corresponding imaginary parts ε′′eff and µ′′eff have already been significantly attenuated from their
maximum resonant values.

4. Conclusions

In this paper, we theoretically studied constructing an effective medium using an array of RA cylinders
under TEz excitation. We derived approximative analytical models for material parameters ε′eff and µ′eff as
functions of five design parameters, namely radial and tangential permittivities and the axial permeability
of the individual cylinders, ερ, εϕ and µz, respectively, area fraction p of the cylinders in the lattice and
the fixed cylinder size parameter x = k0ρc, which depends on the frequency and the cylinder radius.

We introduced a homogenization method for RA cylinders based on their Mie scattering coefficients
and showed how the anisotropy provides additional parameters for tuning the effective response without
making the analysis much more complex. We also discussed two possible applications. First, we studied
the magnetic response of an all-dielectric cylinder. It is known that even isotropic dielectric cylinders
support magnetic Mie resonances and can be applied in constructing mu-negative (MNG) materials. Our
analysis revealed that the lowest order magnetic resonance, however, only depends on the tangential
permittivity εϕ of the cylinder. For an RA cylinder, the radial component ερ remains a free parameter
and can be used in tuning also its electric response.

Second, we showed that all-dielectric RA cylinders can also manifest a double-negative response.
Especially, we considered obtaining negative refractive index n = −1 at a given frequency. However, for
the chosen TEz polarization, the required permittivity components had to be enormous, and the achieved
bandwidth was rather narrow. By allowing the cylinder to be also magnetic in the axial direction, µz > 1,
the DNG condition could be adjusted more effectively and with more moderate permittivity components.
The last two example configurations shown in Figure 3e and 3f start to resemble a complementary case
of [35], where for TMz polarization, a double-negative region is theoretically and experimentally found
for non-magnetic isotropic rods with very large permittivity. However, in our RA case, allowing the
permittivity components ερ 6= εϕ 6= 1, we have free parameters for (theoretically) tuning the desired
DNG value for chosen frequency.

Similar homogenization for spherical particles is considered in several papers based on the seminal
work of [14–16] (see also the review articles [7] and [8] and the references therein). The two lowest Mie
resonances for a sphere are given by the scattering coefficients a1 and b1 [10]. Due to the spherical
symmetry, the corresponding expressions for the effective parameters of a mixture of spheres are
symmetrical functions with respect to coefficients a1 and b1, whereas the asymptotes of these coefficients
are symmetrical with respect to the original relative material parameters εs and µs of an isotropic
magnetodielectric sphere. This means that the condition εeff = µeff for a lattice of magnetodielectric
spheres, which follows from a1 = b1, is easily achieved by choosing εr = µr [19]. This is not the case
with cylindrical inclusions. As can be seen, the Equations (26) and (27), (33) and (34) or (36) and (37)
do not share a similar form with each other.
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A realization that uses cylinders is easier to construct, as they would need to be supported only from
their ends, but spherical inclusions always need some supporting background material. Introducing an
additional background material often lowers the contrast between the inclusions and the environment,
which further dampens the scattering from the inclusions. On the other hand, cylindrical geometry has a
different response for two orthogonal polarizations, whereas spheres would construct materials that are
polarization independent. Hence, we will continue with similar studies for radially-anisotropic spheres.

In our analysis, we neglected the effect of losses for simplicity and obtained an approximative model
that can be seen as a limiting case of vanishingly small losses. Therefore, taking the actual effects
of losses into account in future research is crucial. It is also important to study the validity of the
homogenization models with respect to increasing inclusion size parameters. Alternatively, it would be
interesting to study how radially-anisotropic inclusions behave in the photonic regime.

The benefits of RA inclusions are based on the increased variety of intrinsic material parameter
components, whereas their geometry itself may remain canonical. Hence, the mathematical analysis
of RA cylinders and spheres is not significantly more complicated in comparison to the isotropic ones.
Moreover, RA geometries are rotationally symmetric, and to an outside observer, they even seem
effectively isotropic. The actual challenge in RA geometries, which we have not considered herein,
is finding the suitable natural materials and developing methods to physically construct, for example,
the structures suggested in Figure 1a. However, we see that this is worth pursuing, since RA materials
show huge potential considering the development of adjustable dielectric-based broadband and low-loss
artificial materials.
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