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Abstract: In recent years, architectures, devices, and components in telecommunication networks
have been challenged by evolutionary and revolutionary factors which are drastically changing
the traffic features. Most of these changes imply the need for major re-configurability and
programmability not only in data-centers and core networks, but also in the metro-access segment.
In a wide variety of contexts, this necessity has been addressed by the proposed introduction
of the innovative paradigm of software-defined networks (SDNs). Several solutions inspired
by the SDN model have been recently proposed also for metro and access networks, where the
adoption of a new generation of software-defined reconfigurable integrated photonic devices is highly
desirable. In this paper, we review the possible future application scenarios for software-defined
metro and access networks and software-defined photonics (SDP), on the base of analytics, statistics,
and surveys. This work describes the reasons underpinning the presented radical change of paradigm
and summarizes the most significant solutions proposed in literature, with a specific emphasis to
physical-layer reconfigurable networks and a focus on both architectures and devices.
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1. Introduction

“Prediction is very difficult, especially about the future.” This sentence, commonly attributed
to Niels Bohr, is very well suited to the telecommunication context of the next years which will
experience a deep and rapid mutation due to the social, economic, and technological implications of
Internet growth. One of the most probable forecasts is the starring role which will be played by the
reconfigurable and programmable approach enabled by the SDN paradigm.

1.1. SDN Overview

The SDN model is based on the complete decoupling between the data plane, i.e., the part of
the network deputy for traffic packet forwarding, and a centralized programmable control plane, in
order to enable the abstraction of network resources to develop new applications and services [1].
The first definition of the SDN architecture has been provided by the Open Networking Forum
(ONF), a group of network operators, service providers, and vendors. The ONF SDN architecture is
constituted by three separated layers: the Infrastructure Layer, i.e., the network elements for packet
switching and forwarding; the Control Layer, i.e., the network intelligence controlling the network
elements; and the Application Layer, i.e., the apps for service provisioning. In the ONF version of
SDN, the centralized controller uses an open interface—the OpenFlow protocol—to communicate
with the network elements. Although the SDN field is quite recent, it is growing at a very fast pace.
The original idea has gained a considerable interest across both academia and industry. According to
the original definition, an SDN solution should be characterized by five fundamental characteristics:
plane separation, simplified devices, centralized control, network automation and virtualization,

Photonics 2017, 4, 1; doi:10.3390/photonics4010001 www.mdpi.com/journal/photonics

http://www.mdpi.com/journal/photonics
http://www.mdpi.com
http://www.mdpi.com/journal/photonics


Photonics 2017, 4, 1 2 of 27

and openness [2]. Nevertheless, a wide variety of proposals have been advanced in order to simplify
the network management and enable innovation through network programmability. The main idea is
to allow developers to manage network resources with the same flexibility as they already do with
storage and computing resources [3].

It is worth noting that the idea of re-configurable and programmable networks has been around
for many years: in 1995 the Open Signaling (OPENSIG) working group proposed open, programmable
network interfaces and led to the specification of the General Switch Management Protocol (GSMP)
by IETF. In the middle of the 1990s, the Active Networking Initiative proposed user-programmable
switches and capsules, i.e., program fragments in user messages to configure routers. In the same
period, the Devolved Control of ATM Networks (DCAN) project aimed to provide scalable control and
management of ATM networks. In 2004, the 4D project advocated a clean slate design that emphasized
separation between the routing decision logic and the protocols for network elements interaction.
In 2006 the SANE/Ethane project recommended a centralized controller to manage policy and security
in a network [3].

Nowadays, the major transformation introduced by the SDN in the communication industry
is going to be enforced by the synergy with the adoption of another important trend, the Network
Functions Virtualization (NFV). According to the NFV approach, the network elements become
software applications, called virtual network functions (VNFs), dynamically instantiated by the
network operator on a commodity-off-the-shelf (COTS) infrastructure. The combination of SDN/NFV
technologies will enable the so-called ‘network slicing’, i.e., a dynamic composition of parallel
elementary logic functions instantiated, like building blocks, by the network operator in order to
provide or configure new or preexisting services [4]. Therefore, the ‘softwarization’ of the network
resources will be an overall systemic transformation which is already steering the evolution not only
of networks but also of future terminals and service platforms [5]. Then, among cloud computing
architectures, the Network as a Service (NaaS) paradigm will take a great benefit by SDN deployment.

SDN allows the optimal use of existing links using traffic engineering and centralized, network-wide
awareness of the network state. This implies an efficient use of network bandwidth and the
possibility to respond immediately and with minimal service interruptions to changes in requirements
related to customer needs, service contract upgrades and downgrades, or failures and network
impairments. In other words, SDN will enable the dynamical changes of paths to higher-bandwidth
and lower-latency paths and traffic prioritization [2]. Network services will be provisioned as easily as
web services. As the operating systems of personal computers provide a programming abstraction of
the underlying hardware, the future network operating systems (NOSs) will be developed to provide
a centralized network abstraction of the underlying network elements with an intuitive interface and
the perception of seemingly infinite network resources for the users [6].

1.2. SDN-Induced Market Place Evolution

It can be easily predicted that the revolution introduced by the SDN reconfigurable approach will
have a strong impact on the business models of network operators and on the whole telecommunication
ecosystem. On the other hand, the market place evolution will drive SDN technological development
as well. For instance, since bandwidth demand is growing and providing more bandwidth is not free,
the actual flat rate charging regimes, where revenues and usage of network resources are decoupled
(the users buy a bundle of capacity and services and their use of the network does not affect how
much they pay), will no longer be economically sustainable. Bandwidth on demand (BoD) business
models will become a necessity for network operators. Furthermore, network operators will need to
transform their production chain in order to be competitive with Google, Amazon, Facebook, and the
other over-the-top (OTT) players which can deliver high flexibility, agility, and highest availability.
Deutsche Telekom, for instance, will find its strategy also on SDN-inspired real-time network and
service management to become a software-defined operator [7]. A new global capacity marketplace,
where capacity can be bought and sold in near-real-time [6], can be envisioned. In this scenario,
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network operators, which are typically global in scope, will open their NOS interfaces to third parties
(developers, smaller companies, etc.) in a logic of competitive collaboration. Therefore, in order to
reduce time-to-market and to satisfy the predominant upfront demand, a new global social-economic
order will born, where digital services will be offered globally and tailored and delivered locally [6].

