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Abstract: Hybridized decaying oscillations in a nanosystem of two coupled elements—a
quantum emitter and a plasmonic nanoantenna—are considered as a classical effect. The
circuit model of the nanosystem extends beyond the assumption of inductive or elastic
coupling and implies the near-field dipole-dipole interaction. Its results fit those of
the previously developed classical model of Rabi splitting, however going much farther.
Using this model, we show that the hybridized oscillations depending on the relationships
between design parameters of the nanosystem correspond to several characteristic regimes
of spontaneous emission. These regimes were previously revealed in the literature and
explained involving semiclassical theory. Our original classical model is much simpler: it
results in a closed-form solution for the emission spectra. It allows fast prediction of the
regime for different distances and locations of the emitter with respect to the nanoantenna
(of a given geometry) if the dipole moment of the emitter optical transition and its field
coupling constant are known.
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1. Introduction

Plasmon-enhanced fluorescence has a rather long history, and the amount of papers dedicated to
this phenomenon is huge (see, e.g., [1]). In the simplest and most practical case, this fluorescence
is obtained in a structure comprising two optically small elements coupled by the dipole-dipole
interaction. Element 1 is the fluorescent quantum emitter (QE), and Element 2 is the optically small
plasmonic nanoantenna (NA), also called the nanocavity or nanoresonator. Often, the radiated power of
plasmon-enhanced fluorescence can be calculated via the so-called Purcell factor FP [2]. The Purcell
factor describes the decay rate of the spontaneous emission in the presence of the NA [3]. Its increase
is equivalent to the gain in the radiated power at the emission frequency [4]. The enhancement of the
fluorescence by the NA implies FP > 1 (direct Purcell effect), and the suppression (inverse Purcell
effect) corresponds to FP < 1 [3,5–7]. When FP � 1, i.e., the decrease of the emission makes it not
measurable, the inverse Purcell effect is called fluorescence quenching (see, e.g., [8–12]). The cases
when the spectral line of the fluorescence nearly keeps its shape and only the level is modified is usually
called the weak coupling regime [4]. Is it coupling between Elements 1 and 2?

Usually (see, e.g., [3,5–7]), weak and strong coupling regimes are distinguished by comparing the
so-called emitter-field coupling constant χ = [|d|2ω0/(2h̄ε0εrV )]1/2 with the decay rate of the NA γ2

and the non-radiative (due to dissipation) decay rate of the excited state of the QE γ1dis [4]. Here, ω0 and
d = e〈2|r|1〉 are the frequency of the excited-to-ground state transition (2 → 1) and its dipole moment
(matrix element), respectively, e is the electron charge, V is the effective volume of the resonator mode,
ε0 is the vacuum permittivity and εr is the relative permittivity of the host medium. (We use the SI units;
the result in the CGSunits can be obtained by replacing ε0 by 1/(4π).)

The case of the weak emitter-field coupling (WEFC) corresponds to χ < γ1dis. In practical cases,
the dissipative losses in both QE and NA are much smaller than the radiative ones. Then, the WEFC
condition can be written as χ � γ1, where γ1 is total decay rate of Object 1. In this condition, the
frequency of the spontaneous emission remains equal to ω0, and the interaction may only lead to a
certain modification of the decay rate. Respectively, the dipole moment of the optical transition d of the
QE and its classical dipole moment d1 remain unperturbed. At the emission frequency d1(ω0) = 2d, and
the shape of the emission line remains Lorentzian [4]. However, does the weakness of the emitter-field
coupling obviously mean the weak mutual coupling (WMC) between the QE and the NA and vice versa?
This question needs to be analyzed.

In the case of the strong emitter-field coupling (SEFC), χ > γ2. It is known that the mutual coupling
is described by another constant ωR called the Rabi constant [4,13,14]. The strong mutual coupling
(SMC) of Objects 1 and 2 holds when ωR � γ1,2. Does SEFC obviously imply the SMC regime?

In the case of the strong mutual coupling (SMC), the spectrum of the plasmon-enhanced fluorescence
is noticeably hybridized [13] and corresponds to so-called Rabi oscillations. In quantum optics Rabi
oscillations are usually referred to as the amplitude modulation of the emission, which arises when the
emitter is excited by an incident wave whose frequency lies within the emission spectrum [4,14]. In
this resonant case, the emission is periodic and represents a beating oscillation. The simplest case is
that of the coherent pumping when the incident wave has the frequency exactly equal to ω0. The Rabi
modulation corresponds to frequencies ω± = ω0 ± ωR, where ωR = d · EV /h̄ is called either the Rabi
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interaction constant or Rabi frequency [4]. It represents one half of the beat frequency of the modulated
emission. Here, EV is the incident wave electric field amplitude (also called the vacuum field) at the QE
origin. Physically, the beating of the spontaneous emission corresponds to the periodic energy exchange
between the QE and the wave. During one half of the modulation period π/2ωR, the QE borrows the
power from the wave and in the next half-period returns it.

A similar modulation process may hold in the nanosystem of the QE coupled to the NA, whereas
the role of the incident wave is played by the secondary field of the NA [13]. This phenomenon
was called self-induced Rabi oscillations in the pioneering work [13]. It was later studied in many
works using the semiclassical model, which allows the quantitative agreement with the experiment (see,
e.g., [7,11,12,16,17]).

Definitely, the Rabi oscillations in the nanosystem QE plus NA can be interpreted as a purely classical
effect of splitting the eigenmode of two coupled oscillators. This effect is well known, and it is
not surprising that there were several attempts to use the classical model instead of the semiclassical
approach. The classical model is deterministic and rather simple, whereas the semiclassical model
results in the system of Langevin–Schrödinger equations of motion and requires difficult numerical
simulations. The classical model correctly describes the conditions of the Rabi splitting. In [13,14],
the authors successfully compared the bounds for the observed Rabi splitting to the predictions of the
classical model [15]. Notice that this classical model was initially developed not for the nanosystem of
the QE coupled to the NA. It was suggested in [15] for the mutual interaction of so-called Rydberg’s
atoms and only later, in [18], extended to the cavity-enhanced fluorescence. Notice that the applicability
of this model to Rydberg’s atoms is a priori much wider than to plasmon-enhanced fluorescence, because
these atoms are basically classical scatterers.

In [18], the authors considered a chain of N different springs loaded by N masses all coupled by
equivalent springs to a common mass. Alternatively, it can be referred to as a chain of series electric
circuits coupled by mutual inductances to a common circuit. This model was applied to describe the
nanosystem of N QEs interacting with the same single-mode resonator (such as a small semiconductor
cavity). It was shown that in the case of high dissipation in QEs, this classical model correctly predicts
the absorption spectrum of the array of fluorescent molecules located in the cavity. Later, this approach
was developed for the case N = 1 and applied to our nanosystem in [16,19,20,22]. It was shown that the
classical model in this case also properly predicts the conditions of the Rabi splitting and the absorption
spectra. However, the applicability of the model for spectra of plasmon-enhanced fluorescence was not
analyzed. How does one calculate these spectra in the case of SMC?

It is clear that between the weak and strong coupling regimes, there should be one or more regimes
that correspond to the intermediate coupling of the QE to the field. What happens with the emission rate
and spectrum in this intermediate case?

The semiclassical model answers all of these questions only after challenging simulations. The known
classical model [15,16,18–20,22] replacing the actual dipole-dipole interaction by the elastic coupling,
in our opinion, cannot properly predict the fluorescence spectra. We suggest a more elaborated model,
which also borrows one basic formula from quantum mechanics: a static polarizability of a two-level
system. The use of this formula allows us to fully fit the model to quantum optics. Similar to the known
elastic model, our model also results in closed-form solutions; however, unlike it, our solutions, in our
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opinion, should cover all known regimes beyond the case of a strong tunneling effect. At least the
three most important regimes of plasmon-enhanced fluorescence—the Purcell effect, Rabi splitting and
fluorescence quenching—are described by our model.

