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Abstract: We discuss several issues associated with employing a constant matrix element
approximation for the coupling of light to multiband electrons in the context of time-resolved
angle-resolved photoemission spectroscopy (TR-ARPES). In particular, we demonstrate that the
“constant matrix element approximation” —even when reasonable—only holds for specific choices of
the one-electron basis, and changing to other bases, requires including nonconstant corrections to the
matrix element. We also discuss some simplifying approximations, where a constant matrix element
is employed in multiple bases, and the consequences of this further approximation (especially with
respect to the calculated TR-ARPES signal becoming negative). We also discuss issues related to
gauge invariance of the final spectra.
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1. Introduction

Time-resolved and angle-resolved photoemission spectroscopy (TR-ARPES) is emerging as one
of the powerful tools in ultrafast optics used to probe the nonquilibrium behavior of quantum
materials and how they recover back to a quasiequilibrium state. Many different materials
have been investigated so far, including charge-density-wave systems [1–9], high-temperature
superconductors [10–14], iron pnictides [15], Mott insulators [16], and topological insulators [17].
Theory has also been well developed to model these systems. The theory developed by Freericks,
Krishnamurthy, and Pruschke [18] described the most general formulas for this pump/probe
spectroscopy (including corrections to ensure gauge invariance and including the dominant
second-order perturbation theory contributions [19]). Because the formula for TR-ARPES (in a gauge)
comes from second-order perturbation theory, it involves the square of a many-body matrix element,
which, in general, can depend on the band index, momentum parallel to the surface, the energy of
the photoelectron (see Equation (7) below) and time, and can be shown to be explicitly nonnegative.
The true physical response, however, is the gauge-invariant response, and it is not hard to show that
the general formula with the exact matrix elements is indeed gauge invariant. However, as we discuss
below, this can be a problem when approximations are made for the matrix elements, and while a
gauge invariant prescription can be constructed following a straightforward procedure [20], it has
proved to be difficult to establish, in general, that this result is non-negative [19].
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It is also common to invoke a “constant matrix element approximation”, wherein its dependence
on its various arguments is entirely neglected, within theoretical calculations of photoemission spectra.
This is not necessarily because the matrix elements are known to be constant, but because explicitly
determining the matrix elements is extremely challenging for quantum materials, so employing a
constant matrix element is a good first step in modeling such systems. The constant matrix element
approximation is trivial when there is only a single effective band in the system, but it becomes
more complex when there are multiple bands. In this paper, we discuss different options one has for
invoking the constant matrix element approximation within TR-ARPES, paying particular attention
to the issues of gauge invariance and non-negativity of the spectra. We also discuss implications for
time-resolved photoemission spectroscopy (TR-PES), where the momentum dependence has been
integrated over.

2. Results

The description of a pump/probe experiment is complicated by the fact that the presence of the
pump removes time-translation-invariance symmetry from the system, and we generally find that the
Green’s function depends on two times. Using the Wigner coordinates [21], these two times can be
summarized as the average time tave = (t1 + t2)/2 and the relative time trel = t1 − t2. The pump must
be explicitly included into the Hamiltonian, because it is a large “perturbation” of the system, so it
cannot be treated with low-order perturbation theory. Fortunately, because the Peierls substitution [22]
allows us to treat the electric-field effects exactly for single-band models, we have an exact means
to include the effects of the pump pulse. Note that in multiband models, there can be additional
electric field effects due to symmetry-allowed dipole transitions that connect two bands that have
opposite spatial parity (and, of course, higher-order multipoles can also be taken into account, but it is
rarely needed to do so). The dipole approximation would involve a direct coupling (hybridization)
between the two bands, with the strength of the coupling proportional to the field amplitude. This
can also be easily included into the Hamiltonian, which then fully describes the effects of the electric
field (however, magnetic field effects—including fields generated by time-varying electric fields—are
usually neglected). The other constraint is that the field is uniform in space. Non-uniform fields create
many additional complications to the formalism. The probe pulse, on the other hand, is usually taken
to be weak, and hence it can be treated with lowest order (second-order) perturbation theory. While
there are a number of different second-order terms that can contribute, only one term dominates, and
that is the only one we will focus on here [18,19].