1.3. Application of the SDN Model to Optical Networks

All the above considerations demonstrate the considerable changes that the SDN concept is
introducing in the technical and economic outlook of telecommunications networks. Nevertheless,
while the SDN concept has been adopted inside data centers in the past five years, the SDN
implementations in the context of wide area networks (WANs) are still rare: the most notable ones are
the two intercontinental backbone networks interconnecting Google’s data centers, even if it can be
argued that Google’s backbone does not have the complexity of a public Internet network operator [8].
Anyway, a great research effort is being invested to develop solutions for optical networks based on the
SDN paradigm and to standardize its application. The ONF has a working group dedicated to SDN
applications for optical transport networks (OTNs): the fact that such networks transmit data over
lightwave-based channels lends itself naturally to the SDN concept of a flow [2]. According to the ONF
vision, transport SDN (T-SDN) extends OpenFlow to support Layer 0 and Layer 1 networks, allowing
logically centralized control for some critical operations, administration, and maintenance (OAM)
capabilities, i.e., provisioning, recovery, performance monitoring, and network inventory. Some of
the T-SDN use cases considered by the ONF group include BoD services and photonic enterprise
networks [9].

The above-described context depicts a really dynamic scenario where the SDN technology
promises to dramatically simplify network management and enable innovation and evolution, also in
the field of optical WANs. However, the SDN concept is still in an early stage of penetrating metro
and access segments. In the next paragraphs, the possibility of extending SDN to optical metro and
access networks is explored. Firstly, the main technical driving forces and the main recent proposals
are analyzed and the evolution required for photonic components and devices is then examined.
Finally, the architectural solutions for reconfigurable and programmable metro and access networks
are reviewed.

2. Reasons for Software Defined Metro and Access Networks

In this work the term ‘software-defined metro and access networks’ refers to metro and access
networks whose management is inspired to the principles of SDN, even if they are not fully
compliant to the ONF standards and definitions. In our acceptation, software-defined metro and
access networks have two main features, i.e., programmability and re-configurability (or flexibility).
The programmability expected of software-defined metro and access networks fundamentally requires
automation, abstraction of the underlying network resources, and intuitive high level service
configuration. The re-configurability (or flexibility) of software-defined metro and access networks
implies the capability of these networks to adapt dynamically to their operational situation in order to
fulfill dynamical requirements of capacity, security, and quality of service with rapidity and efficiency.
The main reasons for software-defined metro and access networks are sketched in Figure 1.
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Figure 1. Main reasons for software-defined metro and access networks.

2.1. Metro and Access Network Traffic Evolution

In order to evaluate the need for reconfigurable and programmable metro and access networks,
it is necessary to analyze how the traffic typologies and distribution are changing, especially in the
edge network segments.

First of all, it is worth noting that the growth of bandwidth hungry services (e.g., ultra-high
definition 4K video), made available by the optical access network deployed in recent years, is driving
the explosion of traffic in the access segment according to the well-known Nielsen’s law (high-end
user’s connection speed grows by 50% per year) [10]. For example, near-term pressures for capacity
scaling include: 4G LTE-Advanced mobile networks that drive backhaul capacity from Mb/s to
Gb/s and even 10-Gb/s channels; fixed access speeds moving from Mb/s to Gb/s with G.fast access
networks and to 10-Gb/s and higher with time- and wavelength-division multiplexed passive optical
networks (TWDM-PONs); data-center-interconnect demands moving to 10-Gb/s [11]. Figure 2 shows
an increased forecast for 100 Gb/s or higher channels in the metro portion of the network [12].
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Simultaneously, in addition to traffic growth, the dramatic increase of new generation mobile
networks and cloud-computing traffic is causing traffic patterns to become ever more dynamic and
unpredictable [9]. The traffic related to cloud-based services is extremely time-varying. On the other
hand, mobility traffic is highly volatile. Just to describe an exemplary scenario, the daily traffic pattern
in a big city can be so considered: during the morning, an high traffic peak can be imagined in
business quartiers and industrial areas; then, the ‘traffic storm’ would shift to commercial centers and
free-time zones (public parks, sport facilities, etc.); in the evening, bandwidth demand would increase
in residential areas. In addition to this, the emerging trend of Internet of Things (IoT) is changing
where and how bandwidth is being consumed: on one hand, IoT is causing a significant change in
the traffic characteristics with the proliferation of ‘short-burst’ type communications [6]; on the other
hand, the number of connected devices will exponentially grow as the fully-digital connected homes
will become an everyday reality.

To support this highly dynamic environment and to avoid congestion phenomena due to
tremendous traffic growth, reconfigurable capabilities are required to metro and access optical networks
according to different service requirements in terms of downstream and upstream bandwidth and
latency [10]. Programmability is necessary as well to manage connectivity services in real-time through
a high-level intent-based orchestration covering potentially multiple network domains.