2. Theory

2.1. Elastic/Inductive Coupling

Let us reproduce the result of the known classical model of Rabi oscillations (see, e.g.,
[4,15,16,18,19]), which is considered in these and further works as a classical analogue of the quantum
system under study. Oscillators (e.g., two LRC-circuits or two springs with masses coupled by the third
spring) are described by a well-known system of differential equations:{

∂2x1

∂t2
+ γ1

∂x1

∂t
+ ω2

01x1 − q21x2 = 0,
∂2x2

∂t2
+ γ2

∂x2

∂t
+ ω2

02x2 − q22x1 = 0
(1)

For simplicity of writing, it is reasonable to restrict the analysis by the case of the exact resonance:
the eigenfrequencies of two oscillators are equivalent ω01 = ω02 = ω0. To avoid ambiguity, let us agree
that two coupled oscillators are circuits coupled by their mutual inductance M . Then, ω0 = 1/

√
L1C1 =

1/
√
L2C2, γ1,2 = ω0C1,2R1,2 are Lorentz’s decay factors of Circuits 1 and 2. Furthermore, in this case,

q1 = q2 = q ≡ ω0M/
√
L1L2 is the factor of mutual interaction having the dimensionality of frequency,

as well as the decay factors. The replacement of the time derivative by jω (the time dependence
exp(jωt) is selected) and equating the determinant to zero results in the equation for eigenmodes. Two
physically-sound solutions in the case γ1,2, q � ω0 take form (see, e.g., [16,18,19]):

ω± = ω0 − j
γ1 + γ2

4
±

√
q2 −

(
γ1 − γ2

4

)2

(2)

Equation (2) is, in fact, approximate, though its limits of validity have not been discussed in
[16,18,19]. The exact expression for the roots of the dispersion equation is derived and discussed below.
Since, namely, the Equation (2) has been analyzed in the literature, in this section, we briefly reproduce
this analysis. Below, a more elaborated original analysis is presented, and the reader may judge which
of them is more relevant. If q < |γ1 − γ2|/2 (this case in the literature is referred to as weak mutual

coupling), ω± = ω0− j(γ1 + γ2)/4± jξ, where ξ =
√

[(γ1 − γ2)/4]2 − q2. Since ξ < (γ1 + γ2)/4, both
roots are physical. In this case, the hybridization results in the distortion of the Lorentzian line shape.
This distortion is noticeable for q approaching |γ1 − γ2|/4. Another result is the modification of the
effective decay rate, i.e., Purcell’s effect. The regime of weak mutual coupling when the Purcell effect
is, however, noticeable was called overdamped in [18].

If q > |γ1 − γ2|/2 (this case is usually referred to as strong mutual coupling; however, below,
we explain that the applicability of this terminology needs to be revised), there are two complex
eigenfrequencies with distinct real parts Re(ω±). The case q � |γ1−γ2|/2 is referred to in the literature
as ultra-strong coupling (we explain below how to avoid this ambiguous terminology), when one can
neglect the small imaginary part of ω± and write an approximate formula of Rabi splitting:
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ω± ≈ ω0 ± q (3)

The factor q is identified with the Rabi frequency ωR in [11,14–16,18–20,22]. However, in none of
them is q calculated through the parameters of the nanosystem and compared with the known result
of quantum optics for ωR. It is difficult to compare the elastic model with the quantum one because
it is not clear how to calculate the effective mutual elasticity or mutual inductance M of two quantum
oscillators. There is even no evidence that this coupling is elastic/inductive. The only argument in favor
of the elastic model is the symmetry of coupling corresponding to Rabi oscillations [15,18,20]. Notice
that such a mechanical analogue of two coupled series LRC-circuits as a system of two non-identical
pendulums with masses m1,2 and lengths D1,2 coupled by a spring of elasticity M is described by the
set of Equation (1), where two coupling parameters q1 6= q2 are not equivalent in the case of the exact
resonance ((gm1 + MD1)m2D2 = (gm2 + MD2)m1D1), namely q1,2 = MD1,2/m1,2D2,1. If these
parameters are equal (symmetric coupling), the exact resonance is not achievable, except the trivial case
of two identical pendulums. The asymmetry of coupling is an argument against this model, considered
earlier only as a classical illustration of the quantum effect.

Equation (2) implies that the spectrum of fluorescence for both overdamped and hybrid regimes
should be different from Lorentzian. The same observation refers also to the absorption spectrum (when
the system is excited by an incident wave). For the absorption spectra, the fully classical model turned
out to be adequate. At least it was so for the special cases studied in [16,18,22]. For the spectra of
spontaneous emission, this model probably fails, since we have found in the literature not one successful
attempt to apply the elastic model for the evaluation of these spectra.

The first known attempt to develop the circuit model of emission beyond the approximation of two
elastically-coupled elastic oscillators was done in [21]. However, this work, though widely cited, is
wrong. The equivalent scheme of the dipole-dipole interaction suggested in [21] does not stand an
express analysis. First, in [21], the circuits describing the spontaneous emission (fluorescence) and the
response to the external field are drastically different, whereas the correct scheme of the nanosystem
treating it as a pair of dipole scatterers with perhaps internal sources is obviously unique. Second, the
impedance of free space is mistakenly included as a series load into the emitter circuit. This connection
obviously causes non-physical fluorescence spectra.

In fact, the radiation to free space in the circuit model is described not by the free-space impedance,
but by the radiation resistance. Moreover, the radiation resistance enters similarly Lorentz’s decay
factor γ of both Elements 1 and 2, whereas in [21], free-space impedance is included only in the
emitter circuit. A physically-sound circuit model that corrects and replaces the wrong model [21]
was suggested in our precedent work [23]. This model shows that the dipole-dipole coupling of two
circuits comprises all components: inductive, capacitive and resistive. The resistive component allows
the resonant enhancement of the effective radiation resistance of the QE and results in the Purcell effect.

2.2. Circuit Model of Coupling in Plasmon-Enhanced Fluorescence

The equivalent scheme of the QE (Object 1) coupled to a plasmonic NA (Object 2) suggested in [23]
is shown in Figure 1a. This scheme is unique for both emission and scattering. The applicability of
this scheme is restricted by the case of weak mutual coupling (WMC) of the QE and the NA. This
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restriction is related to the approximation of the ideal current generator. The WMC approximation
discussed above implies the unperturbed dipole moment of the NA d1. Really, the dipole moment d1
characterized by the certain effective length l1 of Dipole 1 (it enters the Lorentzian polarizability model of
the QE [23]) is linked to the effective current I1 as d1 = I1l1/jω. Therefore, the unperturbed d1 implies
the approximation of the current generator exciting the QE. This approximation was successfully used
in [23] in order to obtain the high Purcell factor of the QE enhanced by a plasmonic NA. Below, we will
show that this result corresponds to the case when the condition of WMC is combined with the condition
of intermediate emitter-field coupling (IEFC).

Our circuit model was validated in [23] by comparison with the exact solution for an explicit example:
a quantum dot located at an optically small, but sufficient (for the weak-coupling regime) distance
G = 10 nm from a golden nanosphere of a diameter of 40 nm. We obtained a very good agreement
for the Purcell factor over the whole spectrum. Here, it is worth noticing that the fluorescence line,
though it is a quantum effect, has a Lorentzian spectral shape.

Figure 1. (a) Equivalent scheme of a weakly-coupled quantum emitter and nanoantenna.
(b) One of the possible realizations of the spacer.

Figure 2. An equivalent scheme of a system of two coupled oscillators whose mutual
interaction is described by mutual impedance Z12 = Z21.
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In our model of the Purcell factor, both impedances Z1 (of the QE) and Z2 (of the NA) are series
connections of R, L and C elements:

Z1,2 = R1,2 + jωL1,2 +
1

jωC1,2

(4)

Here, R2 comprises the lossy component, which was taken into account for plasmonic NAs, whereas
dissipative losses in the QE were neglected (R1 was equal to the radiation resistance of the emitter).
Using this model, we derived the so-called inserted mutual impedance Zm, i.e., that effectively added to
Z1 due to the mutual coupling. This impedance does not depend on the generator exciting the system.

