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Abstract: A rapidly-swept external-cavity quantum cascade laser with an open-path Herriott cell is
used to quantify gas-phase chemical mixtures of D2O and HDO at a rate of 40 Hz (25-ms measurement
time). The chemical mixtures were generated by evaporating D2O liquid near the open-path Herriott
cell, allowing the H/D exchange reaction with ambient H2O to produce HDO. Fluctuations in the
ratio of D2O and HDO on timescales of <1 s due to the combined effects of plume transport and
the H/D exchange chemical reaction are observed. Noise-equivalent concentrations (1σ) (NEC)
of 147.0 ppbv and 151.6 ppbv in a 25-ms measurement time are determined for D2O and HDO,
respectively, with a 127-m optical path. These NECs are improved to 23.0 and 24.0 ppbv with
a 1-s averaging time for D2O and HDO, respectively. NECs <200 ppbv are also estimated for N2O,
1,1,1,2–tetrafluoroethane (F134A), CH4, acetone and SO2 for a 25-ms measurement time. The isotopic
precision for measurement of the [D2O]/[HDO] concentration ratio of 33‰ and 5‰ is calculated for
the current experimental conditions for measurement times of 25 ms and 1 s, respectively.

Keywords: external cavity quantum cascade laser; infrared spectroscopy; trace-gas sensing

1. Introduction

Rapid, sensitive and accurate quantification of chemical mixtures using laser absorption
spectroscopy in the mid-infrared (MIR) spectral region is important for a variety of remote and
open-path sensing applications. These applications include the measurement of atmospheric pollutants,
industrial effluents and combustion products [1–3]. For measurements of chemical mixtures in the gas
phase, an MIR laser source that is broadly-tunable with a high wavelength tuning rate and a narrow
spectral resolution is desirable. A broadly-tunable MIR laser source maximizes the number of chemicals
that can be identified in the mixture, while a high wavelength tuning rate reduces the measurement
time for chemical mixtures that are either chemically reactive and/or in turbulent environments.
The wavelength tuning rate needs to be sufficient such that the time to collect a single spectrum is
short enough that the change in the chemical species concentrations over the acquisition time interval
is negligible. A narrow spectral resolution is beneficial to differentiate overlapping absorption signals
in gas phase mixtures from chemicals with narrow or broad spectral features.

External cavity quantum cascade lasers (ECQCLs) have the broad wavelength tuning range
(∆λ/λ > 10%) required for the analysis of complex chemical mixtures. ECQCLs have been used
successfully for the analysis of solutions containing biomolecules [4,5] and to track the progress
of relatively slow chemical reactions in solution [6]. Due to constraints associated with the design
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of the wavelength tuning elements found in many ECQCLs, most ECQCL sources are unable to
achieve the wavelength tuning rates necessary to permit the acquisition of an entire broadband
spectrum on timescales <1 s and cannot monitor the composition of chemical mixtures in reactive
or turbulent environments. There are commercially available ECQCLs that are capable of scanning
over >100 cm´1 at 100 Hz [7] and rapidly-swept ECQCLs that have been designed with intra-cavity
microelectromechanical (MEMS) or acousto-optics modulators as wavelength tuning elements that
can be swept over >100 cm´1 on sub-ms timescales [6,8,9]. Unfortunately, these rapidly-swept ECQCL
systems have broad spectral resolutions around ~1 cm´1 that are insufficient for measuring chemicals
with narrow spectral features in gas phase chemical mixtures.