2.2. 5G Radio Access Network

Another important reason for adoption of the SDN model in the metro and access segments is
related to the development of the 5G radio access network (RAN). 5G is the next generation cellular
system currently in an embryonic state. Its main requirements are an increased capacity (up to 600 Mb/s
peak data rate), a reduced latency (optimized to 1 ms) and a higher connection density (~2000 active
users per km2) [13]. In addition to the growth of traffic which will be necessary to be carried by metro
and access optical network, 5G RAN will have a deep impact on the architecture of the access segment
itself, offering the opportunity to embrace SDN and NFV. In fact, the objectives of 5G can be achieved
only by exploiting advanced radio access technologies (such as small cells, co-ordinated multi-point,
massive multiple-input multiple-output, beamforming, and carrier aggregation), which will need
to be supported by novel reconfigurable optical networks interconnecting the RAN nodes among
themselves and with the core network [14].

Densifying macro cells and adding small cells will make topology and traffic distribution of the
mobile backhaul (MBH) networks more complex. Dense wavelength-division multiplexing (DWDM)
could be the candidate technology for future passive optical networks (PONs), since high-capacity
point-to-point logical connections can be provided for backhaul links. Moreover, 5G is also expected to
dramatically change the fronthaul network segment, i.e., a RAN where the remote radio unit (RRU),
co-located with the antenna, is split from the base band unit (BBU) communicating with the RRU
through the common packet radio interface (CPRI). Mobile fronthaul (MFH) networks could also
take advantage from DWDM-PONs. A convergence of fronthaul and backhaul in a unified network
segment will also be possible, referred to as Xhaul [14].

The centralization of the BBUs, called centralized-RAN (C-RAN), is considered one of the most
relevant evolutional trends to support 5G solutions. The main advantage of C-RAN is the possibility
of implementing coordination features among BBUs to mitigate radio interference, especially in
small-cell deployments where user equipment (UE) is often within reach of a number of BBUs [15].
The control plane centralization promoted by the SDN paradigm will facilitate not only the required
architectural agility needed in C-RAN solutions, but also the provision of fast re-configurability
and high capacity on-demand for certain locations [16]. In an extreme implementation, C-RANs
could evolve toward cloud based infrastructures (Cloud RANs) and Virtualized RANs (V-RANs),
where BBUs can be activated in general purpose servers following the concept of NFV and network
slicing [14]. Several possible solutions to implement software-defined metro and access network
fulfilling 5G RAN requirements are described in the Section 5.3.
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2.3. Data Centers Interconnect and Edge Cloud

Simultaneously with diffusion of broadband access services, the metro traffic is expected to
grow in the coming years even at a faster and faster pace driven by IP video and cloud services.
In other words, since client-server applications require ever more frequently access to distributed
databases intercommunicating one to each other, the ‘horizontal’ (or east-west) traffic between servers
is progressively increasing together with the traditional ‘vertical’ (or north-south) traffic between client
and server. According to a Bell Labs study, data center traffic will have increased more than 440% from
2012 by 2017 and total metro traffic will have increased 560% during the same time period, i.e., about
two times faster than the backbone traffic [17], as shown in Figure 3a. Moreover, according to Cisco
forecasts, metro traffic will represent the 66% of total IP traffic by 2019 [18], as shown in Figure 3b.
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It is also worth noting that, by 2017, 75% of total metro traffic will be terminated within the
metro network [17]. This is also due to the increasingly significant role of content delivery networks
(CDNs), i.e., distributed networks of proxy servers in data centers for caching content closer to the end
user within the metro network. The diffusion of CDNs is contextualized in the so-called ‘edge cloud’
trend (i.e., small, highly-distributed data centers) which can be implemented by telecommunication
operators through a strategy that will move the data center to the central office (CO), i.e., central office
re-architected as a datacenter (CORD). The main goals of CORD strategy is to make the COs integral
parts of the cloud strategies and to enable them to support new networking services. Other side goals
are the optimization for east-west traffic and the commoditization of connectivity to the access network
(in coherence with the SDN principles) [5]. The maximum distance between the edge cloud and the
end users will be approximately 20 to 40 km according to latency requirements, possibly through a
fully passive network without locally powered repeaters or amplifiers [6]. Moreover, processing of
data in an edge cloud will be the key also to meet the new real-time latency requirements of the IoT [6].

All the technological trends described above will result in a traffic tremendous growth in metro
networks which are already under pressure and will risk to become the bottleneck of the entire
telecommunication system. In order to mitigate this risk, the adoption of innovative reconfigurable
SDN-based converged metro-access networks will allow an optimization in traffic management to
avoid congestion.

2.4. Benefits for Users and Regulatory Issues

Programmable access network will enable a large variety of control functionalities, such as
traffic management (tunneling and virtual LAN), access nodes configuration, and diagnostics and
troubleshooting. For example, dynamic spectrum management can minimize the interferences among
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very high-speed digital subscriber lines (VDSLs) in fiber to the cabinet (FTTC) architecture, with further
improvements in addition to the benefits of vectoring techniques [19]. Different classes of service and
end-to-end traffic engineering can be actuated in order to guarantee pre-determined round-trip delay
for mission-critical applications requiring high interactivity [10].

Moreover, programmable capabilities in the access network can automate monitoring, fault,
and performance management operations [19]. Programmable access networks and virtualized
customer premised equipment (CPE) could empower customers for a profitable collaboration with their
service providers for an improved quality of experience (QoE). For example, through a user-friendly
application installed on the CPE, first the user can choose the services needed and configure their
quality, secondly he/she can be informed of quality of service (QoS) in real-time and then can tune the
quality in order to achieve a better adaptation to his/her expectations. In such a scenario, the user
can control downstream and upstream bandwidth in real-time and prioritize traffic typologies for the
different devices in the same LAN according to his/her needs [10].

