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Abstract: Using perturbation expansion of Maxwell equations with the nonlinear boundary
condition, a generic propagation equation is derived to describe nonlinear effects, including
spectral broadening of pulses, in graphene surface plasmon (GSP) waveguides. A
considerable spectral broadening of an initial 100 fs pulse with 0.5 mW peak power in a
25 nm wide and 150 nm long waveguide is demonstrated. The generated supercontinuum
covers the spectral range from 6 µm to 13 µm.
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1. Introduction

Surface plasmon polaritons offer the unique platform to guide and manipulate light at a deeply
sub-wavelength scale [1–3]. Such tight confinement of light not only enables design of compact
plasmonic circuits [3], but also boosts local field intensities and thus allows optical nonlinear processes,
such as third harmonic generation [4] and nonlinear switching [5], to occur over short (typically
sub-millimeter) propagation distances. However, high ohmic losses in metals impose serious limitations
as to nonlinear functionality of plasmonic waveguides. In particular, generation of broad optical spectra
(supercontinuum) in a compact plasmonic waveguide remains to be the challenging task.

Recently, graphene has emerged as a promising alternative to noble metals for applications in
plasmonics [6,7]. One of the strong advantages of graphene surface plasmons (GSPs) over their
conventional metal analogues is the considerably smaller losses [8], particularly in the mid-infrared to
terahertz range [7,9]. Several research groups have proposed designs of graphene plasmonic waveguides,
as basic building blocks for GSP-based plasmonic circuits [10–18]. Graphene is known to possess an
exceptionally strong nonlinear optical response [19–21], this has been recently confirmed in a number of
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experimental studies involving frequency mixing, third harmonic generation and z-scan measurements
with graphene flakes and in graphene-clad photonic nano-structures [22–28]. Combined with the
unprecedented nano-metre scale light confinement in GSP waveguides, the ultra-strong nonlinearity of
graphene can open new routes for design of functional plasmonic circuits.

To describe nonlinear effects, such as frequency mixing and spectral broadening, in graphene
waveguides, one needs to take into proper account the purely two-dimensional nature of the optical
response of graphene. Recently we developed a perturbation expansion procedure of Maxwell equations,
in which graphene is treated as the nonlinear boundary condition [29]. This method has been applied
for analysis of self-focusing and switching of monochromatic GSP in single- and bi-layer graphene
structures [29,30], and for the description of nonlinear pulse propagation in a graphene-clad dielectric
fiber [31]. In this work, the procedure is generalized to the case of a GSP waveguide. The generic
pulse propagation equation and the expression for the effective nonlinear coefficient due to graphene
are obtained, which enable to analyze nonlinear pulse dynamics in different GSP geometries. As an
example, in this work a GSP waveguide formed by a modulation of the graphene Fermi level [17] is
considered. We find that in such waveguides the characteristic nonlinear length can be several orders of
magnitudes smaller than the propagation length dictated by damping. As the result, one can generate
broadband spectra covering more than one frequency octave (6–13 µm) from spectral broadening of a
100 fs pulse with only a few hundred micro-Watt peak power and over propagation distances as short as
few hundred nano-metres.

2. Derivation of Pulse Propagation Equation

Consider a GSP waveguide, in which graphene (finite width ribbon or a modulated layer) is located
in plane x = 0, being embedded into a dielectric structure. The waveguide is homogeneous along the
propagation direction z, see Figure 1. To describe nonlinear pulse propagation in the structure, it is
convenient to use Fourier expansion of the total electric field:

~E(~r, t) =
1

2
√

2π

∫ +∞

0

E(~r, ω)e−iωtdω + c.c. (1)

and similar expansions for other fields.
Each Fourier component E solves Maxwell equations:

~∇× ~∇× E =
ω2

c2ε0
D (2)

Optical response of all bulk materials (dielectrics) is incorporated in the displacement vector D.
Atom-thick graphene layer is described by means of the surface current J, the corresponding boundary
condition is:

~n× [H2 −H1] = J (3)

where ~n is the unit vector normal to the graphene layer and pointing from medium 1 to medium 2, which
are on either side of the graphene layer.
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Figure 1. Graphene surface plasmon (GSP) waveguide formed by a modulation of the
graphene Fermi energy EF (see top panel), graphene is embedded into a dielectric (Al2O3)
with the relative permittivity ε = 10. The bottom panel illustrates field intensity distribution
in the fundamental guided mode at λ = 9µm for the case of EF1 = 0.25 eV, EF2 = 0.2 eV
and w = 25 nm, the total power of the mode is P = 1 mW. Cyan arrows indicate the in-plane
direction and magnitude of electric field.