The broad wavelength coverage provided by ECQCLs is also important for isotopic analysis of
gas-phase chemical mixtures. The measurements of isotope ratios in gas-phase chemical mixtures can
be used to monitor physical and chemical processes relevant to atmospheric chemistry, biology, geology
and medicine [10–18]. A number of distributed feedback (DFB)-QCL-based sensors have been developed
to measure the isotope ratios in gas-phase chemical mixtures; however, due to the limited wavelength
coverage offered by DFB-QCLs, the conventional scheme for isotope ratio measurement involves the
measurement of two rovibrational transitions: one for each isotopologue/isotopomer [10,12–14,17].
This two-line measurement approach requires careful selection of transitions to minimize the effects
of gas temperature and to avoid spectral interference from nearby lines of other chemical species.
The broadband spectra that can be collected using an ECQCL permit multiple lines and band contours
to be measured for the isotopically-substituted chemicals of interest and other chemical species.
By fitting of the broadband spectral data to a spectral model, the temperature of the gas sample can be
extracted. The ability to extract the temperature of the sample is of particular interest for open-path
remote sensing applications where knowledge of the gas temperature may be limited. The problems
from spectral interference can also be alleviated if the developed model includes spectral contributions
from the interfering chemical species. Additionally, the broad wavelength tuning range of an ECQCL
also enables isotope ratio measurements for large chemicals, such as volatile organic compounds, that
have broad rotationally-unresolved vibrational bands. Despite these advantages for open-path isotope
ratio measurements, there is only one report of the application of a pulsed ECQCL for the measurement
of 13CO2/12CO2 isotope ratios, and this was performed in a hollow waveguide gas cell [11].

Recently, we presented results from the detailed characterization of a rapidly-swept ECQCL
system for open-path trace-gas sensing of chemicals [19]. This system used an open-path Herriot cell
configured to provide an optical path length of 127 m and was swept over its entire tuning range
(>100 cm´1) at rates up to 200 Hz while preserving a spectral resolution <0.2 cm´1. Rapid and sensitive
open-path measurements of F134A and N2O plumes generated in the laboratory were demonstrated
with this system, yielding 1σ noise-equivalent concentrations (NEC) <100 ppbv for a 127-m optical
path length in a single spectral measurement time of 5 ms [19]. In this paper, the capability of
a rapidly-swept ECQCL system to perform broadband isotope ratio measurements in transient sources,
such as chemical plumes, is demonstrated. To test this capability, a chemical plume of D2O and HDO
was generated by evaporating D2O liquid near an open-path Herriott cell. This example system was
selected because it provides a challenge for a broadband measurement approach due to the rapidly
time-varying [D2O]/[HDO] isotope ratio in the plume. The time-dependent concentrations of D2O
and HDO were measured at an acquisition rate of 40 Hz. Based on an Allan deviation analysis of the
system performance, NECs <200 ppbv are obtained in a 25-ms measurement time for N2O, F134A, CH4,
acetone, SO2, HDO and D2O with the current system and a 127-m open-path Herriott cell. These NECs
are achieved despite the presence of strong interference from water absorption in the collected spectra.
Using the NECs estimated for HDO and D2O, combined with the average concentrations observed in
the D2O plume studies, isotopic precisions of 33‰ and 5‰ for the measurement of the [D2O]/[HDO]
concentration ratio were calculated at integration times of 25 ms and 1 s, respectively. The isotopic
precision found in this study is comparable to what has been reported for isotope ratio measurements
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using DFB-QCL-based systems [12–15,18,20], demonstrating the capability of a rapid broadband
spectral acquisition approach for gas phase isotope ratio measurements in turbulent environments.

2. Experimental Section

2.1. Optical Layout and Data Collection

As the experimental setup, the data collection and data analysis used in this current study have
been described in prior work [19,21,22]; these details will be summarized in this section. A simplified
diagram of the experimental layout is illustrated in Figure 1. The rapidly-swept ECQCL used in this
work is a custom system [22] that has been used in point sensors for trace-gas measurements [21–24],
stand-off measurements of explosive compounds [25] and hyperspectral microscopy [26–28]. For the
experiments presented here, the ECQCL is swept over a 110-cm´1 tuning range (1280–1390 cm´1) by
a 20 Hz sinusoidal modulation of the angle of an intra-cavity mirror attached to a galvanometer.
This corresponds to a spectral acquisition rate of 40 Hz, because the laser is swept through its entire
tuning range twice during one galvanometer modulation period. The laser current is amplitude
modulated from 0–580 mA at a frequency of 100 kHz with a 50% duty cycle using a square wave signal
applied to the modulation input of a custom low-noise current controller [29]. Amplitude modulation
of the ECQCL current is used to reject low-frequency noise from the experiment and to mitigate the
impact of external-cavity mode-hops on the light intensity output from the laser.
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Figure 1. A diagram of the experimental configuration used for the collection of data in this study.
The acronyms in the figure are defined as follows: MPC: Herriott multi-pass cell; MCT: liquid
nitrogen-cooled mercury cadmium telluride (MCT) photodetector with pre-amplifier; DAQ: digital
acquisition system.