Obviously, the adoption of SDN/NFV approach in metro and access network and the commercial
proposals for users must be compliant to regulatory dictates which are evolving to follow technological
development. The European Commission (EC), for instance, has performed a public consultation
in 2015 [20] to study the potential impacts of SDN and NFV on access-services demand. Most of the
subject involved in the consultation (52% of the answerers) agree that the on-going virtualization of
network infrastructures will have an impact on the future demand for wholesale access products, but
not in the short term (more than 10 years needed according to the 55% of the answerers), as shown
in Figure 4.
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It is possible that the adoption of the SDN paradigm in the access networks will contribute to a
deregulation of wholesale service provisioning. In 2016, the Body of European Regulators for Electronic
Communications (BEREC) has organized a public expert workshop on “Regulatory implications of
SDN and NFV”. In summary, the following highlights on fixed access networks emerged: SDN and
NFV will probably provide alternative network operators with more control over the network of the
incumbent; SDN and NFV will enable new type of services that may also be offered by new parties; it is
too early to make definitive statements about the impact on access regulation [21]. Finally, according to
a WIK-Consult forecast study on behalf of the EC, in the short term, SDN and NFV will give alternative
network operators a higher degree of flexibility, but where these solutions can be a substitute for access
to passive infrastructure is still uncertain [22].

2.5. Cost Savings

In order to be implemented, each technological solution needs to be economically attractive.
In other words, the benefits introduced have to be compared with the cost of the technology needed
to provide it. This is also true for telecommunication networks and, in particular, for metro and
access networks, where network costs have to be amortized over a fewer number of users. Of course,
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deploying software-defined metro and access networks requires significant investments for the telecom
industry which will generate a return in the following years thanks to the incomes allowed by benefits
of re-configurability and programmability, as described in the previous paragraphs. In addition to
this, the break-even point of these investments will be decreased by the cost reduction: the application
of SDN offers significant reductions in capital expenditures (CapEx) and operational expenditures
(OpEx), and minimizes a network total cost of ownership (TCO). It has been estimated that, for
a high-scale tunable IP/optical network with 10× traffic growth over five years, the TCO savings
will be approximately 70% per-unit capacity (e.g., per gigabit), where over 40% of the benefit arises
from SDN automation and network optimization [6]. By analogy, TCO savings can be guessed for
software-defined metro and access segments.

OpEx savings can be achieved since programmability enables efficient sharing of resources also
in the metro and access segments. Re-configurability enables provisioning of resources on-the-fly,
facilitating the dynamic service creation, and enhanced programmability can make such procedures
even more efficient [15]. Also, CapEx savings can be achieved since an SDN-based approach allows
the optimal use of existing network resources and scalability (the capacity allocated to a service can be
scaled up or down easily). These features defer costly network upgrades and future investments.

3. Solutions for Software Defined Metro and Access Networks

In this paragraph a comprehensive survey about the most important solutions for SDN-based
metro and access networks is provided. As sketched in Figure 5, the survey is organized into two main
categories: proposals focused on higher-layer re-configurability and proposals focused on physical
layer re-configurability. Some of the proposals described take their origin from the official SDN
definition by ONF, other proposals aim to allow dynamic re-configurability and/or programmability,
although they are not directly referred to the original SDN concept.
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3.1. Higher Layer Re-Configurability

The first proposal to introduce the ONF SDN paradigm in the access segment, called
software-defined edge network (SDEN), has been advanced by Parol and Pawlowski in 2013 and then
developed by Amokrane et al. in 2014 [23]. The purpose of that work is to extend OpenFlow protocol
to gigabit-capable PONs (GPONs) through two main features: the flow mapping at the GEM ports,



Photonics 2017, 4, 1 9 of 27

i.e., the logical connection between optical network unit (ONU) and optical line terminal (OLT) in the
GPON standard, each of them characterized by a specific class of service and a unique ID; the standard
interface between the SDN controller and the OLTs through application program interfaces (APIs).
In fact, the conventional PON management system allows manual configurations of the network by
the administrator user, e.g., for the definition of the service profiles or the PON port attributes. SDEN
approach, instead, allows real-time PON control by acting on SDEN agents, software modules placed
on OLTs, through API [23].

A software defined access optical network (SDAON) architecture based on OpenFlow-enabled
passive optical network has been proposed also by Yang et al. [24] in order to ensure remote unified
control and service-aware flow scheduling. Their proposal can enhance the resource utilization and
QoS guarantee and reduce the OpEx by remote interaction and operation.

Another method to allow programmability is to use the network configuration protocol
(NETCONF), developed and standardized by the IETF in 2006. This protocol enables service
orchestration for the IP layer through remote procedure calls and notifications to configure the network
elements whose states, configurations, and parameter values are described through a data modeling
language called YANG. NETCONF is gaining a growing industry acceptance and in the next years it is
expected to enable end-to-end programmability through a description not only of network elements
but also of links, adaptations, connections, communication paths, and bindings [6].

A recent proposal by Ruckert et al. [25] in order to flexibly support advanced services, is based on
SDN-enabled home gateways and SDN-enabled broadband remote access servers (BRASes). In actual
network architectures, the BRAS—also called the broadband network gateway (BNG)—is the single
aggregation point which is connected to the home gateways through a metro network using a
point-to-point protocol in order to establish a session. The innovative proposal consists in a network
composed of SDN-enabled home gateways, BRASes and OpenFlow switches in the metro network,
under the supervision of a centralized SDN controller which manipulates traffic flows according to
the operator needs and policies and frees the BRAS from many of the typical functions, such as policy
enforcement and traffic monitoring. This solution enables flexible and granular control over traffic
flows throughout the network, with the ability to implement QoS and traffic policies right at the edge
of the network, without requiring a single aggregation point for policy enforcement [25].