Now, let us go beyond the case of the WMC, i.e., drop the approximation of the current generator. Let
the current generator describing the optical transition be not perfect. The imperfect current generator
is that shunted by a resistor. In accordance with the equivalent generator theorem, such a current
generator is equivalent to the electromotive force (EMF) connected in series to the internal resistance
of the generator. This way, the resistor Rdis, describing the dissipation in the QE, appears in the general
equivalent scheme depicted in Figure 2. Though Rdis is not negligible anymore, this value is still not
relevant for our purposes, because γ1 � γ1dis. We still assume that γdis � γ, i.e., that the radiative
losses dominate in both QE and NA. For NA, this condition is obvious. As for QE, this condition holds
for crystalline quantum dots and for several types of dye molecules. The main modification compared
to Figure 1 is that now, the current I1 is variable. It makes the self-consistent solution possible. In this
scheme, EMFs E1 and E2 describe the source of emission, which is now delocalized and can be attributed
to both circuits. In accordance with the method of array impedances [25], two radiating coupled circuits
are described by a system of two Kirchhoff equations:

E1 = I1Z1 + I2Z12, E2 = I1Z21 + I2Z2 (5)

Complex amplitudes of currents I1,2 refer to the same frequency ω at which EMFs E1,2 and their
own impedances Z1,2 are considered. Mutual impedances Z12 and Z21 are equivalent Z21 = Z12, since
non-reciprocal elements are absent in the circuits. The inserted mutual impedance Zm derived in [23] is
related to Z12 as Zm = I1Z12/I2. Similarly, the inserted mutual impedance Z ′m effectively added to Z2

is related to Z12 as Z ′m = I2Z12/I1. Then, Equation (5) can be rewritten in the form:

E1 = I1(Z1 + Zm), E2 = I2(Z
′
m + Z2) (6)

Comparing Equations (5) and (6), we find Z12 =
√
ZmZ ′m. In accordance with [23], we have

Zm = (ηN)2/Z2, where η =
√
µ0/ε0εr is the wave impedance of the host medium and N is a

dimensionless coefficient describing the total coupling level. In [23], we have expressed N through
the effective lengths of dipoles l1 and l2:

N =
l1l2Aee

ωη
(7)

Here, η ≡ √µ0ε0εr and Aee is a dimensional coefficient determined by the geometry of the system.
It equals the field produced by the NA at the center of the QE normalized to the dipole moment of the
NA. This field is found in the quasi-static approximation. When the dipole moments of QE 1 and NA 2
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are collinear vectors, Aee is a real value [23]. In the simplest case, when Object 2 is a silver or golden
nanosphere of radius a, this value does not depend on frequency and equals [23]:

Aee =
1

2πε0εrr3
(8)

where r = a+ b+G is the distance between the centers of 1 and 2 (b is the effective radius of Object 1
and G is the gap between 1 and 2).

Repeating the same steps as we did in [23], deriving Zm for the mutual impedance inserted into the
2d circuit, we obtain Z ′m = (ηN)2/Z1. Therefore:

Z12 =
ηN√
Z1Z2

=
l1l2Aee

ω
√
Z1Z2

(9)

Eigenstates of the coupled circuits are found letting EMFs E1 and E2 vanish in (5) and equating the
determinant to zero:

Z1Z2 − Z2
12 = 0 (10)

After substitutions of Equations (4) and (9) to (10) in our case of the exact resonance L1C1 = L2C2 =

1/ω2
0 , we obtain the eigenmode equation:(

1− ω2

ω2
0

+ jωC1R1

)(
1− ω2

ω2
0

+ jωC2R2

)
= κ2 (11)

with a frequency-independent right-hand side, where it is denoted κ =
√
C1C2l1l2Aee. In accordance

with the circuit model of the dipole scatterer (see, e.g., [23]), C1,2R1,2 = γ1,2/ω0. Therefore,
Equation (11) can be rewritten in the form:

x4 − j γ1 + γ2
ω0

x3 −
(

2 +
γ1γ2
ω2
0

)
x2 + j

γ1 + γ2
ω0

x+ 1− κ2 = 0 (12)

for x = ω/ω0. Equation (12) with substitution q = κω0 fully coincides with Equation (6) of [18], i.e., the
equation of the elastic model. Therefore, it has two Equation (2) with substitution q = ω0Aee

√
C1C2l1l2.

Let us now call q the Rabi frequency and denote it q = ωR.
The criterion of mutual coupling is the same as in the elastic model. If ωR < |γ1 − γ2|/4, the main

result is the modification of the decay rate, i.e., direct or inverse Purcell’s effect. The Rabi birefringence
arises if ωR > |γ1 − γ2|/4, and for ωR � |γ1 − γ2|/4, the result simplifies to Equation (3). Below,
we will introduce also the concept of intermediate mutual coupling (MC), the regime in between SMC
and WMC regimes, when γ2,1 < ωR < γ1,2. This regime becomes relevant when the parameter χ
(emitter-field coupling) is involved together with the Rabi constant.

2.3. Why Is the Dipole-Dipole Interaction Similar to the Elastic/Inductive Coupling?

The question of why the dipole-dipole interaction gives the same result as the model of inductive
coupling is answered involving the theory of microwave filters [26]. This theory gives the general method
for calculating the eigenfrequencies of generally-coupled circuits; when they are connected through the
mutual capacitance, resistance and inductance. The general scheme of two arbitrarily-coupled series
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circuits Z1 and Z2 is shown in Figure 3. The arbitrary connectors of two circuits can be described
by an ABCDmatrix of a two-port network. The eigenfrequencies of this system are analyzed in [26]
through the elements of the ABCD matrix. If the coupling is reciprocal and symmetric, as is shown
in Figure 3a, we have A = D and A2 − BC = 1. Further, in the special case of the exact resonance
L1C1 = L2C2, symmetric coupling corresponds to A = 0 [26], and the two-port circuit shown in
Figure 3b represents the so-called impedance inverter. Then, the application of the ABCD matrix to the
load Z2 gives Zin = −C2/Z2 for the input impedance of the loaded two-port network. The coupling may
comprise all inductive, capacitive or resistive components. For resistive, capacitive, inductive or mixed
coupling C = jK, where K, called the dimensional coupling parameter, is a real value proportional to
1/ω [26]. In all of these cases, the dispersion equation of the equivalent circuit is Z1 +Zin = 0 and takes
the form Z1Z2 = K2.

Figure 3. (a) Symmetric coupling of two circuits. (b) An equivalent scheme of our system
represented via the impedance inverter (A = D = 0, B = −1/C = −jK, K > 0).

After substitutions Equation (4) and the result for K from [23], one may see that the analogy with
two different pendulums coupled by the spring does not hold. The model based on the electric near-field
coupling of two dipole scatterers [23] yields to the elastic model of [18]. Really, the input impedance
Zin, denoted as Zm, was found in [23] in the form Zm = (ηN)2/Z2, where N is given by Equation (7).
Then, the dimensional coupling parameter is equal toK = ηN ≡ l1l2Aee/ω. Then, the eigenfrequencies
are determined by the parameter κ′ = K(ω0)/

√
K1K2, where K1,2 =

√
L1,2/C1,2 [26]. It is easy to see

that κ′ = κ ≡ q/ω0 = ωR/ω0.
At this point, three models of mutual coupling meet one another. The model of elastic coupling of

elastic oscillators [18], that of the general RLC coupling of two circuits (see Figure 3a and [26]) and our
model [23] give the same dispersion equation. There are two reasons of this coincidence: the symmetry
of the dipole-dipole interaction and the exact resonance we have assumed. These two conditions make
the resistive, inductive and capacitive coupling non-distinguished via the coupling parameter K and,
therefore, via the dispersion equation.