The output light from the ECQCL is coupled to an open-path Herriott cell using a 2-lens telescope.
The 6 inch-diameter protected gold-coated concave mirrors are separated by 0.75 m and configured for
an optical path of 127 m. The light exiting the Herriott cell was directed to a liquid nitrogen-cooled
MCT detector (PV-12-1, Fermionics Corp., Simi Valley, CA, USA) that is paired with a custom low-noise
pre-amplifier. The voltage output from the pre-amplifier is recorded by a National Instruments DAQ
(NI USB-6366, Austin, TX, USA). The detector voltage is recorded simultaneously with the voltage
from the galvanometer encoder and the voltage of the current modulation waveform applied to the
laser current controller. The DAQ system also generates the voltage signals for the modulation of the
galvanometer angle and the laser current. Synchronization of the modulation signals and reading
of the detector, encoder and current modulation voltages is controlled by a LabView data collection
program. The data collection program also performs demodulation of the intensity signal on the
MCT detector at the current modulation frequency of 100 kHz. Additional details regarding the
software-based demodulation process are provided in Brumfield et al. [19]. The demodulated intensity
signals and encoder voltages are saved to a file for post-processing.

For the HDO/D2O isotopic mixture measurements in this work, a small metal sample tray
containing ~1 mL of D2O liquid (Acros Organics, 100% D2O) was placed beneath the Herriott cell.
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The evaporation of the D2O liquid generated a plume of D2O and HDO that slowly diffused into the
laboratory air and drifted into the beam path of the Herriott cell.

2.2. Spectral Processing and Analysis

Processing of the raw transmitted intensity data to absorbance was performed offline following
a similar procedure for the analysis of swept ECQCL spectral data that has been described in prior
work [19,21,22]. First, the transmitted intensity spectrum from each galvanometer period is split
into two separate intensity spectra corresponding to the up and down sweep of the encoder voltage.
Due to small differences in how the galvanometer behaves based on the direction that the galvanometer
angle is swept, spectra collected during the up and down sweep must be treated separately in the
wavelength calibration steps. A set of intensity spectra is used to create an average transmitted
intensity background spectrum (I0). Figure 2 provides an example of the average transmitted intensity
measured through the Herriott cell as the ECQCL is swept over its tuning range. The transmitted
intensity spectra used to generate I0 are selected over a time interval when there are no intentional
chemical releases near the open-path Herriott cell. The average background spectrum is used in the
wavelength calibration procedure and to convert the remaining transmitted intensity spectra in the
dataset to base-10 absorbance. To convert the encoder voltage to wavelength, we used a calibration
procedure using the wavelength positions of 8 isolated water lines present in I0. The resulting
wavelength-versus-encoder voltage data are then fit to the grating equation, and the values extracted
for the coefficients in the grating equation are then used to convert the encoder voltages to wavelength
for the remaining intensity spectra in the dataset. After wavelength calibration, the intensity spectra
are then converted to base-10 absorbance by taking the negative log of the ratio of the intensity
spectrum with the background intensity spectrum: A10 = ´log(I/I0). It is important to note that with
this analysis scheme, the calculated absorbance is always referenced to the time interval when I0 is
calculated [21,22].
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Figure 2. An example of a transmitted intensity spectrum through the Herriott cell over the tuning
range of the ECQCL.

The concentrations of chemical species are obtained by applying a weighted least squares (WLS)
fitting routine to the absorbance spectra. Nine basis vectors are used in the WLS analysis of the
absorbance data. Seven of these basis vectors are library spectra taken from the NWIR database:
acetone, D2O, HDO, N2O, CH4, F134A and SO2 [30]. These library spectra are plotted in Figure 3.
All of the library spectra have been convolved with a Gaussian slit function with an FWHM of
0.12 cm´1 to account for the average 1-s spectral resolution of the ECQCL at a 40-Hz acquisition
rate [19]. The spectral resolution reflects the linewidth of the swept ECQCL source and is the result
of a combination of factors: (1) the wavelength chirp resulting from the amplitude modulation of the
laser current; (2) averaging over external cavity mode-hops (~0.03 cm´1); and (3) the rate that the DAQ
can sample the intensity waveform measured by the detector [21]. Vectors are provided for a slope and
an offset in the WLS fit. The square of the transmitted intensity spectrum (I2) is used as the weighting
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factor in the WLS fit to marginalize the contribution from portions of the absorbance spectrum where
the transmitted light intensity is low. Because the sample absorbance is always relative to the time
interval when I0 was collected, the extracted species concentrations from the WLS analysis are also
referenced back to their concentrations during the I0 time period. The concentrations extracted from
this analysis can be either positive or negative, and this is dictated by how the concentrations of the
chemicals change between the time period of the sample measurement and the collection of the I0