Specific SDN solutions for optical access networks have been recently proposed by Dai and
Dai [26]. This work takes its origin from an approach similar to the one described by Ruckert et al. [25]:
the control plane of the core network, based on multi-protocol label switching (MPLS), can be extended
to the edge router—e.g., the BNG—using SDN concepts. In order to separate control and data planes
inside the optical access networks, multiple virtual local area network (VLAN) control protocols
are proposed to be used as the Ethernet control plane protocols in active optical networks. In this
way, a centralized SDN controller can extend its control to both MPLS control plane for core optical
networks and Ethernet control plane in optical access networks. The proposal is applicable also to
PONs considering the passive network as a N + 1 ports distributed Ethernet switch: one port for
OLT, N ports for ONUs [26]. On the other hand, Dai and Dai consider the proposal by Woesner and
Fritzsche problematic for an OpenFlow controller to replace Dynamic Bandwidth Allocation (DBA)
in GPON [27].

The idea of replacing DBA with a software-defined approach has been recently re-proposed by
Li et al. [28] for Ethernet PON (EPON), i.e., the IEEE standard equivalent to GPON. Their proposal
takes origin from the assumption that there is no single DBA algorithm able to fulfill different
requirements, especially in the highly dynamic case described in the Section 2.1. While DBA algorithms
are hard-coded in specific hardware, reprogrammable DBA module based on SDN can reduce traffic
delay and increase throughput with better support to differentiated QoS [28].

Fixed access network sharing (FANS) is a re-configurable architectural approach, proposed by
Cornaglia et al. [29] with the purpose of sharing access network resources between an infrastructure
network provider (INP) and virtual network operators (VNOs), in order to allow fast and flexible
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service creation for the INP and better control and monitoring for the VNOs. According to this
proposal, the physical access network is sliced into multiple virtual area networks. Two possible
implementations of FANS have been presented: (i) a centralized management system, under the INP
control, performing centralized functions and providing automated data from network elements to
VNOs; (ii) a high-level abstraction layer based on an NFV which orchestrates virtual access nodes
(vANs). Each vAN could manage interfaces belonging to different physical nodes by using a mapping
between physical ports and virtual ports (INP port mapper).

3.2. Physical Layer Re-Configurability

In the last decade, a wide spectrum of proposals has been advanced to implement network
re-configurability at the physical layer (or photonic layer). Most of them have been advanced firstly
for core networks but can be applied to metro and access segments as well, provided that technologies
for access and metro networks should have low cost and complexity. In fact, in recent years these
technological solutions have been quite widely debated for the application in core networks but, in the
opinion of the authors, they will be the enabling technologies for the application of the SDN principles
at the physical layer in the metro and/or access segments as well. Therefore, we can currently define
them as technologies designed for the core networks, but extendible to metro and/or access networks,
even if this is still an open research area. Great advances are desirable in this field in order to design
low power, high-speed, and small area footprint and compact solutions, which would be suitable for
metro and/or access applications, which represent very cost-sensitive contexts. In addition to this,
in most cases, these solutions have been already proposed for metro and/or access networks very
recently, even if their concept is still in an embryonic stage and their application in these contexts is
not yet commercially available or still very rare.

Four main trends can be outlined: flexible transceivers; flexible WDM grids and super-channels;
optical routing at the physical layer; and optical switching at the physical layer [10]. In Table 1, these
technological trends and solutions are outlined with reference to several recent proposals which will
be detailed in the following paragraphs. The table explicitly reports whether the specific proposals
refer to the metro segment or to the access segment.

Table 1. Technologies designed for the core networks and extendible to metro and/or access networks.

Technological Trends Technological Solutions References for Application in
Metro/Access Segments

Flexible transceivers
Flexible modulations and

distance-adaptive transceivers
Metro: [30]

Access: [31–33]

Super-channels and
flexible WDM grids

Flexible grid Access: [34,35]

Metro: [30,35]

Spatial super-channels Access: [36]

Optical routing at the
physical layer

Flow routing Access: [37–39]

ROADM
Metro: [40–47]

Access: [41]

Optical switching at the
physical layer

OPS, OLS, OBS
Metro: [48–51]

Access: [49,52]

Flexible modulations and
distance-adaptive transceivers

Metro: [30]

Access: [31–33]

All these trends and solutions would enable re-configurability and programmability in metro and
access segments, allowing these networks to address the challenges raised in the Section 2.

In this paragraph, only the trends are described, since several examples of their building blocks
are reviewed in the next paragraph.
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3.2.1. Flexible Transceivers

In this context, flexible transceivers are reconfigurable transmitters and receivers installed on
OLTs and ONUs. Their parameters should be varied in real-time: bitrate, launch power, modulation
format and order, coding technique, optical carrier wavelength, forward error correction (FEC) payload
ratio, multiplexing scheme, and number of subcarriers [10]. In order to realize flexible transceivers, it is
necessary to work on laser sources, external optical modulators, driver electronic circuits, and digital
signal processing (DSP) techniques.

Flexible transceivers, also called software-defined transceivers (SDTs), offer flexibility, increased
resilience to channel impairments, and an upgrade path for future transmission systems, as they allow
data rate adaptation and channel bandwidths allocation on the fly. Being more mature in recent years,
they are now going to be used in long-haul optical communications but they are expected to have
great importance also in future re-configurable access networks [53].

Vacondio et al. [31] have demonstrated that software-defined coherent transponders, which digitally
processes the burst transmissions according to the distance of a user from the OLT, can double the
average transmission capacity per user.

Choi et al. [54] have developed flexible bandwidth variable transceivers (BVTs). The transmitters are
composed by a tunable laser diode and a combination of dual-drive Mach-Zehnder modulator (MZM) and
dual-parallel MZM with electrical binary drive signals and a polarization-division-multiplexing (PDM)
synthesizer. They are capable of dynamically changing the symbol rate and the modulation format
among binary phase-shift-keying (BPSK), quadrature phase-shift-keying (QPSK), 8-ary quadrature
amplitude modulation (8QAM), and 16-ary quadrature amplitude modulation (16QAM). The receivers
are based on a coherent detection scheme dual-polarization 90◦ optical hybrid followed by four
balanced photodetectors (BPDs) and analog-to-digital converters (ADCs). They are capable not only of
detecting the optical signal with any modulation format/rate, but also to send the bit error ratio (BER)
information to an OpenFlow controller to automatically change the network parameters.