To conclude this subsection let us notice that the Equation (2) is approximate, and in [26] and similar
handbooks, the exact solution is also absent. We have not found an exact solution in the literature and
obtained it using the standard Ferrari scheme for equations of fourth order:

ω± = ω0

√
1 + Φ2 − j γ1 + γ2

4
±
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√
ω2
R −

(
γ1 − γ2

4

)2

+

(
ω2
R + γ1γ2

4ω0

)2

+ j
γ1 + γ2

4
Φ (13)

where:

Φ =

√
−
(
γ1 − γ2

4

)2

+

(
ω2
R + γ1γ2

4ω0

)2

It is easy to check that the substitution of this solution exactly equates the left-hand side of
Equation (12) to zero. Usually, in plasmon-enhanced fluorescence, decay rates γ1 and γ2 are noticeably
different, and γ2 � γ1. Then, in the weak mutual coupling (WMC) regime (defined by the condition
ωR � γ2), Φ ≈ j(γ2 − γ1)/4 and ω2

R � (γ2 − γ1)
2/16. In this case, the difference between two

roots in Equation (13) vanishes, and ω± ≈ ω0 − jγ2/4. This clearly shows that the previously known
Equation (2) is not relevant, since it does not explain the regime when the two roots of the dispersion
Equation coincide in the presence of noticeable decay. This regime, when the fluorescence spectrum of
the QE is not distorted by the NA, whereas the decay rate of the system grows due to the presence of the
NA, is well known. This is the Purcell effect under weak mutual coupling. In the strong mutual coupling
regime (SMC), defined by inequality ωR � γ2, Equation (3) holds for both Equations (2) and (13).

These observation allow us to conclude that Equation (2) is less relevant than Equation (13) and needs
to be replaced. However, we will see below that in between the regimes of WMC and SMC, there is a
qualitatively different regime, called below intermediate mutual coupling. For this case, the analysis of
the fluorescence spectra based on the solution of the dispersion equation is not very relevant. There is
another way to calculate these spectra, which is applicable for all regimes. This way is the evaluation of
the dipole moment of the system.

2.4. Rabi Frequency in Quantum Optics

Effective dipole length l1 and electric capacitance C1 seem to be rather artificial values for a
QE. However, they have clear physical meaning as parameters of the Lorentz model of a quantum
object considered as a scatterer in the external field [4]. In accordance with this model, the dynamic
polarizability of the two-level quantum object is the single-resonance Lorentzian function:

α = α0

(
1− ω2

ω2
0

+ j
ωγ

ω2
0

)−1
(14)

The static polarizability α0 of any dipole scatterer is obviously expressed through its effective
capacitance and dipole length (see, e.g., [23]) α0 = Cl2. Therefore, the formula for the Rabi frequency
ωR/ω0 = κ =

√
C1C2l1l2Aee can be also written in the form:

ωR ≡ q = ω0κ = ω0Aee

√
α01α02 (15)

Here, the static polarizability α01 of the two-level QE can be expressed through the absolute value of
the transition dipole moment d [4]:

α01 =
2d2

h̄ω0

(16)



Photonics 2015, 2 578

and finally, Equation (15) becomes:

ωR = dAee

√
ω0α02

2h̄
(17)

Let us see how this classical model stands the comparison with the known results of a semiclassical
model of plasmon-enhanced fluorescence [13,14,16]. In accordance with this theory, the linear SMC
regime represents the Rabi oscillations of the emission. In our case of exact resonance, the difference
between the upper frequency ω+ and lower frequency ω− of the hybrid state equals the doubled
Rabi constant:

∆ω = 2ωR = 2
d · EV

21

h̄
(18)

Value ωR formally coincides with the standard formula for Rabi oscillations of a QE impinged by
an incident wave [4]. However, in the present case, EV

21 is the so-called vacuum field of the NA [13].
This vacuum field corresponds to the resonant eigenmode of the localized surface plasmon in the NA.
The eigenmodes of the surface plasmon can be obtained by quantingthe classical electromagnetic field
of the NA. In the simplest case, when Object 2 is a silver or golden nanosphere of radius a � λ (λ is
the wavelength in the host material), these eigenmodes correspond to equations εm(ω) = −(n+ 1)εr/n,
n = 1, 2, . . . (see, e.g., [28]) with the substitution of the analytical (e.g., Drude’s) model for the relative
permittivity of the metal εm(ω), where the imaginary part is neglected. The dipole mode of the sphere
corresponds to n = 1, i.e., εm(ω) = −2εr. At frequency ω0, corresponding to this condition, the quant
of the plasmon electric field reads as [28]:

E10 =

√
4πh̄ω0

3a
(19)

The quant E10 determines the dipole moment of the lowest eigenmode of a plasmonic
nanosphere [28]:

dV2 =
√

4πh̄ω0ε0εra3 (20)

The vacuum field EV
21 is that produced by the this dipole moment at a distance r from the sphere

center. For the geometry with collinear dipole moments of the QE and the NA (as in [17]), we have:

EV
21 =

√
2h̄ω0a3

πε0εr

1

r3
(21)

Substituting Equation (21) into Equation (18), we obtain for the Rabi constant:

ωR =
d

r3

√
2a3ω0

h̄πε0εr
(22)

It is evident that Equation (22) is equivalent to previously-derived Relation Equation (17) after two
following substitutions into Equation (17): Equation (8) for Aee and α02 = 4πε0εra

3 for the static limit
value of the polarizability of a metal sphere. This value is common for all metals with the Drude-type
dispersion [27].
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Therefore, our classical circuit model, which borrows from quantum optics only the static
polarizability of the two-level system, exactly describes the Rabi splitting in the nanosystem. We have
proven this coincidence for the special case of spherical NA; however, we believe that our model remains
applicable to any NA of the dipole type, e.g., to that sketched in Figure 1.

2.5. Fluorescence Spectra beyond the WMC Approximation

Now, using our dipole-dipole model and the approach of weak perturbations, let us find the dipole
moments of Objects 1 and 2 at arbitrary frequency ω. The sum of these dipole moments determines the
radiated power at this frequency. In order to solve the problem within the framework of the classical
model, let us apply the weak perturbation method. In the zero approximation, there is no feedback, and
the spectrum of the emission is unperturbed. This field spectrum has a Lorentzian shape [4], i.e., the
spectrum of its dipole moment of QE in the zero approximation can be modeled using the Lorentzian
spectral function S1(ω) [11]:

d
(0)
1 (ω) = d10S1(ω), S1(ω) ≡

(
1− ω2

ω2
0

+ j
ωγ1
ω2
0

)−1
(23)

Here, the parameter d10 can be found from the condition that at the resonance, the classical dipole
moment d1(ω0) is two-fold of the transition dipole moment d1(ω0) = 2d [4]. Then, d10 = 2jdγ1/ω0.
The field produced at the center of Object 2 in the zero approximation equals:

E12(ω) =
2jγ1dAee

ω0

S1(ω) (24)

In the first approximation, this field induces in the NA the dipole moment d(1)2 (ω) = α2(ω)E12(ω),
where α2 is proportional to the Lorentzian function S2(ω) [23]:

α2 = α02S2(ω), S2(ω) ≡
(

1− ω2

ω2
0

+ j
ωγ2
ω2
0

)−1
(25)

This dipole moment, in turn, induces in the QE an additional dipole moment, which in the
first-approximation equals d(1)1ind(ω) = α1(ω)E21(ω). Here, E21(ω) = d

(1)
2 (ω)Aee is the field produced

at the center of the QE by the dipole moments d(1)2 (ω), and the polarizability of the QE α1 is given by
Equation (14), which can be rewritten as:

α1 = α01S1(ω), α01 =
2d2

h̄ω0

(26)

If we restrict the analysis by the first approximation, we have for the total dipole moment dtot =

d
(0)
1 + d

(1)
1ind + d

(1)
2 , i.e.:

dtot = d
(0)
1 Fd, Fd ≡ 1 + α2Aee(1 + α1Aee) (27)

The radiated power is proportional to |dtot|2:

Prad =
|d(0)1 |2|Fd|2

12πε0c3
(28)
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The birefringence of the radiation spectrum, which corresponds to two different solutions of the
dispersion Equation (13), arises also in Equations (27) and (28). It results from the multiplication of
two Lorentzian functions in the term α1α2A

2
ee = α01α02A

2
eeS1(ω)S2(ω) in the last term.