2.1. Formalism for the TR-ARPES Response in a Gauge

It was demonstrated in reference [18] that the TR-ARPES signal can be found from a
probe-pulse-weighted two-time Fourier transform of the non-equilibrium lesser Green’s function.
We need to review that derivation to first correct it for a proper gauge-invariant treatment, and to
establish our notation so that we can discuss the constant matrix-element approximation.

We assume the HamiltonianH(t) includes all of the interactions of the electrons (with themselves,
and with other scatterers, like impurities, phonons, etc.), and it also includes the effect of the electric
field (as described above), which makes it time-dependent. The explicit form of this Hamiltonian can
be arbitrary for this work, so we do not specify a particular Hamiltonian at this time. The evolution
operator of the Hamiltonian with the pump field is denoted U(t, t0) for the evolution from time t0 to
time t, and it satisfies the equation of motion ih̄dU(t, t0)/dt = H(t)U(t, t0); it is a unitary operator that
also satisfies the semigroup properties U(t, t) = 1 and U(t, t1)U(t1, t0) = U(t, t0). The photocurrent
operator Jd represents the current of electrons at the spatial location of the detector (given by Rd) and
with momentum peaked around ke. We let φke ;Rd

(k) be a momentum-space wavefunction peaked
about both ke and Rd, and we let c†

ke ;Rd
be the associated fermionic creation operator to create fermions

in the state φ. Then, the photocurrent operator satisfies Jd ≈ (h̄ke/me)c†
ke ;Rd

cke ;Rd
, with me the mass of

the electron. Note that we are suppressing the spin degree of freedom for notational simplicity.
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Under the assumption thatHprobe(t) is a weak perturbation to probe the non-equilibrium system,
the dominant second-order contribution to the photocurrent becomes

〈Jd(t)〉 =
1
h̄2

∫ t

t0

dt1

∫ t

t0

dt2〈U(−∞, t2)Hprobe(t2)U(t2, t)JdU(t, t1)Hprobe(t1)U(t1,−∞)〉, (1)

with
〈O〉 = 1

Z ∑
n

e−βEn〈n|O|n〉, (2)

and Z = ∑n exp(−βEn). Here, En is the energy of a many-body eigenstate |n〉 of the Hamiltonian
H(−∞) before the pump is turned on, β = 1/kBT is the inverse temperature of the initial equilibrium
configuration prior to the pump being turned on, and O is any operator.

Our material is described as a bulk system with a surface parallel to the x–y plane. We let ενk‖
denote the bandstructure with momentum k‖ parallel to the surface, and ν denotes all the other
quantum numbers (like band index, etc.). The bandstructure is calculated for the initial Hamiltonian
H(−∞) prior to the pump being turned on. We let c†

νk‖
denote the corresponding electron creation

operator; note that we are continuing to suppress spin. The component ofH(t) that corresponds to the
absorption of a photon with wavevector q, frequency ωq = cq, and creation operator a†

q becomes

∑
νν′k‖

s(t)e−iωqt Mq(ν, ν′, k‖; t)c†
ν′k‖+q‖

cνk‖
aq (3)

with Mq(ν, ν′, k‖; t) = 〈ν′k′‖|(ieh̄Aprobe(r)/mec) × (∇ − ieApump(r, t)/(h̄c))|νk‖〉 the one-electron
matrix element. Here, Aprobe(r) is a product of a spatial envelope function and a plane wave of
wavevector q and s(t) is the probe pulse temporal envelope function. The matrix element itself
depends on the vector potential of the pump field, and hence inherits its time dependence. If a tight
binding model with a Peierls substitution for the coupling of the system to the vector potential of the
pump field is used, the expression for the matrix element M has to be appropriately rewritten.

Introducing the time-reversed low-energy electron diffraction (TRL) states, as described in
Reference [18], we then find the total photocurrent for a particular probe pulse is given by

〈Jd〉 =
h̄ke

me
∑

νν′k‖k′‖

φ∗ke ;Rd
[k(ν)]φke ;Rd

[k′(ν′)]Pk(s), (4)

where Pk(s) is the total probability for a photoelectron to be detected at the detector for a given probe
pulse envelope function s(t). We find

Pk(s) = 1
h̄2 ∑ν1ν′1k‖1 ∑ν2ν′2k‖2

∫ ∞
−∞ dt1

∫ ∞
−∞ dt2M∗q(ν2, ν′2, k‖2; t2)Mq(ν1, ν′1, k‖1; t1)s(t2)s(t1)eiωq(t2−t1)

× 〈c†
ν2k‖2

(t2)cν′2k‖2+q‖
(t2)c†

ν′k′‖
(t)cνk‖

(t)c†
ν′1k‖1+q‖

(t1)cν1k‖1
(t1)〉.