Several DSP-enabled flexible transceivers for optical access network have been proposed by
Zhou et al. [32] in synergy with OLT side access network resource virtualization and software-defined
programmable network functions and resource scheduling. One of them uses QPSK, 16QAM,
32QAM, or 64QAM modulations for achieving different optical power budgets of 36, 32, 30, or 28 dB,
respectively [32].

Iiyama et al. [55] have proposed and demonstrated BVTs for PONs. If compared to the previous
proposal by Choi et al. and Zhou et al., the approach is obviously simpler: the available modulation
schemes are only on-off keying (OOK) and quadrature amplitude modulation (QAM), which are
simultaneously sent from the OLT and filtered by the ONUs.

A recent detailed analysis about the feasibility of elastic transceivers in optical metro rings also in
terms of spectrum occupation has been carried on by Rottondi et al. [33]. In particular, the impact of
grid flexibility and of the usage of distance-adaptive modulation techniques is analyzed and significant
gains in terms of spectral occupation and number of transceivers have been demonstrated.

Other proposals aim to obtain increased flexibility by replacing single-carrier with multi-carrier
multiplexing schemes, e.g., orthogonal frequency division multiplexing (OFDM) and Nyquist
frequency division multiplexing (NFDM), where optical sub-carriers can be dynamically allocated and
eventually grouped together in super-channels [53–56].

3.2.2. Super-Channels and Flexible WDM Grids

Super-channels can be defined as a group of separated signals which are digitally combined
to create an aggregate channel of a higher data rate. This approach is originated from the need of
overcoming the limitation of DSP techniques in the elaboration of higher-order modulation schemes,
which become increasingly sophisticated in order to maximize the total throughput of the optical
transport system. Two main categories of super-channels have been proposed: spatial super-channels
and spectral super-channels (sketched in Figure 6a). Spatial super-channels are a form of space-division
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multiplexing (SDM), since multiple spatial paths are used in parallel. They could be distinct light
paths belonging to multiple parallel physical fibers, multi-core fibers, or different optical modes inside
a multimode fiber. Spectral super-channels use multiple parallel sub-carriers (at different frequencies
or wavelengths) with lower-order modulation to achieve a more efficient use of the spectrum [6].

The elastic combination of sub-carriers allows major flexibility in the spectrum management and
enables flexible WDM grids (flex-grid), which are already available for core network applications.
The advantages are well known and sketched in Figure 6b: if wavelength spacing among optical
WDM carriers is not strictly anchored to a fixed grid (e.g., conventional 50 GHz or 100 GHz DWDM
grid), the available spectrum for each carrier can be managed dynamically by allocating a minimum
required bandwidth. Therefore, spectral efficiency can be optimized and, indirectly, energy efficiency
can be enhanced as well; as a consequence, OpEx saving can be pursued. Naturally, the nonlinear
dynamics of various high bit-rate super-channel configurations have to be accurately investigated
when upgrading the current static network structure to a flex-grid network [57].

While spatial super-channels cannot be considered a viable solution for metro and access
networks in the short term (even if some proposals for SDM in the access segment have already
been presented [36]), spectral super-channels can be considered a more realistic possibility. In fact,
since WDM techniques are expected to be extended also in the domain of access networks (WDM-PONs
have been widely proposed in recent years), it can be envisioned that flexible WDM grids will be
applied in the edge segment in order to adapt link capacity to the user needs [10] even if, to the best of
our knowledge, specific applications of spectral super-channels in metro and access networks have not
yet been proposed.

On the other hand, the application of flex-grid in optical ring metro networks, in combination
with distance-adaptive optical coherent transceivers, have been discussed and analyzed by
Rottondi et al. [30], with a detailed formalization of the routing, modulation level, and spectrum
assignment (RMLSA) optimization problem. In the access segment, an optical network paradigm
achieving low latency, high throughput, and energy efficiency, based also on the concepts of software
defined networks and a flexible grid, has been proposed by Forzati and Gavler [34].
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Oliveira et al. [58] have proposed the use of flexible grids in a reconfigurable flexible optical
network (RFON) and have demonstrated that concept on a test-bed constituted by four nodes equipped
with wavelength selective switches (WSSs), optical amplifiers, and a system for supervision and
monitoring of optical channels. Cvjectic et al. [35] have proposed the use of flexible grids in an access
network based on OpenFlow protocol.

3.2.3. Optical Routing at the Physical Layer

The evolutionary traffic trends described in the Section 2.1 will drive greater need to route
wavelengths optically between service endpoints in the metro and access segments, too. Efficiency,
cost-effectiveness, scalability, and re-configurability will be the key requirements for wavelength
routers: on-the-fly wavelength add-drop capacity and addition of more ‘degrees’, i.e., fiber directions,
should be enabled by new types of equipment [11]. A recent survey of network providers
indicates that the highest-ranking technologies required for metro networks are lower-cost 100 Gbit/s
hardware (identical to long-haul form factor, but with reduced performance), pluggable C form-factor
pluggable (CFP)-based 100 Gbit/s coherent module, flexible grid, and reconfigurable optical add-drop
multiplexers (ROADMs), flexible coherent operation [12], as shown in Figure 7.
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In the past, the routing and wavelength assignment (RWA) problems has been widely investigated
from both theoretical and practical points of view. The problem can be stated as follows: given
the physical network structure and the required optical channels connections, the suitable path
and wavelength have to be selected among the many possible choices for each connection, so that
two paths sharing a link are not assigned the same wavelength. The RWA is an NP-complete problem
that is usually divided to the more manageable routing and wavelength assignment sub-problems.
For the routing sub-problem, three main approaches are known: fixed routing, adaptive routing,
and semi-adaptive routing [59]. Efficient algorithms and protocols have been proposed with reference
to complex mesh topologies. Since metro and access networks have simpler architectures, less
complex solutions are expected to be proposed and developed to solve the RWA problem in the
edge network segments.