In the regime of WMC, this term is negligible, and Equation (27) should give the non-distorted
spectrum. Let us compare the result of Equation (27) with that obtained for the regime of WMC in
[23] through the analysis of the radiation resistance. Equation (30) of [23] for the Purcell factor has the
form:

FP = 1− Im(α2)
6πc2

ω3η
A2

ee. (29)

In the case of WMC, α1Aee � 1. In this case, Equation (27) simplifies to Fd ≈ 1 + α2Aee, and for
the modification of the fluorescence spectrum, we have:

|Fd|2 = 1 + |α2|2A2
ee + 2Re(α2)Aee. (30)

Equations (29) and (30) meet one another when in both QE and NA radiative losses dominate over
the dissipation. The expression Equation (30) obtained in [23] was based on this assumption. Then,
the parameters γ1,2 in Equations (23) and (25) can be approximately identified with radiative losses. To
identify γ1,2 with radiative losses is to equate Im(1/α1,2) to ω3/6πε0c

3 [23]. Here, for simplicity, we put
εr = 1. This results in the relation:

γ1,2 =

(
ω2
0α01,02

6πε0c3

)
ω2 (31)

Applying this relation to the NA, we obtain:

Im(α2) ≡ −|α2|2Im
(

1

α2

)
= −|α2|2

ω3η

6πc2

and Equation (29) becomes:

FP = 1 + |α2|2A2
ee (32)

In the resonance band, |α2|Aee � 1 and the second term in Equation (27) dominates, as well as
in Equation (32). Therefore, for the frequencies within the resonance band, |Fd|2 ≈ |α2|2A2

ee ≈ FP .
Beyond the resonance band, both Equations (27) and (29) give |Fd|2 ≈ FP ≈ 1. This approximate
equivalence of the present result with that of [23] is an important check.

Notice, that the analysis of [23], resulting in Equations (29) and (32), corresponded to the zero
approximation of the weak perturbation method. Equation (27) corresponds to the first approximation.
However, the perturbation method for two interacting dipoles is converging. Continuing the procedure,
we come to a geometric progression for Fd:

Fd = 1 + α2Aee(1 + α1Aee)
∞∑
n=0

(α1α2A
2
ee)

n

which is easily calculated and results in:
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Fd =
1 + α2Aee

1− α1α2A2
ee

(33)

Here, α1 and α2 are given by Equations (25), (26) and (31). Equation (33) finalizes our circuit model,
which is now extended beyond the approximation of WMC.

Notice that the expression Equation (33) does not describe the Rabi splitting. The product α1α2 in
the denominator of Equation (33) due to the relative smallness of α1 gives only a distortion of Fd from
the Lorentzian spectrum. This distortion is not symmetric with respect to the central frequency ω0. The
Rabi splitting occurs because in Equation (28), both factors d(0)1 given by Equation (23) and Fd given by
Equation (33) possess resonant frequency dispersion with the same resonant frequency.

Note that in the static limit when α1α2 are real values, the denominator in the right-hand side of
Equation (33) does not experience singularity. On the contrary, it nearly equals unity, since α01α02A

2
ee �

1. This is so because r entering Aee is larger than a + b. Though Aee is very large, it cannot cover the
smallness of α01. For the frequency of the individual resonance ω = ω0, the product α1(ω0)α2(ω0) is
negative. In the case of WMC, this value is negligibly small, but in the case of SMC, it is comparable
with −1 and gives the local minimum, usual the result of the theory of two coupled circuits.

Since we are interested in resonant effects, calculating Fd in practical cases, we may use the standard
approximation of frequency-independent decay parameters, putting in Equations (25) and (26):

γ1,2 ≈
ω4
0α01,02

6πε0c3
(34)

Quasi-static parameters α02 andAee, as well as α01 = 2d2/h̄ω0 are positive values and are determined
by the design of the NA and the location of the QE.

2.6. Express-Analysis of the Fluorescence Spectra

The express-analysis of the fluorescence spectra is done here for the most practically interesting case
when γ1 � γ2 (high-decay NA) [1,5–8]. We have performed this analysis for the simplest scheme when
the NA is a silver or golden nanosphere of radius a and the QE of effective radius b is separated from it
by a gap G, substantial enough to prevent tunneling.

The emitter-field coupling and mutual coupling are described by the constants:

χ = d

√
3ω0

8πh̄ε0b3
, ωR =

d

r3

√
2a3ω0

πh̄ε0
(35)

where r = a+ b = G, whereas from Equation (31) for γ1 and γ2, we have:

γ1 ≈ d2
ω3
0

3πh̄ε0c3
, γ2 ≈

2a3ω4
0

3c3
(36)

The condition γ1 � γ2 practically holds when a > b [11].
Since ωR is always lower than χ, we may share the following regimes depending on ω0a/c, G/b,

a/b and χ/ω0. For the emitter-field coupling, there are three regimes: (1) weak emitter-field coupling
(WEFC), when χ < γ1; (2)intermediate emitter-field coupling (IEFC), when γ1 < χ < γ2; and (3) strong
emitter-field coupling (SEFC), when χ > γ2. For the mutual coupling between QE and NA, there are
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also three basic regimes: (1) WMC, when ωR < χ < γ1; (2) intermediate mutual coupling (IMC),
when γ1 < ωR < γ2; and (3) strong mutual coupling (SMC), when ωR > γ2. The peculiarities of the
fluorescence are explained via the combination of emitter-field coupling and mutual coupling. In the
regime of WMC, one can share four cases:

• WEFC; then, for any relative gap G/b between QE and NA, there is no noticeable enhancement of
the emission: Fd(ω0) ∼ 1.

• IEFC, large gap G� a, when Fd(ω0) ∼ 1.

• IEFC, intermediate gap b < G < a, when the noticeable enhancement of the emission arises:
Fd(ω0)� 1; however, the fluorescence spectrum remains Lorentzian.

• SEFC; the combination of SEFC and WMC is possible only when G� a; then Fd(ω0) ∼ 1.

Therefore, in the WMC regime, the noticeable Purcell effect (without distortions of the spectrum)
holds only for QE with IEFC.

The regime of IMC cannot be realized in the case of WEFC. For this regime, the two following cases
can be shared:

• IEFC: This combination is possible when b < G < a. Then, the strong enhancement of the
emission arises: Fd(ω0) � 1. Furthermore, the fluorescence spectrum is noticeably distorted
compared to the usual Lorentzian line.

• SEFC: This is possible when G ∼ a. Then, the strong enhancement of the emission arises:
Fd(ω0) � 1. Furthermore, the fluorescence spectrum is distorted strongly: the Rabi splitting
arises.

Therefore, the regime of IMC is characterized by the strong Purcell effect, which is combined with
the distortion of the spectrum. For QE with SEFC, this distortion corresponds to the Rabi oscillations.

The regime of SMC can be implemented only together with SEFC when the gap is small G � a.
In this case, Fd(ω0) � 1. This regime deserves our special attention, because here, our classical model
explains the fluorescence quenching.

When two identical oscillators are strongly coupled, the individual resonance splits into two hybrid
resonances whose magnitude is slightly lower than that of the individual one. This is so in the case of the
inductive coupling. Then, the ratio of the magnitude of the hybridized resonances to that of the individual
one is equal γ1,2/4ωR. This ratio becomes smaller in the case of the dipole coupling, which is our case.
In the case of SMC, the hybrid frequencies are given by Equation (3) with q ≡ ωR, described by Equation
(15). Further, S1,2(ωpm) ≈ ±κ−1 in Equations (25), (26) and (31), and α2(ωpm) ≈ α02ω0/ωR. Since
κ � γ2/ω0, the value α2(ωpm) is much smaller than α2(ω0) = α02ω0/γ2. Moreover, the factor ω3

0r
3/c3

in the product α2(ωpm)Aee cancels out, and this value turns out to be smaller than unity. Therefore,
Equation (33) gives Fd(ω±) ≈ 1. The emitted power at these frequencies Prad(ωpm) is determined by the
product |d(0)1 (ωpm)|2|Fd(ωpm)|2 in the right-hand side of Equation (28), where d(0)1 at frequencies ωpm is
far beyond the resonance band of the QE and, therefore, is very small. In accordance with Equation (23),
d
(0)
1 (ωpm) is equal to 2dγ1/ωR, i.e., is ωR/γ1 � 1 times smaller than d(0)1 (ω0) = 2d. Since in the case
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of SMC, ωR > γ2 � γ1, the ratio ωR/γ1 is huge, and |d(0)1 (ωpm)|2 is negligible compared to |d(0)1 (ω0)|2.
Since |Fd(ω±)| is the value of the order of unity, Prad(ω±) turns out to be much smaller than the power
emitted by a single QE.