(5)

All fermionic creation and annihilation operators are in the Heisenberg representation with respect
to the Hamiltonian with the pump present; i.e.,H(t).

The expectation value is a three-particle non-equilibrium many-body Green’s function, which is
challenging to evaluate. However, it is a good approximation to assume that the high energy electrons
(for example, the TRL state electrons indexed by ν and ν′) do not strongly interact with other electrons,
and that the pump pulse does not significantly alter them (because they reside primarily outside the
region where the pump pulse lives). In this case, they can be treated as noninteracting band-like
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electrons, which allows the three-particle Green’s function to be factorized, just like in Wick’s theorem,
which yields

〈c†
ν2k‖2

(t2)cν1k‖1(t1)〉H × 〈cν′2k‖2+q‖
(t2)c†

ν′k′‖
(t)〉H0 × 〈cνk‖(t)c

†
ν′1k‖1+q‖

(t1)〉H0

' 〈c†
ν2k‖2

(t2)cν1k‖1(t1)〉H δν′2,ν′δν′1,νδk‖2+q‖ ,k′‖
δk‖1+q‖ ,k‖ e

i[(εν′k′‖
−µ)(t−t2)−(ενk‖

−µ)(t−t1)]
(6)

Here, the expectation value involving the low-energy electrons is evaluated as a single-particle
non-equilibrium lesser Green’s function evolving according to the full HamiltonianH. The high-energy
averages are non-interacting equilibrium single-particle Green’s functions evaluated with respect to the
band HamiltonianH0, which includes no pump and no interactions of the electrons (with themselves
or anything else). These high energy averages can then be explicitly evaluated, as shown in the last line
above, where we have further assumed that the initial temperature is small compared to the energies
of the photo-emitted electrons and the pump does not excite the electrons to too high an energy.

A further approximation is to assume that the momentum distribution of the electrons arriving
at the detector is sharp. Then, we have ke = k(ν) = k′(ν′) and ν = ν′ = νe. Finally, we also have
ενek‖e − µ = h̄ωq − h̄ω, with h̄ω the excitation energy remaining in the system after the photoemission
process. This then yields the main result for the TR-ARPES formalism

Pk(s) ' − i
h̄2 ∑ν1,ν2

∫ ∞
−∞ dt1

∫ ∞
−∞ dt2M∗q=0(ν2, νe; ke‖; t2)Mq=0(ν1, νe; ke‖; t1)s(t2)s(t1)eiω(t2−t1)

×G<
ν1ke‖ ,ν2ke‖

(t1, t2),
(7)

where we assumed the photon wavevector is much smaller than the electron wavevectors.
The two-time non-equilibrium lesser Green’s function is

G<
ν1ke‖ ,ν2ke‖

(t1, t2) = i〈c†
ν2ke‖

(t2)cν1ke‖
(t1)〉H (8)

and the operator averages are taken with respect to the full Hamiltonian. We label the photoresponse
with the symbol s, since the envelope function of the probe Hamiltonian encodes the time delay with
respect to the pulse. Since the integrals over time extend from −∞ to ∞, we count all photoelectrons
which reach the detector from the applied pulses.