Wavelength routing has been proposed not only for traffic routing among metro nodes, but also
inside the access segment. Yin et al. [37] have proposed and demonstrated the Stanford Ultraflow
access network, providing Intra-PON flow transmission with an optical software-defined reroute
by using a quasi-passive reconfigurable (QPAR) node. Ultraflow architecture enables dual-mode
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service, conventional IP and Flow, and is based on the following devices: conventional GPON OLT
and optical flow line terminal (OFLT) located at the central office (CO); conventional ONU and optical
flow network units (OFNUs) located at the end-user premises; QPAR and coexistence elements (CEs)
located at the remote node. Each CE is designed to combine/separate IP traffic (between OLT and
ONUs) and Flow traffic (between OFLT and OFNUs). Flow routing is performed by the QPAR node
and the Flow control plane, supported by the IP network, is completely decoupled from its data
plane [37,38].

3.2.4. Optical Switching at the Physical Layer

Wavelength routing described in the previous paragraph is just one of the possibilities to
implement optical switching at the physical layer, namely optical channel switching (OCS). OCS and
other more sophisticated optical switching technologies are summarized in Figure 8, i.e., optical burst
switching (OBS), optical label switching (OLS), and optical packet switching (OPS). These techniques
allow the network adaptability in a most granular way to traffic variations, since they facilitate
statistical multiplexing to efficiently share wavelength channels among multiple users [10].
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Figure 8. Optical switching technologies sorted by complexity/performance and hypothetical phases
of implementation.

Optical switching techniques are receiving greater attention in recent years as a possible alternative
to conventional IP-based electrical packet switching (EPS), which has been an efficient solution for
relatively low-speed, bursty traffic (less than 1 Gbit/s). Emerging services, such as video streaming or
large file transfer, require increased data rates, low packet latency, energy efficiency, and low switching
overhead. For these applications, OCS could be the optimal solution since it enables end-to-end optical
communication over dedicated lightpaths. Nevertheless, the heterogeneity and burst of the traffic,
according to the scenario described in the Section 2.1, requires major flexibility [37].

The ideal approach to conjugate both needs would be to replicate the packet-switching operated
by conventional EPS entirely in the optical domain, which is the aim of OPS. OPS would allow
the application of the IP over WDM (IPoWDM) concept, considered the ‘holy grail’ of optical
communications. IPoWDM would reduce OpEx by simplifying the protocol stack, since the
IP packets would be switched and routed over the all-optical WDM network without excessive
electronic processing in the data plane. OPS systems can be categorized in a number of ways:
synchronous versus asynchronous packet switching, fixed-length versus variable-length packet
switching, and store-and-forward versus cut-through packet switching [60]. The header control
can be in-band, where both header and payload are carried via the same wavelength, or out-of-band,
where control headers are carried via a dedicated control wavelength. There are three basic
in-band header control techniques: subcarrier multiplexed, orthogonal modulation, and time-domain
multiplexing [48].



Photonics 2017, 4, 1 15 of 27

Since actual technologies do not allow the complete actuation of OPS, a more practical approach
is represented by OLS, where only the header (or label) is approached in the electrical domain.

An even simpler solution is OBS, where large aggregated packets with the same destination and
the same QoS, i.e., bursts, are routed by processing out-of-band control signals in the electrical domain.
OBS networks initially emerged as very fast reconfigurable OCS networks and are based on a complete
separation of control plane and data plane. In the control plane, burst header packets (BHPs) are read
using electronic processing and control the switching fabric; in the data plane, burst data packets
(BDPs) are switched all-optically, as shown in Figure 9. Burst assembly and disassembly operations are
performed in the edge routers, ingress, and egress respectively. OBS uses two typologies of signaling
protocols for burst management by optical routers. In two-way reservation protocols, also called
tell-and-wait (TAW) protocols, an acknowledgment is required from the receiving node before the
burst transmission, e.g., wavelength routing (WR) protocols. In one-way protocol signaling, also called
tell-and-go (TAG) protocols, no acknowledgment is required and therefore latency is reduced, e.g.,
just-in-time (JIT) and just-enough-time (JET) protocols. In the JET protocol, a BHP is sent on the control
channel shortly before the burst transmission begins, specifying the destination of the burst and the
channel on which the burst is being transmitted [60]. The offset time between BHP and BDP allows
the router to be buffer-less, avoiding optical memories, such as fiber delay lines, contrarily required by
OPS [52]. Moreover, while OPS requires fast switching speed (approximately in nanoseconds), OBS
can be realized even with simple nodes with millisecond to microsecond switching speeds. Optical
flow switching (OFS) can be considered a subcategory of OBS, where end-to-end flows are established
and bursts are longer by at least hundreds of milliseconds.