Now, consider the radiated power at the initial emission frequency ω0. The product α1α2 entering our
Equation (33) at frequency ω0 is negative and equal to−ω2

0α01α02/γ1γ2. Expression 1−α1α2A
2
ee is equal

to 1 + A2
eeω

2
0α01α02/γ1γ2. In the regime of SMC in spite of the smallness of the value α01, the product

A2
eeω

2
0α01α02/γ1γ2 is very large, which makes |Fd(ω0)| � 1. Analyzing the derivative of |Fd(ω)|, it is

possible to show that in the case of SMC, this derivative vanishes and |Fd(ω)| has the local minimum at
ω0. The product |d(0)1 Fd| entering Equation (28) also has the local minimum at this frequency.

Therefore, the radiated power Prad in the case of SMC at all three characteristic frequencies—ω0 and
ω±—turned out to be much smaller than that radiated at the emission frequency ω0 by the isolated QE.
This implies the suppression of the radiation over the whole spectrum. However, the spectrum shape
keeps that of Rabi oscillations, with maxima at ω± and minimum at ω0. Therefore, the regime of SMC
can be called weakly radiative or even non-radiative Rabi oscillations.

It can be asserted that this effect is the same as that in the available literature that is treated as
fluorescence quenching (see, e.g., [3,5–10]). In the literature, the suppression of fluorescence has been
analyzed using either a purely quantum model (e.g., [9]) or a semiclassical model (e.g., [10]). The
quantum model treats the fluorescence quenching as a threshold effect and relates it to the tunneling.
However, in [10], it was shown that this effect exists for any distance r and corresponds to the
non-radiative power exchange between the QE and NA. The quenching effect competes with the direct
Purcell effect, which corresponds to the radiative power exchange [10]. The Purcell factor and the
quenching factor both decrease versus r with the same rate 1/r6; thus, there is an optimal distance (a
few nm) where the fluorescence enhancement is maximal. However, for QE with WEFC, the quenching
(as well as the strong Purcell enhancement) is not observed.

These literature data are in line with the results of our circuit model. Really, the Purcell factor
described by Equation (32) is nearly proportional to A2

ee = 1/4π2ε20r
6. The damping factor being

proportional to ω2
R is also proportional to 1/r6 in accordance with Equation (35). Since the value |d(0)1 |2

in Equation (28) at ω± is equal 4d2γ21/ω
2
R, Equations (28) and (33) allow one to find an optimal distance

r (as a deal between damping and Purcell factors) for the given d analytically. It is easy to see that the
optimal value of the gap G is within the interval [b, a]. For G < b, the coupling becomes strong, and
the hybridization shifts the two resonance frequencies from the band where the mutual coupling has the
dominating resistive component [23]. The mutual coupling becomes reactive, and more energy is stored
in the QE due to the presence of the NA. These results of our model qualitatively coincide with the
conclusions of [10].

However, a comment should be made here. For QE with SEFC, the contest of the enhancement
and quenching should be considered together with the modification of the spectrum. If we take into
account that the shift of the resonance frequencies from the individual resonance depends on the distance
r, the Purcell factor described by Equation (33) becomes not obviously monotonous versus r. It is
monotonous only in Equation (32), which corresponds to the regimes of WEFC and IEFC. In these
cases, the fluorescence spectrum is modified not very strongly, and |Fd|2(ω) ≈ FP (ω). In the case of
SEFC, the strong modification of the spectrum occurs for the same system if we vary the distance r. For
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small r, SEFC implies SMC (the mutual coupling becomes strong), and |Fd|2 at frequencies ω± becomes
of the order of unity, whereas at ω0 |Fd|2 � 1. Therefore the enhancement over the whole spectrum is
also not monotonous versus r.

3. Results and Discussion

3.1. Numerical Examples

In order to validate the theory on an explicit example, we have considered a quantum dot whose
fluorescence is enhanced by a golden sphere of diameter 2a = 24.5 nm located at a distance G = 3 nm
from one another. Exact simulations for this case were done in [32] using the semi-classical model.
The Drude-like model for the complex permittivity of gold corresponds to [33]. The radiating system
is located in the liquid host εr = 2.89. The single quantum dot emits at λ01 = 535 nm. This
wavelength nearly coincides with the plasmon resonance of the metal sphere in the liquid, which holds
at λ02 = 520 nm.
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Figure 4. Fluorescence spectrum of a quantum dot coupled to a golden nanosphere
normalized to that of the single quantum dot. Thin line: zero-order model [23]. Dashed line:
exact simulations of the semiclassical model [32]. Thick line: our general Formula (33).

The fluorescence spectrum calculated in [32] was normalized to the radiated power of the single QE.
In fact, in Figure 1 of [32], the authors show the radiative and non-radiative parts of the Purcell factor
(they call them the normalized radiative and non-radiative decay rates) in a broad range of wavelength
(500–900 nm). The sum of these two factors in accordance with [23] gives the total frequency-dependent
Purcell factor, i.e., in our notations representing the value |Fd|2. These numerical data were compared
with |Fd|2 calculated using the zero-order approximation Equation (32) and using the final Equation
(33). The polarizability α2 of the metal nanosphere was calculated taking into account the dissipation
Equation (like in [23]). The results are shown in Figure 4. For the decay factor of the quantum dot, we
used the lossless approximation Equation (31).

Within the plasmon resonance band, the zero-order model represented by a thin solid curve is in
rather good agreement with the exact calculations (dashed curve). The error becomes more significant
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beyond the resonance. Here, we concentrate on the high-frequency edge of the resonance band where
the zero-order model predicts the Lorentzian shape for the spectrum, whereas the dashed curve clearly
has a huge non-Lorentzian slope. The comparison with the result of Equation (33) shows the reason for
this strong non-symmetry of the spectral line. Extending the range of wavelengths to 400–500 nm (in
[32], calculations are done for 500–900 nm), we can see the typical feature of the Fano resonance with
the dip at 500 nm. Clearly, the inexact coincidence of the plasmon resonance and the emission frequency
together with the difference in decay rates obviously result in this type of resonance. In general, the
behavior of the thick curve in the resonance band fits the exact data much better: the error for the
maximal value of |Fd|2 reduces from 12% (thin Curve 1) to 4% (thick curve).

Calculating parameters γ1,2 and ωR with the use of Equation (35), we saw that this system in our
terminology corresponds to the case of IMC. This is the most difficult case, when the hybridization does
not result in the Rabi splitting, but results in the strong distortion of the spectral shape compared to the
usual Lorentzian line. This distortion is the Fano resonance.

Notice that the model developed in this paper does not imply obviously the condition of the exact
resonance. This condition was used only to simplify the comparison of our model with previous
analytical models. In fact, our circuit model allows (at least approximately) predictions of fluorescence
spectra in the practical case when the resonance of the nanosystem is approximate. Our Equation (33)
does not require the exact resonance. The polarizabilities of the quantum dot α1 and that of the NA α2

may be calculated using Equations (25) and (26) also beyond the exact resonance. We may put different
resonant frequencies ω01 and ω02 into Equations (25) and (26), and nothing will change in our model.
The relative difference (λ01 − λ02)/(λ01 + λ02) = 0.028 is sufficient to produce the noticeable Fano
resonance: a narrow spectral hole near the rather broad maximum. Of course, the Lorentzian line results
from the zero-order approximation (the same Equation (33) with the substitution α1 = 0).