To simplify the derivations, in this work we focus on the cubic (Kerr) nonlinear response of graphene,
leaving the polarization due to the dielectrics to be purely linear. It is a straightforward exercise to
extend the described below procedure and include nonlinear dielectric polarization. At the same time,
for GSPs in planar structures the relative contribution of dielectrics to the overall nonlinearity has been
demonstrated to be minuscule [29], which justifies the simplification adopted here. We also neglect
any effects associated with third harmonic generation, since they require specially engineered phase
matching. In other words, we assume that the pulse spectrum is narrow enough to not accommodate
the third harmonic. For the same reason, possible second harmonic generation and associated effects
due to a non-zero second order nonlinear graphene conductivity, arising from spatial dispersion near the
plasmon resonance [21], are also neglected. Under these assumptions, the Fourier components of the
displacement vector and the graphene current are:

D(ω) = ε0εE(ω) (4)

J(ω) = σ̂
(1)
1 E(ω) + Jnl(E (ω1),E(ω2),E(ω3)) (5)

Jnl (E1,E2,E3) =
1

8π

∫∫ ∞
0

σ̂(3)...E1E
∗
2E3dω1dω2 (6)

ω3 = ω − ω1 + ω2 (7)
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In the above expression for Jnl vertical dots stand for tensor product: a = Ô
...bcd, ai = Ôijklbjckdl.

For excitation frequencies below the single-photon absorption resonance in graphene, h̄ω < 2EF ,
the structure of the third-order nonlinear conductivity tensor can be approximated as [19,32]:
σ̂

(3)
ipjs = σ3 [δipδjs + δijδps + δisδpj], δij is the Kronecker’s delta, the indexes i, p, j, s are each from the

subset of in-plane coordinates (y, z). Also, the 2D symmetry of graphene and the assumption of zero
transversal current Jx = 0 still permit six additional non-zero tenzor components σ̂(3)

jjxx = σ̂
(3)
jxjx =

σ̂
(3)
jxxj = σ̃3, j = y, z. In absence of external magnetic fields, linear conductivity tensor has only two

diagonal non-zero components: σ̂(1)
ii = σ1, i = y, z.

The relative dielectric permittivity ε = ε(x, y), together with the y-dependent tensors of linear and
nonlinear graphene conductivity, define the transverse geometry of the waveguide, cf. Figure 1.

2.1. Perturbation Expansion of Nonlinear Maxwell Equations

It is convenient to decompose the surface current as J = J0 + Jp, so that the solution of Maxwell
equations with J0 gives the linear guided mode of the structure, while Jp is treated as a perturbation and
contains the nonlinear term Jnl and damping due to non-zero real part of σ1 (one can formally include
the damping term into the leading order J0 and consider quasi-guided modes with complex propagation
constants, see e.g., Reference [33], however it is more convenient to work with real guided modes).

Developing perturbation expansion, we introduce a dummy small parameter s assuming Jp ∼ s3/2.
Each Fourier component of the electric field is expanded in the perturbation series as:

E = s1/2N−1/2
ω Aω(sz)eω(x, y)eiβz + s3/2E1(x, y, sz)eiβz +O(s5/2) (8)

and a similar expansion for the magnetic field is assumed. Here eω is the mode of a given structure,
β = β(ω) is the corresponding propagation constant, Nω is an optional normalization factor. We
consider a single-mode situation, neglecting any nonlinear coupling to possible higher order modes
of the waveguide, which is inefficient due to the high mismatch between propagation constants of
different modes.