spectral data [21,22].
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of each panel.

3. Results and Discussion

3.1. Analysis of an Isotopic Mixture Containing HDO and D2O

To demonstrate the capability of the rapidly-swept ECQCL to measure isotope ratios in reactive
chemical mixtures, a liquid sample of D2O was placed beneath the open-path Herriott cell. As the D2O
liquid evaporated, the plume interacted with ambient H2O, and the rapid H/D exchange reaction
generated HDO. This resulted in a plume with a time-varying isotope ratio of D2O and HDO that
drifted into the optical path of the Herriott cell and was measured with the swept ECQCL source.
In Figure 4a, an example absorbance spectrum over a portion of the full tuning range is provided that
illustrates simultaneous detection of D2O and HDO from the plume generated by the liquid D2O
sample. Excellent qualitative agreement is observed between the experimental spectrum and the
best fit produced by the WLS analysis. In Figure 4a, some structure is present in the residuals for the
WLS fit. These residuals reflect small systematic errors in the absolute wavelength calibration of the
ECQCL scan. While there are errors in the absolute wavelength calibration, prior work has shown
that the swept ECQCL source demonstrates excellent sweep-to-sweep repeatability of the wavelength
calibration [19,21], and it is the precision of the wavelength calibration that ultimately governs our
detection limits for various chemicals. In Figure 4b, the individual spectral contributions from D2O and
HDO from the WLS analysis are shown, demonstrating how the narrow 0.12-cm´1 spectral resolution
of the ECQCL system aids in resolving partially-overlapped D2O and HDO spectral features.
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Figure 4. Example spectral measurement of D2O and HDO from 1280–1310 cm´1: (a) a single
experimental spectrum (expt) is shown along with the corresponding best fit (fit) and residual; (b) the
contribution to the absorbance from D2O and HDO for the best fit spectrum in (a). The spectrum shown
in (a) is the result of averaging 1 s of spectral data while operating at an acquisition rate of 40 Hz.

In Figure 5a, the time dependence of the D2O and HDO species concentrations extracted from
the WLS analysis are shown for data acquired from 600–800 s in 25-ms intervals. Six hundred and
thirty seconds of spectral data were recorded without the D2O liquid beneath the Herriott cell, and the
first 500 s of spectra were used to generate I0 for the calculation of the sample absorbance. Based on
Figure 5a, the relationship between the concentrations of D2O and HDO is complex with significant
concentration changes on sub-1-s timescales. In general, there is a positive correlation between the
D2O and HDO concentrations; however, the degree of correlation varies in time. This is demonstrated
by the time dependence of the D2O to HDO concentration ratio shown in Figure 5b. The fluctuation
in the concentration/isotope ratio indicates that a combination of plume transport properties and
chemistry plays an important role in the measured D2O and HDO concentrations. The transport
properties of the plume are important because portions of the plume that have interacted longer with
ambient water vapor will be enriched in HDO due to the H/D exchange reaction. If these parts of
the plume then drift into the probe volume of the Herriott cell, the measured concentration of HDO
will increase. Figure 5c shows the recorded change in the CH4 concentration, which is expected to
nominally be zero. The amount of concentration cross-talk observed for CH4 is at most 2–3-times
larger than the 1σ uncertainty in the chemical species concentration before the introduction of D2O
beneath the Herriott cell. A similar degree of cross-talk is also observed for the other chemicals in
the WLS analysis. These results show that the WLS approach correctly identifies and quantifies the
chemicals present in the mixture.
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Figure 5. The time-dependent concentrations extracted from the WLS fitting of spectral data collected
during the evaporation of D2O liquid near the Herriott cell while operating at a 40-Hz acquisition
rate: (a) the concentrations for D2O and HDO from 600–800 s of data; (b) the ratio of the D2O to HDO
concentration calculated using concentration data from 635–800 s; (c) the time-dependent concentration
for CH4 extracted from WLS analysis of the same dataset is provided.