2.2. Gauge Invariance of the TR-ARPES Signal

In the previous subsection, we calculated the TR-ARPES signal in a specific gauge (the so-called
Hamiltonian gauge where the vector potential is nonzero, but the scalar potential vanishes). If the
time delay between the pump and the probe is long enough that the pump and the probe pulses
do not overlap in time, then the vector potential vanishes, and the results are manifestly gauge
invariant. In addition, if one calculates the total photoemission response, integrating over momentum,
the final result is also manifestly gauge invariant, even when the pump and probe pulses do
overlap. However, in this latter case, if one is interested in the angle-resolved response, then,
while the full expression in Equation (7) is easily shown to be gauge-invariant, one must exercise
care with the approximations one inevitably makes—especially the approximation of ignoring the
momentum dependence of the matrix elements (which we will refer to as the constant matrix element
approximation)—in evaluating the response function to ensure that it continues to be gauge invariant.
To date, no one has properly formulated such gauge-invariant prescriptions when the effects of a
surface, of a three dimensional dispersing band structure, or of the pump pulse on the propagation of
the photoelectrons are important. We will not solve this problem here either. Instead, we focus on
the simplest scenario, where (in addition to the constant matrix element approximation) the spatial
dependence of the electric field is neglected (which is an excellent approximation for optical or
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infrared pump pulses) and where the Green’s function depends only on the momenta parallel to the
sample surface.

In this case, one possible prescription is to follow Bertoncini and Jauho [20] and replace the lesser
Green’s function by its gauge invariant modification:

G<
ν1ke‖ ,ν2ke‖

(t1, t2)→ G̃<
ν1ke‖ ,ν2ke‖

(t1, t2) ≡ G<
ν1k̄e‖ ,ν2k̄e‖

(t1, t2), (9)

with

k̄e‖(t1, t2) = ke‖ −
e

h̄c
1

t1 − t2

∫ (t1−t2)/2

−(t1−t2)/2
dt′Apump(

t1 + t2

2
+ t′). (10)

While it is straightforward to show that the TR-ARPES signal is nonnegative in a gauge, it remains
challenging to show non-negativity for the gauge-invariant signal; physically, however, this result
must always be true.

If the TR-ARPES signal is integrated over angles to give the total TR-PES signal, then the constant
matrix element approximation will always yield a gauge-invariant result. This is because quantities
evaluated in a gauge and summed over all momentum are manifestly gauge-invariant. This procedure
has been employed for multiband models of charge-density-wave insulators [23] and topological
insulators [24].

2.3. Constant Matrix-Element Approximation

For simplicity, we focus on quasi-2D materials, where k‖ = k is the 2D wavevector.
This approximation works well for many interesting systems including high Tc superconductors,
graphene, transition-metal dicalchogenides, and many topological insulators. If only one band (ν1)
contributes at low energy, then the constant matrix element approximation becomes trivial. Namely,
the gauge-invariant TR-ARPES signal becomes

PGI
k (s) ' − i

h̄2 |M|
2
∫ ∞

−∞
dt1

∫ ∞

−∞
dt2s(t2)s(t1)eiω(t2−t1)G<

ν1k̄e(t1,t2),ν1k̄e(t1,t2)
(t1, t2), (11)

and there is no freedom in the approximation (we dropped the parallel symbol since the wavevector is
in 2D only here). As mentioned before, the result in a gauge is non-negative as a trivial application of
Bochner’s theorem [19,25], but for the gauge-invariant result, it is difficult to prove non-negativity.

For higher numbers of bands, the matrix elements—even when assumed to be independent
of momentum—can have different values for different bands. By examining the structure of the
photoemission response, we see that it involves a product of a vector (of the different matrix elements)
times the lesser Green’s function matrix times the Hermitian conjugate of the vector of matrix elements,
which is a quadratic form. Such an object is nonnegative if all eigenvalues of the matrix are nonnegative.
However, more important than that is the fact that the result requires a summation over all matrix
elements of G<. Hence, it is not a matrix invariant purely of the G< matrix, and if one changes the
basis—especially if one changes the basis as a function of time—then the matrix elements must also
be changed according to the unitary transformation that effects the change of basis, and hence will
become functions of time. This is true even if we choose the matrix elements to be the same for all
the bands. Of course, the total photoemission signal is independent of whatever basis is chosen to
represent the Green’s function matrix. The vector of matrix elements changes its values as one changes
the basis, so that the final result of the vector–matrix–vector product does indeed remain invariant of
the basis. However, one cannot assume that the individual matrix elements are constants independent
of the basis chosen for the bands. They can change as the basis changes, and indeed must change for
the final result to be invariant. Emphasizing this subtle point is the main message of this work.