Following substitution of the ansatz in Equation (8) into Maxwell equations, in the lowest order of
the small parameter, O(s1/2) the eigenvalue problem is obtained:

L̂(β)eω = 0 , (9)

L̂(β) =

 q2 − ∂2
y ∂2

xy iβ∂x

∂2
xy q2 − ∂2

x iβ∂y

iβ∂x iβ∂y −εk2 − ∂2
x − ∂2

y

 (10)

where q2 = β2 − εk2. The boundary conditions for the mode eω are:

∆[eω,z] = 0 , ∆[eω,y] = 0 (11)

∆[∂yeω,x − ∂xeω,y] =
−iω
ε0c2

J0y =
σ

(I)
1

ε0c2
eω,y (12)

∆[iβeω,x − ∂xeω,z] =
−iω
ε0c2

J0z =
σ

(I)
1

ε0c2
eω,z (13)
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where σ(I)
1 = σ

(I)
1 (y) = Im(σ1) is the imaginary part of linear graphene conductivity, the operator ∆ is

defined as:

∆[f(x)] = lim
δ→0

(f(−δ)− f(δ)) (14)

Solving the eigenvalue problem in Equation (9), we obtain the modal profile e(x, y) and the dispersion
of the mode β(ω).

It is convenient to choose the normalization factor Nω as:

Nω =
1

4

∫∫ +∞

−∞
(eω × h∗ω)êzdxdy + c.c. (15)

where êz is the unit vector along z-axis. With this normalization, in the lowest order of the small
parameter, O(s), the total energy carried by a pulse along the waveguide is given by:

W =

∫∫∫ ∞
−∞

(E ×H) êzdxdydt =

∫ ∞
0

|Aω|2dω (16)

Here we assume that the pulse is localized in time, and the mode eω(x, y) is localized in the transversal
plane at all frequencies, so that the integrals in the above expression converge.

In the next order of the perturbation expansion of Maxwell equations, O(s3/2), we obtain:

L̂E1 = R (∂zAω) (17)

R = N−1/2
ω ∂zAωM̂xyeω (18)

M̂xy =

 2iβ 0 −∂x
0 2iβ −∂y
−∂x −∂y 0

 (19)

together with the boundary conditions:

∆[E1z] = 0 , ∆[E1y] = 0 (20)

∆[∂yE1x − ∂xE1y] =
−iω
ε0c2

Jpy (21)

∆[N−1/2
ω ∂zAωeω,x + iβE1x − ∂xE1z] =

−iω
ε0c2

Jpz (22)

where the perturbation current Jp combines damping due to non-zero real part σ(R)
1 = Re(σ1) and the

nonlinear current:

Jp = N−1/2
ω Aωσ̂

(R)
1 eω + Jnl

(
N−1/2
ω1

Aω1eω1 , N
−1/2
ω2

Aω2eω2 , N
−1/2
ω3

Aω3eω3

)
ei∆βz (23)

∆β = β(ω1) + β(ω3)− β(ω2)− β(ω) (24)

Next, we project Equation (17) onto the mode eω to obtain:〈
eω|L̂|E1

〉
= 〈eω|R〉 (25)

where 〈a|b〉 =
∫∫∞
−∞ (a∗ · b) dxdy. It is important to note that eω and E1 satisfy different boundary

conditions, Equations (11–13) and (20–22), respectively. This removes the self-adjoint property of the
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operator L̂, so that
〈
eω|L̂|E1

〉
6=
〈
E1|L̂|eω

〉∗
. To proceed, we split integration in x in the l.h.s. of

Equation (25) as
∫∞
−∞ dx =

∫ 0

−∞ dx +
∫∞

0
dx and take the resulting integrals by parts. Following some

algebra, it is possible to show that [29]:〈
eω|L̂|E1

〉
=

〈
E1|L̂|eω

〉∗
− iω

ε0c2

∫ ∞
−∞

[
Jpye

∗
ω,y + Jpze

∗
ω,z

]
dy

−N−1/2
ω ∂zAω

∫ ∞
−∞

∆
[
eω,xe

∗
ω,z

]
dy (26)

Computing integrals in the r.h.s. of Equation (25) we obtain:

〈eω|R〉 = N−1/2
ω ∂zAω

(
2iβ

∫∫ ∞
−∞
|eω|2dxdy −

∫ ∞
−∞

∆[e∗ω,xeω,z]dy

)
(27)

Taking into account that L̂eω = 0, and combining the results in Equations (26) and (27), the
propagation equation for the modal amplitudes Aω is obtained:

i∂zAω = −iαωAω − ei∆βz
1

2π

∫∫ ∞
0

γωω1ω2ω3Aω1A
∗
ω2
Aω3dω1dω2 (28)

where the damping and nonlinear coefficients are given by:

αω =
1

4Nω

∫ +∞

−∞
σ

(R)
1 (eωe

∗
ω)η0 dy (29)

γωω1ω2ω3 =
1

16
√
NωNω1Nω2Nω3

×∫ +∞

−∞
iσ3

[(
eω1e

∗
ω2

)
η

(eω3e
∗
ω)η0 +

(
eω3e

∗
ω2

)
η

(eω1e
∗
ω)η0 + (eω1eω3)η

(
e∗ω2

e∗ω
)
η0

]
dy (30)

In the above expressions the deformed scalar products are introduced: (ab)η = ηaxbx + ayby + azbz,
(ab)η0 = ayby + azbz. The deformation factor η = σ̃3/σ3 characterizes the relative impact of the
orthogonal field component on the induced current in the graphene layer.

In the derivation of Equation (28) the following identity was used:

Nω =
ε0c

2

2ω

{
β

∫∫ ∞
−∞
|eω|2dxdy + Im

(∫ ∞
−∞

∆
[
eω,xe

∗
ω,z

]
dy

)}
(31)

which can be obtained directly from Equation (15) by using the relationship between magnetic hω and
electric eω fields of the guided mode.

2.2. Pulse Propagation Equation

The propagation Equation (28) takes into full account material and geometrical dispersion of linear
and nonlinear coefficients. However, numerical propagation within this model is a computationally
challenging task. For certain applications, including propagation of a relatively narrow-band pulse (with
∆ω/ω0 � 1, where ω0 is the central frequency of the pulse), it is possible to neglect the dispersion of
nonlinear coefficients and replace γωω1ω2ω3 in Equation (28) with a constant coefficient evaluated at the
reference frequency (A more accurate procedure, which still allows the preservation of the dispersion
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of nonlinearity, is based on the factorization of the nonlinear coefficients and is described in detai in
Reference [34]):

γωω1ω2ω3 ≈ γω0ω0ω0ω0 = γ (32)

Furthermore, assuming that the spectrum of the pulse is localized in a vicinity of ω0, we can consider
the analytical extension of the spectrum Aω onto the negative frequency half-axis, and the corresponding
complex time-domain function defined as:

A(z, t) =
1√
2π

∫ ∞
−∞

Aωe
−iωtdω (33)

Let us introduce the pulse envelope function Ψ(z, t):

Ψ(z, t) =
1√
2π

∫ ∞
−∞

Aδ exp

[
i

(
β − β0 −

δ

vg

)
z

]
e−iδtdδ (34)

where Aδ = Aω−ω0 is the shifted spectrum of the pulse, β0 = β(ω0) and v−1
g = ∂β/∂ω(ω0) are the

propagation constant and the inverse group velocity at the reference frequency, respectively. It is easy to
see, that the relationship between Ψ(z, t) and A(z, t) is:

A(z, t) = Ψ (z, τ = t− z/vg) e−iω0tei(β0−β)z (35)

Extending integration in the r.h.s. of Equation (28) onto negative frequency domain, we thus can
re-write the propagation equation in terms of the spectral amplitudes Ψδ of the envelope function Ψ(z, t)

as follows:
∂zΨδ =

(
iβ̃δ − αδ

)
Ψδ + iγF

{
|Ψ|2Ψ

}
δ

(36)

where β̃δ = β − β0− δ/vg and F {f(t)}δ is the Fourier amplitude of the function f(t) at frequency δ. It
is easy to see that:

F
{
|Ψ|2Ψ

}
δ

=
1

2π

∫∫ ∞
−∞

Ψδ1Ψ
∗
δ2

Ψδ−δ1+δ2dδ1dδ2 (37)