3.2. Calculation of NECs for D2O, HDO and Other Chemicals

The NECs for D2O, HDO and the five other chemicals using the open-path rapidly-swept ECQCL
system were determined by following a method used in previous swept ECQCL studies [19,21].
First, one hour of spectra was collected at an acquisition rate of 40 Hz in the absence of chemical
releases. The first 14,400 spectra (6 m) recorded were used to generate I0 for the calculation of
the absorbance spectra of the remaining 129,600 spectra (54 m) in the dataset. The WLS fitting
algorithm was then applied to the absorbance data. By carrying out this process, the extracted species
concentrations account for the effects of spectral noise and drift in the measurement. An example of
a time-dependent chemical concentration dataset extracted from this analysis is provided for N2O
in Figure 6. Figure 6 demonstrates that there is negligible drift in the N2O concentration over the
54-m time interval, and this is the typical result observed for the other six chemicals in the WLS
library. An Allan deviation analysis was applied to the time-dependent concentration data to obtain
the relationship between the NECs and the integration time for all of the chemical species in the WLS
fitting library. The results of the Allan analysis are shown in Figure 7. Table 1 provides a summary of
the NECs and noise-equivalent column densities (NECDs) for all of the chemical species considered at
integration times of 25 ms and 1 s.

Based on the data presented in Table 1, all of the reported NECs are <200 ppbv for a measurement
time of 25 ms. For D2O and HDO, NECs of 147.0 and 151.6 ppbv are estimated, respectively, for
a 25-ms measurement time. From Figure 7, we can see that the detection limits for D2O and HDO are
white noise limited out to 10 s and reach a minimum NEC of ~10 ppbv for both chemicals. By 1 s, the
NECs for all of the remaining chemicals are on the order of 10 ppbv or less. Table 1 has been organized
in descending order based on the peak absorbance observed for the library spectrum of each chemical
species. The corresponding NECDs generally follow the expected inverse relationship, with increasing
value as the peak absorbance grows smaller.
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Table 1. A comparison of the NECs and NECDs obtained from the Allan deviation analysis of the
time-dependent species concentrations in the absence of chemical releases. NECDs are calculated
using the 127-m optical path of the Herriot cell and the NEC concentrations obtained from the Allan
deviation analysis (see Figure 7). The corresponding peak absorbance for each chemical is taken from
the NWIR library spectra (see Figure 1).

Chemical Peak Absorbance
(ˆ 10´3)

25 ms NEC
(ppbv)

25 ms NECD
(ppmv ˆ m) 1 s NEC (ppbv) 1 s NECD

(ppmv ˆ m)

F134A 2.3 9.1 1.16 2.1 0.27
SO2 1.1 40.6 5.16 6.8 0.86
CH4 0.81 51.3 6.55 8.7 1.10
N2O 0.74 34.3 4.36 5.6 0.71

Acetone 0.48 92.1 11.70 15.6 1.98
HDO 0.22 151.6 19.25 24.0 3.05
D2O 0.18 147.0 18.67 23.0 2.92

3.3. Evaluation of the Isotopic Precision for Measurement of [D2O]/[HDO]

The plume measurements and analysis of the detection limits for D2O and HDO discussed in
Sections 3.1 and 3.2 provide the necessary information to evaluate the isotopic precision of the swept
ECQCL open-path measurement. Unlike conventional atmospheric isotope ratio measurements with
static isotope ratio standards and trace concentrations of isotopically-substituted chemicals, we have
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an enriched isotopic chemical mixture with a rapidly fluctuating concentration and isotopic ratio
in a chemical plume. In traditional delta notation, the change in the isotope ratio with respect to
a standard is given by:

δrD2Os “ 1000ˆ

˜

rD2Osmeasured
L

rHDOsmeasured
Rstandard

´ 1

¸

“ 1000ˆ
ˆ

Rmeasured
Rstandard

´ 1
˙

(1)

where we define Rmeasured = [D2O]measured/[HDO]measured. In this work, we are using a value of
0.5 for Rstandard, and this corresponds to the average ratio observed in Figure 5b from the D2O
plume studies. This value is likely due to the interaction of the highly-enriched plume of D2O vapor
reacting with water vapor in the laboratory air that is dominated by H2O, with each reactive collision
producing two HDO molecules. The value for Rstandard is taken from experimental measurements
because our isotopic enrichment of deuterium is far from the natural abundance, and there is
no commonly-accepted standard that matches the isotopic composition in the chemical plume.
By adopting our experimentally-measured Rstandard into Equation (1), we are using the standard
per mil notation to describe our isotopic precision for measurements with respect to the average
isotopic composition of the plume.

The isotopic precision of our measurements in per mil notation can be calculated through standard
error propagation using the variance formula as shown in Equation (2):

∆ pδrD2Osq “

d

ˆ

BpδrD2Osq
BrD2Os

˙2
p∆rD2Osq2 `

ˆ

BpδrD2Osq
BrHDOs

˙2
p∆rHDOsq2 (2)

where ∆[D2O] and ∆[HDO] are the uncertainties in measuring the D2O and HDO concentrations,
∆δ[D2O] is the uncertainty in the per mil measurement of the [D2O]/[HDO] ratio and
B(δ[D2O])/B[D2O] and B(δ[D2O])/B[HDO] are the partial derivatives of Equation (1) with respect to
the D2O and HDO concentrations. In Equation (2), the assumption is made that there is no uncertainty
associated with Rstandard.

After evaluation of the partial derivatives and assuming that the deviation between Rmeasured and
Rstandard is small, Equation (2) can be simplified to:

Isotopic precision p%0q “ ∆ pδrD2Osq “ 1000 ˆ

d

ˆ

∆rD2Os
rD2Os

˙2
`

ˆ

∆rHDOs
rHDOs

˙2
(3)

As expected, the isotopic precision also depends on the concentrations of species being measured.
Values for ∆[X] for various measurement times can be taken directly from the Allan deviation analysis
presented in Figure 7. In Figure 8, the Allan deviation data from Figure 7 has been combined with
Equation (3) to produce an Allan plot illustrating how the isotopic precision for δ([D2O]) varies with
measurement time. To generate the Allan plot in Figure 8, we assumed standard concentrations
of 10 ppm and 5 ppm for HDO and D2O, respectively, which are reasonable when compared to
the measured concentrations in Figure 5a. Based on Figure 8, the calculated isotopic precision for
measurement times of 25 ms and 1 s is 33‰ and 5‰, respectively.
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For increased isotopic precision, lines with a higher cross-section could be selected or
measurements could be performed on samples with higher concentrations. To explore how the
isotopic precision varies with concentration, we vary the total concentration of D2O and HDO:

rTotal Concentrations “ rHDOs ` rD2Os (4)

When Equation (4) is combined with an Rstandard value, the concentrations for HDO and D2O are
given as follows:

rHDOs “
ˆ

1´
Rstandard

Rstandard ` 1

˙

ˆ rTotal Concentrations (5)

rD2Os “
ˆ

Rstandard
Rstandard ` 1

˙

ˆ rTotal Concentrations (6)

The concentrations from Equations (5) and (6) were inserted into Equation (3) for the calculation
of ∆(δ([D2O])). Figure 9 provides an estimate for the isotopic precision with ∆[X] values taken from
Figure 7 for D2O and HDO at a measurement time of 1 s. Figure 9 reveals that increasing the total
concentration by a factor of 6.7 from 15–100 ppmv results in a corresponding improvement in the
isotopic precision from 5‰–0.77‰ for a 1-s measurement. For decreasing total concentrations, we
see the size of the uncertainty in the isotope ratio increase significantly as the relative uncertainty in
the measurement of the minor isotope grows. These extremely large values for the isotopic precision
correspond to the scenario where the uncertainty in measurement of the minor isotope concentration
is much larger than the actual concentration, and in this limit, the measurement of the isotope ratio is
not feasible.