We do not know exactly the reasons for the disagreement between the exact dashed curve and our
theoretical thick curve at wavelengths 600–800 nm where the quasi-static dipole model is expected
to work better than in the resonance band. Most probably, this disagreement is related to dissipative
losses in the quantum dot, which were fully neglected in our calculations. These losses may enlarge
the low-frequency part of the resonance band. Furthermore, the value d, which determines the static
polarizability α01 of the QE, is not exactly known, since it is not given in [32]. We found this d using
a fitting procedure. The thick curve in Figure 4 corresponds to d = 14.5 D, when the numerical
deviation from the dashed curve is minimal over the resonance band λ = 500–600 nm. Slightly
larger values of d correspond to a much larger maximum of |Fd|2; slightly smaller values correspond
to a much broader resonance band. This value d = 14.5 D for a two-level nanocrystal quantum dot
is realistic. In accordance with [34], the estimation of the transition dipole moment is as follows:
d = 1.21ebεr/(2εr + εQD), where e is the electron charge and εQD is the relative permittivity of the
quantum dot semiconductor at the emission frequency. This formula gives for the InSb quantum dot the
value d = 25.1 D, i.e., the value of the same order of magnitude as that given by our numerical fitting.

In [16], one notices that the Fano resonance occurs in the extinction spectra, even if the resonances
of the QE and NA coincide. The strong asymmetry of the frequency dependence inherent to the Fano
resonance becomes possible because the shape of the Lorentzian spectral line is not perfectly symmetric
with respect to ω0. Therefore, even for the exact resonance, the Fano spectral hole may result from
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the interference of the very tiny resonance band of a quantum dot compared to that of the plasmon
resonance of an NA. The condition of the Fano resonance in this case is a sufficient value of the
resonant polarizability of the QE. In [16], one calculates the extinction cross-section of the structure
depicted in Figure 5a. A quantum dot located at the center of a plasmonic dimer of Ag nanospheres is
illuminated symmetrically by a plane wave, whereas the whole nanosystem is placed in the host εh = 3.
In Figure 3b of [16], the evolution of the extinction cross-section (ECS) is presented when the transition
dipole moment d varies from zero to d = e · B, where B = 0.7 nm. In all cases, QE 1 and NA 2 have
their individual resonances at the same wavelength λ = 450 nm. The complex permittivity of silver is
taken from [35].
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Figure 5. (a) Sketch of the simulated nanosystem, where D = 22 nm, a = 7 nm;
(b) complex polarizabilities of Elements 1 and 2 illuminated separately for the case
d/e = 0.3 nm. Polarizability α1 is calculated analytically, and α2 is simulated numerically
using the CST software.

The spectra of ECS in semiclassical calculations of [16] were normalized to the maxima of these
spectrum for every value of d. We have performed similar calculations and compared the evolution of
spectra versus d with the numerical data of [16]. Let us consider the single QE 1, with polarizability
α1 illuminated by a plane wave. Then, its individual dipole moment equals d10 = α1E0. Now, let
us illuminate the nanosystem, as is shown in Figure 5a. Then, the total dipole moment of the system
dtot = d1 + d2 = (α1 + α2)E0 + α1E21 + α2E12, where E21 = Aeed1 and E12 = Aeed2 are interaction
fields expressed through the interaction constant Aee. In the case of the dimer, this constant is not so
simple to calculate analytically, because the coupling field E12 is now produced by two nanospheres,
which are additionally mutually coupled with one another. This coupling though basically dipoles is
not exactly that of two point dipoles located at their centers. The coupling of silver nanospheres also
qualitatively modifies the frequency dependence of the individual polarizability of the dimer compared
to that of a single sphere. Therefore, we performed exact numerical simulations of both Aee and α2.
Using the CST software, we have calculated the dipole moment of the NA 2, integrating its polarization
currents, and found the complex value α2 = d2/E0. In the same simulation project, the value Aee was
found as Aee = E12/d2, where the field E12 = Ec − E0 (Ec is the total electric field at the center of the
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dimer). The polarizabilities α1 for different values of d were found using Equation (26), neglecting the
dissipation in the QE. In Figure 5b, we depict α1 (analytically calculated) and α2 (numerically simulated)
for the realistic case B ≡ d/e = 0.3 nm (then d = 15 D), which may correspond to a quantum dot of a
radius of 2 nm [16]. The resonance band of this QE turns out to be ten-times narrower than that of the
NA, and the resonant value of |α1| is lower than that of |α2| by three orders of magnitude. However, we
will see below that in combination with the plasmonic dimer, it is enough for the Rabi splitting.
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Figure 6. Normalized extinction cross-sections versus wavelength for five values of the
transition dipole moment: solid curves: Equation (33); dashed ones: data from [16].

Once we know values α1,2 andAee, we may find dtot = αtotE0 and, applying the same speculations as
above, derive αtot = α1Fd, where Equation (33) still holds for Fd. This allows us to study the evolution
of extinction spectra versus d = eb because (see, e.g., [27]):

ECS = −ηωIm(αtot) = −ηωIm(α1Fd)

The results for ECS/ECSmax are presented in Figure 6. The qualitative agreement holds until
b = 0.5 nm, and this agreement is sufficient in order to claim that our approximate analytical model
is quantitatively adequate. The spectral hole at 452–454 nm appears when b = 0.1 nm, and this is
clearly the Fano resonance and not the Rabi splitting, as is noticed in [16]. In the classification of the
present paper, this case is referred to as SEFC/IMC. The corresponding plot of polarizabilities is shown
in Figure 7a. The Fano modification of the spectrum occurs when the resonant polarizability of the QE
is smaller than that of the NA by four orders of magnitude.
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Figure 7. Complex polarizabilities of Elements 1 and 2 illuminated separately:
(a) d/e = 0.1 nm; (b) d/e = 0.7 nm.

When B ≡ d/e = 0.3 nm, the spectrum of ECS in Figure 6 combines the features of the Fano
resonance and Rabi oscillations. The cases B = 0.5 and B = 0.7 nm clearly correspond to the
Rabi splitting. However, all values of B in the range 0.1–0.7 nm still correspond to the case we called
SEFC/IMC. Polarizabilities α1 and α2 for the case B = 0.7 nm are depicted in Figure 7b. The resonant
value of |α1| is here lower than that of |α2| by two orders of magnitude. This polarizability of the QE is
still insufficient to implement the regime of SMC. The relative Rabi splitting is in this case equal 3.5%.
This splitting is not yet accompanied by the damping of radiation, which is still enhanced.

Really, for the case B = 0.7 nm, we obtained the values |Fd| = 37.42 and |Fd| = 34.10, respectively,
at hybridized resonance wavelengths λ = 441 and 462 nm. At both of these wavelengths, the value
|α1| is nearly equal to 2% of the resonant value |α1(ω0)|. Therefore, |αtot| at λ = 441 and 462 nm is
only slightly smaller than the value |α1| at the individual resonance of the QE. Respectively, the overall
extinction of the nanosystem is not suppressed compared to the single QE in spite of the noticeable
Rabi splitting. The same refers to the overall fluorescence. This is still the regime SEFC IMC in our
classification.

Higher values of d (for which there are no data in [16]) in our calculations may correspond to stronger
Rabi splitting and to a more noticeable decrease of the overall fluorescence compared to that of the
single QE. The value B = 0.9 nm corresponds to the relative Rabi splitting 5% and to the decrease
of |αtot(ω±)| by one order of magnitude compared to |α1(ω0)|. The same damping level obviously
refers to the fluorescence. This regime would correspond to SMC, i.e., non-radiative Rabi oscillations or
fluorescence quenching.

3.2. Discussion

Above, we have presented an express-analysis of our formulas based on the equivalent circuits
of two coupled antennas, which quantitatively describe the quantum emitter and the plasmonic
nanoparticle forming the plasmon-enhanced fluorescence system. This express-analysis is validated
via the comparison of the present model with the literature data. We think that our analysis is helpful
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for studying the plasmon-enhanced fluorescence by newcomers and may be also useful for experienced
researchers working in the field.