The derived Equation (36) is the spectral representation of the renowned generalized Nonlinear
Schrödinger Equation, widely used for the description of pulse propagation in nonlinear waveguides and
fibres [35]. Unlike the Equation (28), the reduced model in Equation (36) is easy to integrate numerically
with the help of the well-developed split-step method, whereby the nonlinear part is evaluated in time
domain [35]. Note that the definition of the pulse envelope function Ψ in Equation (34) does not involve
any additional renormalizations. In particular, the pulse energy W , Equation (16), is computed as:

W =

∫ ∞
−∞
|Ψδ(z)|2dδ =

∫ ∞
−∞
|Ψ(z, t)|2dt (38)

The derived propagation Equation (28) and its simplified version in Equation (36), together with the
set of coefficients defined in Equations (29) and (30) represent a comprehensive set of tools to analyze
nonlinear pulse dynamics and frequency conversion processes in any GSP waveguide geometry.
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3. Spectral Broadening in a GSP Waveguide

In this section we consider a particular example of a GSP waveguide created by a local modulation
of the graphene Fermi level [17], see Figure 1. The graphene is embedded into a dielectric matrix, for
which the constant permittivity ε = 10 was assumed.

The linear conductivity of graphene is given by [36]:

σ1 =
i2e2kBT

πh̄2(ω + iτ−1)
ln

[
2 cosh

(
EF

2kBT

)]
+
e2

4h̄

[
G
(ω

2

)
+ i

2ω

π

∫ +∞

0

G(ω′/2)−G(ω/2)

ω2 − (ω′)2
dω′
]

(39)

G(ω) =
sinh [h̄ω/(kBT )]

cosh [EF/(kBT )] + cosh [h̄ω/(kBT )]

For frequencies below the optical phonon resonance h̄ω < 0.2eV (λ > 6 µm) and below the absorption
threshold h̄ω < 2EF the relaxation time due to impurities is typically below 1 ps [6,7]. In the simulations
we used τ = 0.5 ps and T = 300 K.

The profile of Fermi energy, shown in the top panel of Figure 1, was modeled as:

EF (y) = EF1 + (EF2 − EF1) exp
[
−(2y/w)10

]
(40)

TakingEF1 = 0.25 eV andEF2 = 0.2 eV, this modulation corresponds to the variation of conductivity
from σ

(I)
1,hi = 1.291 × 10−4 S to σ(I)

1,lo = 0.973 × 10−4 S at λ0 =9 µm. While the propagation constant of
GSP on a homogeneous graphene is inversely proportional to σ1 [6,7]:

βGSP ≈
2ε0εc

−iσ1

(41)

such a local decrease of the conductivity effectively forms a waveguide for plasmons [17].
In Figure 2 linear and nonlinear parameters for waveguides of different widths w are summarized.

The effective index of the mode neff = β/k0, Figure 2a, and the mode profile eω were computed with
the help of Comsol finite-element (FEM) Maxwell solver, where graphene was introduced as the surface
current. This data was used to compute the attenuation length Lp = 1/αω and the nonlinear coefficient
γ according to Equations (29) and (30), see Figure 2b,c. For the nonlinear conductivity of graphene the
expression derived by Mikhailov and Ziegler [20] was used:

σ3 = −i 3

32

e2

πh̄

(eVF )2h̄2

EF (h̄ω)3
, (42)

and the orthogonal nonlinear factor η was set to zero.
To check the accuracy of the perturbation expansion procedure, the computed attenuation lengths were

compared against numerical data from Comsol (where the non-zero real part of σ1 was introduced), see
circles in Figure 2b. The agreement is nearly perfect, a slight discrepancy towards large wavelengths is
due to the finite thickness of dielectric layers used in Comsol, which starts to play a role as the mode
becomes less localized.
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Figure 2. Linear and nonlinear parameters for GSP waveguides of different widths: effective
index (a); attenuation distance (b); nonlinear coefficient (c); and the maximal ratio between
nonlinear and attenuation distances (d). Dashed line in panels (a,b) indicate characteristics
of the GSP on a homogeneous graphene sheet with σ1 = σ1,lo, Equation (41). In panel
(b) circles indicate attenuation length for w = 25 nm as computed directly from Comsol, see
text for details.