The isotopic precision observed with the swept ECQCL is comparable with the reported isotopic
precision values obtained using DFB-QCL-based systems, such as for δ13C in CO2 [13,15], δ15N
in N2O [12,20] and NO [18] and δ18O in H2O [14]. These isotopic precisions are reported over
a broad range of integration times, sample concentrations and gas cell pressures, but generally fall
within a ~0.1–10‰ range. While the observed isotopic precision benefits from the measurement
of an isotopically-enriched gas sample with an Rstandard of 0.5, this is offset by the relatively small
total concentration of 15 ppmv. This can be demonstrated by scaling our isotopic precision with
respect to the total species concentration and the value of Rstandard. As an example, an isotopic
precision of 0.25‰ in 1 s was reported for the measurement of the H2

18O/H2
16O isotope ratio using

a DFB-QCL [14]. In that study, the water vapor concentration was ~15,000 ppmv, and the Rstandard was
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~0.002 for H2
18O/H2

16O (based on the mean ocean water standard [10]). The results of scaling our
isotopic precision using an Rstandard value of 0.002 are provided in Figure 9. At a total concentration of
15,000 ppmv, an isotopic precision of 0.80‰ in 1 s is estimated, which is only three-times larger than
that reported for the DFB-QCL-based water isotope ratio measurement [14].
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4. Conclusions

A rapidly-swept ECQCL has been used for open-path measurements of an isotope ratio in
a gas-phase chemical mixture. A chemical mixture of D2O and HDO was used as a test case for
demonstrating the capability of a swept ECQCL source for broadband isotope ratio measurements in
chemical plumes where the isotope ratio is varying rapidly in time due to the interplay between the
plume transport and the rapid H/D exchange reaction with ambient H2O. The swept ECQCL source
was capable of monitoring the open-path concentrations of D2O and HDO in a plume at a 40-Hz
(25 ms) acquisition rate with marginal concentration cross-talk for the other chemical species used in
the WLS fitting analysis. While this capability has been specifically demonstrated with a D2O chemical
plume, the rapidly-swept broadband spectroscopy approach using an ECQCL source can be applied to
other reactive or turbulent chemical systems where the isotope ratio is varying rapidly in time.

Based on an Allan analysis of the rapidly-swept ECQCL system performance, a NEC of ~150 ppbv
is calculated for D2O and HDO in a 25-ms measurement time with the open-path Herriott cell.
Overall, the NECs for F134A, SO2, CH4, N2O, acetone, HDO and D2O were <200 ppbv for a 25-ms
measurement time, and for a 1-s integration time, they are reduced further to <50 ppbv. The results from
this study demonstrate that a rapidly-swept ECQCL can be used for analysis of gas-phase chemical
mixtures of rapidly-changing isotopic composition, with the ability to quantify chemical species with
both narrow and broad spectral features. Furthermore, sub-ppmv detection limits were realized for
all chemicals despite pervasive interference from strong water absorption over the 1280–1390 cm´1

spectral window.
The NEC information obtained for measurements of D2O and HDO led to an analysis of the

isotopic precision of the swept ECQCL instrument. By using the average observed concentrations
for D2O and HDO from the plume studies, an isotopic precision of 33‰ and 5‰ is calculated
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for measurement times of 25 ms and 1 s, respectively. The 33‰ precision achieved in 25 ms
demonstrates the capability for the swept ECQCL to be used for measuring isotopic ratios in turbulent
and/or reactive plumes. Overall, the isotopic precision obtained from our open-path swept ECQCL
studies is competitive with other isotope ratio measurements made using DFB-QCLs [12–15,18,20],
demonstrating the capability of the broadband spectral measurement approach with an ECQCL when
compared to the conventional two spectral line measurement approach. This broadband spectral
measurement capability opens up the possibility for isotope ratio measurements of large molecules
with broad rotationally-unresolved vibrational bands.
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The following abbreviations are used in this manuscript:

1,1,1,2-tetrafluoroethane F134A
DFB Distributed feedback
MIR Mid-infrared
ECQCL External-cavity quantum cascade laser
MEMS Microelectromechanical
NEC Noise equivalent concentration
DAQ Digital acquisition system
MCT Mercury cadmium telluride
WLS Weighted least squares
NECD Noise-equivalent column density
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