Its main educational merit is the simple deterministic model of Rabi oscillations and fluorescence
quenching. Both of these effects (especially the second one) are still considered by the majority of
researchers as quantum effects. In our deep conviction, the nature of these effects is as classical as
that of the Purcell effect. Even the fluorescence quenching effects is simply a classical non-radiative
coupling of two dipole antennas, which may happen even for collinear dipoles due to hybridization of
their resonances. In this regime, QE and NA mutually suppress their radiation resistances. Of course, the
semiclassical model and even the purely quantum model also correctly describe these effects. However,
they hardly bring anything qualitatively new. The role of the quantum theory is two-fold: it is capable of
properly describing the nonlinear effects, which we ignore, and of properly determining the bounds of
validity for the classical model (mainly concerning the pumping level).

In the modern literature, our point of view can be met. Classical interpretation of Rabi oscillations
is quite popular, and corresponding works have been already mentioned above. The quenching in
plasmon-enhanced fluorescence is seldom treated as a classical effect. One of these rare works is [10],
where this effect was claimed to be classical. If we accept this point of view, the following question
arises: does the fluorescence quench for sufficiently strong mutual coupling of two dipoles or does this
obviously implies high-order multipoles? In [29] (where the fluorescence quenching is also claimed to
be a classical effect), the quenching arises due to the coupling of a quantum dot to high-order multipole
modes excited in the NA. These modes, in accordance with [29], receive all of the near-field power from
the QE and dissipate it, because higher multipoles radiate weakly. If the dipole mode is induced in the
NA, this, in accordance with [29], results in the high Purcell factor, and the fluorescence quenches only
if high-order modes dominate.

We disagree with this claim. In our model, the quenching nicely occurs within the framework of the
dipole model. In this model, it occurs not for all QEs. However, all QEs possessing the SEFC must
experience the quenching when they approach too closely to the NA, and the mutual coupling becomes
strong. The quenching mainly results from the strong detuning, which obviously accompanies the strong
hybridization of the resonance. At frequencies ω± located too far from ω0, the resonance magnitude
of the dipole moments of both NA and QE is small compared to the case of the individual resonances.
Moreover, their dipole moments at these frequencies turn out to be out-of phase, and the total dipole
moment is smaller than their arithmetic sum. This regime is called in the antenna theory either the
non-radiative coupling regime or the dark mode regime and is known for two dipole antennas.

As for the multipole modes of NAs, they may be noticeable for NAs more complex than the single
metal nanosphere or dimer of nanospheres. However, we believe that for any mode, it is possible to
build its equivalent circuit and to reveal the same effects that we have analyzed for the dipole modes of
Objects 1 and 2. The enhancement due to the Purcell effect and the quenching due to the hybridization
may hold for the near-field interaction of any multipole moments. For the simple-shape structures, like
in Figure 1, these fine effects may provide correction terms to the factors obtained within the framework
of the dipole model.

To conclude this discussion, let us notice that our model is applicable even to so-called spacers [30].
The spacer is a generator of localized surface plasmon excited by the fluorescence of a QE (or several
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QEs). The feedback is offered by the strong near-field mutual coupling of the QE and the Ag or Au
nanoparticle. Our system in the case of SMC becomes the spacer on the condition of the very high
pumping. Then, the nonlinear instability is developed, and the system passes the generation threshold,
i.e., the coherent plasmon arises in the NA. Though this coupling is non-radiative, the dipole moment of
the system in the over-threshold regime is not fully suppressed, and the spacer emits a small amount of
coherent light. The coherency of this light can be seen from the dramatic squeezing of the Lorentzian
line of radiation centered at the plasmon resonance. The linewidth becomes by one order of magnitude
narrower than that described by the Lorentzian damping factor γ2 Equation (25). Before the regime,
when the plasmon and its radiation become coherent, the transition process occurs. This process is
non-linear, and this non-linearity restricts the oscillation amplitude.

At first glance, our linear model, which implies modest pumping of the QE, has nothing to do with this
regime. However, in [17], it was shown that the transition regime in any spacer starts from non-radiative
(fluorescence quenching holds!) Rabi oscillations. In accordance with the semiclassical theory of [17],
these oscillations occur in the background of the modulation instability and represent an initial process
of the over-threshold dynamics of the spacer. After some dozens of Rabi periods, the non-linear
auto-oscillations competing with this linear process [31] replace non-radiative Rabi oscillations, and
the transition regime continues towards the steady regime. If there were no fluorescence quenching, the
power absorbed from pumping would be radiated, and auto-oscillations could not develop.

Finally, let us try to guess why the model of the fluorescence quenching presented in this paper has
not been published before. This seems strange, because the explanation in terms of the suppressed dipole
moment dtot is simplest. The dipoles of QE and NA, which are strongly mutually coupled, suppress one
another; their mutual resistances compensate the radiation resistances, and the mode of their oscillation
is dark. Probably, it was not understood earlier because the dipole moments of the QE and NA are
collinear. In both optical and radio communities, there is conviction that the coupling of collinear dipoles
is constructive for radiation (whereas the coupling of two parallel dipoles is destructive). Really, a
high Purcell is known for the case when the dipoles of our system are collinear. High Raman gain is
known for a molecule emitting the Raman radiation enhanced by a collinear dipole of the plasmonic
nanoparticle. Parallel components of the dipole moment interact destructively; both Purcell and Raman
gains for parallel dipoles are smaller than unity. In the theory of wire antennas [25], it is stated that,
unlike two parallel dipoles, a collinear passive wire enhances the radiation of the active one. However, in
the antenna theory, resonant collinear wire dipoles are never strongly coupled. Their centers are always
distanced from one another at least by the total length of two arms. As for the molecule in the scheme of
surface-enhanced Raman scattering, it is also never strongly coupled to the plasmonic particles, because
it is not resonant. Its Raman radiation is emitted at different frequencies. Therefore, the destructive
mutual coupling of two collinear resonant dipoles making their total dipole moment close to zero has not
been sufficiently studied. The radio analogue of the non-radiative Rabi oscillations can be imaged as a
coaxial system of active and passive wire antennas both performed as helices with resonant total length
and a very small height to allow the strong mutual coupling. Such systems can be definitely used for
wireless power transfer.
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4. Conclusions

In this paper, we have suggested a classical circuit model of the hybridized oscillations in the system
of a quantum emitter coupled to a nanoantenna. We concentrate on the case when the pumping is
sufficiently weak and results only in the spontaneous emission called fluorescence. The role of the NA
in this fluorescence can be either constructive (Purcell effect) or destructive (fluorescence quenching).
Furthermore, the NA may strongly modify the fluorescence spectrum compared to the Lorentzian line of
the single QE. This modification may have the shape of either the Fano resonance or the Rabi oscillations.

All of these phenomena are described by a newly-introduced circuit model. Our model generalizes the
earlier classical model suggested to describe some properties of spontaneous emission in the presence of
classical resonators [18]. It also corrects the previously-suggested circuit model [21]. Our model is based
on the near-field interaction, which takes into account the inductive, capacitive and resistive components
of the coupling. Two last components turn out to be mutually balanced. Therefore, the dispersion
equation turns out to be equivalent to that of two resonant inductively-coupled circuits. However, the
dipole model of the coupling allows a much more deep and extended analysis of the fluorescence spectra
than a purely qualitative study allowed by the inductive model. In this way, we obtained the correct
result for the Rabi frequency and good agreement with the numerical results of the semiclassical model
for fluorescence and extinction spectra. An even more important merit of this model is the quantitative
description of the fluorescence quenching. This happens even for collinear dipoles of both QE and
NA. When their resonant mutual coupling is strong, the total dipole moment is suppressed, though its
spectrum retains the shape of Rabi oscillations.

The predicting capacity of the model implies that it does not describe a classical analogue of the
realistic nanosystem, such as a couple of pendulums. It really describes the realistic processes in the
realistic nanosystem, because all effects under study—the Purcell effect, self-induced Rabi oscillations
and fluorescence quenching—are, in fact, classical phenomena. From our insight, they all represent some
features of the electromagnetic coupling of an active transmitting antenna to a passive antenna element.

Our model is purely dipole and does not involve higher multipoles (earlier involved in order to explain
the fluorescence quenching in a classical way). Therefore, it is very simple. Interestingly, the simple
linear model turns out to be applicable even to the surface-plasmon nanolaser, the so-called spacer,
where it describes the initial stage of the transition regime over the generation threshold.
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