These results imply that the constant matrix element approximation becomes more complicated
when multiple bands are involved in the low-energy dynamics of the material. Before we discuss
the implications of these choices further, we first want to discuss the situation if we consider the
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angle-integrated photoemission spectroscopy. In the constant matrix element approximation, we
neglect the ke dependence of the matrix element, so the TR-PES signal becomes

PGI
local(s) ' −

i
h̄2

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2s(t2)s(t1)eiω(t2−t1) ∑

ν1ν2

Mν1 G< local
ν1,ν2

(t1, t2)M∗ν2
. (12)

It is common to perform the calculations in a basis that is diagonal in band space. In this case, if
we also choose all of the matrix elements to be the same, then the TR-PES signal is given by the trace
of the Green’s function, which can give the false impression that the result is always the trace of the
Green’s function matrix. However, as we discussed above, this is not the case.

Sometimes it might be convenient to work in the instantaneous diagonal basis for a given
wavevector. Because the Peierls substitution shifts the wavevector in a time-dependent fashion, the
basis changes with time (for example, the Bloch wave functions of the instantaneous one electron
component of H(t) would have this character). In this circumstance, one can choose to make a
further approximation of choosing the matrix elements to be constant (and thereby factor out of the
calculation)—even though the basis is being changed for each time point—and use the trace formula,
since the Green’s function is diagonal in this basis. It should be noted that doing so introduces an
uncontrolled approximation into the system, and could result in a photoemission spectra which became
negative. Nevertheless, it may be an interesting approximation to make if no further information is
known about the matrix elements [26,27].

The general conclusion that we make for the constant matrix element approximation is that it
can become problematic when it is applied to systems with more than one band. The best way to
proceed (if feasible) is to determine a reasonable guess for the ratios of the matrix elements in the
different bands, keep track of all basis-changing operations during the calculation, transform the
matrix elements accordingly, and be sure to evaluate the final result as the product of the Green’s
function matrix with the matrix element vector and its Hermitian conjugate. In this case, we expect that
the TR-ARPES signal will be the most physical result and will maintain non-negativity. If it becomes
negative, this would then be a fault of the constant matrix element approximation, which would need
to be fixed to correct the error.

The constant matrix element approximation is much more robust for the case of angle-integrated
spectra. In this situation, the final formula in Equation (12) holds, one can assume the matrix elements
are the same for each band, and if the local Green’s function is diagonal in the band basis, then the
signal is proportional to the trace of the local lesser Green’s function.

3. Discussion and Conclusions

In this work, we helped clarify a number of subtle points associated with TR-ARPES studies
when the number of low-energy bands is larger than one. These effects become particularly important
for materials with a basis like graphene, or most topological insulators. Our focus was on how one
generalizes the constant matrix element approximation from one to many bands. It turns out that
while the single-band case is completely determined with no extra freedom, the case with multiple
bands is more complex and has extra degrees of freedom associated with them.

In particular, there can be a different matrix element associated with each band; but more than that,
if the basis for the Green’s function is changed, then one is forced into considering matrix elements that
are no longer constant, since the new basis relates to the old by a unitary transformation which may
change with time. We also discussed that in the case when the Green’s function is diagonal, then the
constant matrix element approximation is proportional to the trace of the Green’s function if all matrix
elements are chosen to be the same. Finally, we described how one can make a further uncontrolled
approximation of using the trace formula with the same constant matrix elements for different bases,
but in that case, it is likely that the spectra will become negative for some times and frequencies.
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We ended by discussing the case for the constant matrix element approximation when one
considers angle-integrated spectra. Here, there are far fewer degrees of freedom in the results, and
they are also manifestly gauge-invariant.

In the future, it would be interesting to discuss both the constant matrix element approximation
and the issue of gauge invariance within a fully developed theory starting from first principles, rather
than in an ad hoc fashion, as we currently do. It also would be useful and interesting to understand
what functional dependence of the matrix elements is most critical for understanding real spectra.
Is it the wavevector dependence or the band index dependence? How do these results affect the final
TR-ARPES spectra?
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The following abbreviations are used in this manuscript:

TR-ARPES time-resolved angle-resolved photoemission spectroscopy
TR-PES time-resolved photoemission spectroscopy
LEED Low-energy electron diffraction
TRL time-reversed LEED
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