The attenuation length of a localized GSP in a waveguide is generally larger than that of a GSP on
a homogeneous graphene sheet, and it grows as the waveguide width w decreases [17]. This tendency
is due to GSP de-localization in narrow waveguides. However, typical propagation distances dictated
by the damping still remain relatively short, well below 1 µm. To observe any nonlinear effects
over such short distances, one needs to have the characteristic nonlinear length Lnl = 1/(γP ) to be
considerably shorter than Lp. While the nonlinear length is inversely proportional to input power P ,
the important characteristic of a waveguide is the critical power, for which local field intensities are
still below the damage threshold of graphene and dielectrics involved. Setting the threshold intensity to
Id = 1014 W/m2 [37], the minimal nonlinear distance is found to be several orders of magnitude below
the attenuation length over the broad wavelength range in mid-infrared, see Figure 2d. In particular, for
the waveguide of width w = 25 nm the optimal wavelength is identified at around λ = 10 µm, where
max(Lnl/LP ) ≈ 9000 and the maximal efficiency of nonlinear processes is expected.
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Figure 3. Numerically computed output spectra for propagation of a 100 fs sech pulse with
the peak power P0 in the 25 nm wide and 150 nm long GSP wavegide.

To illustrate the nonlinear functionality of GSP waveguides, here we consider the spectral broadening
process of a short pulse propagating in a 25 nm wide waveguide. We set the initial pulse to be T0 = 100 fs
long (FWHM, sech pulse), centered at λ0 = 9 µm and with a variable peak power P0. The nonlinear
coefficient at this wavelength is γ ≈ 1.3 × 1013 W−1m−1, and the critical power is Pcr ≈ 4 mW, cf. also
bottom panel if Figure 1. The attenuation constant is α ≈ 5.6 µm−1, which gives the attenuation length
Lp ≈ 180 nm. The waveguide length was set to L = 150 nm. The dispersion at λ0 = 9 µm is computed
as β2 = ∂2β/∂ω2 = 9.2 × 10−21 s2/m. For the chosen pulse duration, this gives the dispersion length
Ld = T 2

0 /β2 ≈ 1.1 µm [35]. Hence the dispersive spreading of the pulse is practically negligible over
the full waveguide length, which helps to sustain high efficiency of the nonlinear spectral broadening. In
Figure 3 output spectra for different input peak powers are plotted. For the peak power as low as 0.5mW
a considerable spectral broadening can be observed. The generated mid-infrared supercontinuum covers
more than one optical octave and spans from λ = 6 µm to λ > 13 µm. While this peak power is well
below the estimated critical power Pcr, a similar spectral broadening could be observed in samples with
shorter attenuation lengths, e.g., due to reduced relaxation times τ in graphene, by increasing P0 further.

4. Summary

We introduce a comprehensive set of analytical and numerical tools for the description of pulse
propagation and frequency conversion processes in GSP waveguides of arbitrary geometry. The generic
propagation Equation (28) and its simplified version (36), together with the nonlinear and damping
coefficients due to graphene conductivity are derived following perturbation expansion of Maxwell
equations with graphene being treated as the nonlinear boundary condition. Unlike the conventional
and widely used models, originally derived for bulk materials [35], our approach does not require
introduction of an artificial graphene thickness, and thus does not suffer from any related errors.



Photonics 2015, 2 835

As an example, we considered GSP waveguides formed by a local modification of Fermi energy.
Remarkably, such waveguides are found to be an outstanding platform for nonlinear functional
and extremely compact plasmonic circuits in the mid-infrared to terahertz range. In particular, a
supercontinuum generation covering more than one optical octave from a 100 fs input pulse with the
peak power as low as 0.5 mW is demonstrated in a compact 25 nm wide and 150 nm long waveguide.
The compactness of the waveguide and the low powers of operation could play the decisive role for
future development of on-chip integrated light sources in the spectral range, which is of high importance
for many applications in spectroscopy, chemical and bio-sensing, medical imaging.
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