All these techniques will allow to process packets, bursts, or flows on-the-fly in the framework of
future photonic routers or nodes, even in the access and metro networks.
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4. Photonic Devices and Components

The terms ‘software defined photonics’ (SDP) and ‘software defined optics’ (SDO) have been
borrowed by the wireless field where the term ‘software defined radio’ (SDR) is used. In the SDR
context, radio resources are programmable by software. Similarly, in the SDP and SDO context,
advanced photonic subsystems are versatile enough in order to enable reconfigurations of key
parameters or features by software [10]. According to the definition by Rouskas et al. [61], SDO
includes not only programmable but also intelligent and self-aware optical layer devices, i.e., they
can sense or measure their own characteristics and performance. In addition to software-defined
devices, the next generation software-defined metro and access networks will require low-power or
energetically autonomous devices. A focus on these features is provided in the next paragraphs.
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4.1. Technological Platforms

Actually, the majority of the commercial telecommunication devices are hybrid integrated
components based on silicon substrates and monolithically integrated devices. The choice of the
technological platform for SDP will be a crucial decision, since the approaches used today for long-haul
networks and data centers could not be viable or convenient in the metro and access segment. In this
field, a challenging trade-off between two main requirements will be necessary: a higher density of
integration, in order to reduce the size of devices, and a simpler fabrication process, since an higher
production volume at a lower cost will be required. Especially at the access network level, where
equipment is shared by fewer users, cost is the major issue and the evolution of photonic integrated
circuits (PICs) will be essential.

Silicon photonics is universally considered a promising technology for telecommunication
devices [62]. In particular, silicon-on-insulator (SOI) technology is suitable for commercial applications
for two main order of reasons. SOI technology is fully compatible with conventional microelectronic
fabrication processes which have been consolidated for decades to produce complementary metal-oxide
semiconductor (CMOS) circuits [63]. This takes advantage in terms of cost (no complex new fabrication
techniques are needed) and integration of photonic and electronic components onto the same substrate.
Moreover, SOI technology is extremely versatile, since waveguides, photo-detectors, and modulators
have already been demonstrated [62]. Although silicon is an indirect band gap semiconductor, even
optical sources can be realized in a hybrid approach by exploiting the Raman effect to amplify the
radiation generated by an external laser [64].

In order to realize SDP devices, mechanisms for tunability need to be provided. Silicon photonics
can exploit several physical effects to achieve this goal, such as thermo-optical effects [65,66] and
plasma-dispersion effects. Non-linear effects can be also exploited, such as stimulated Raman scattering,
the Kerr effect, and two-photon absorption (TPA) inducing free-carrier absorption (FCA) [67]. Newly
developed materials, such as passive polymer technology, have been also proposed in order to exploit
the advantages of the simple low temperature fabrication processes, ease of integration, and low power
consumption for thermally actuated optical elements [56].

4.2. Technologies for ROADMs

Remotely reconfiguring ROADMs can be considered one of the basic building blocks to support
advanced functionalities in the optical channel layer.

ROADMs are already used in core networks: they can be considered key elements for the
development of backbone transport networks [68]. For instance, since 2011 multi-degree ROADM
are used for remote switch and rerouting in the Telecom Italia Kaλeidon network, a wholly photonic
mesh network capable of transporting 80 channels at 40 Gbit/s (scalable to 100 Gbit/s) with photonic
protection and restoration [69]. ROADMs are conventionally based on micro electro-mechanical
systems (MEMS) and liquid crystal on silicon (LCoS) technologies. MEMS-based ROADMs use optical
gratings to separate wavelengths and micro-mirrors arrays fabricated on a silicon substrate to reflect
each spectral component [70].

In the last decade, a new trend has been outlined by market analysts: the so-called “new ROADM
revolution from the core to the edge” [43,44]. The ROADM application in metro networks is particularly
valuable because DWDM networks are increasingly deployed more extensively in this segment and
ROADMs would add the flexibility in software to add/drop wavelengths for information access or
to reroute carriers [40]. In other words, ROADMs can help carriers overcome the strict limitations of
conventional metro DWDM networks with fixed OADMs. In addition, a migration to metro mesh
architectures is a secondary driver for ROADM architectures [45]. Mesh networks make it easier
to manage and direct higher volumes of traffic since they allow continuous reconfiguration around
blocked paths or by allocating more bandwidth on a fiber as required [46]. Both the drives, i.e.,
flexibility and mesh networking, are particularly meaningful in an SDN perspective (even if they are
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not necessarily directly referred to the original SDN concept) since they enable re-configurability and
programmability for a more efficient traffic management.

Two general types of ROADMs can be used in metro networks: two-degree ROADMs are
used for add/drop functionalities related to local access traffic; multi-degree ROADMs are used for
interconnecting DWDM rings or for mesh networking [41]. In recent years, ROADM vendors have
made great strides and nowadays are already able to take the ROADMs closer to end users with
high-bandwidth applications [42].

Although technologically mature, both MEMS and LCoS technologies are not scalable enough to
be applied to metro and access networks where cost, volumes, power consumption, and reliability are
extremely significant features [10]. Alternative solutions have been proposed in recent years, such as
ROADM based on micro-ring resonators (MRRs) realized on SOI technological platform.

Klein et al. [71] have demonstrated thermally a tunable MRR-based ROADM for access networks.
These devices have been fabricated in Si3N4/SiO2 technology with a footprint of less than 2 mm2 and
they are capable of operating in the second or third telecom window.

Four main features are considered necessary for new generation ROADMs in order to rapidly
respond to new service innovations made possible by SDN. In legacy architectures, each add/drop
port is restricted to be used to transmit/receive only a specific wavelength channel to/from a given
output/input fiber, i.e., a specific direction. Recent ROADM architectures should relax this restriction
by allowing a single add/drop port to accept any wavelength channel, i.e., the colorless feature, and/or
to bridge the signal to/from any direction, i.e., the directionless feature. The usefulness of a third
feature, called contention-less, is still the subject of discussion. Contention occurs in case the same
wavelength channel is to be used in two or more add/drop ports of the same add/drop structure.
Contention-less means that wavelengths can be more easily reused multiple times without any manual
configuration. The capability of routing wavelengths belonging to a flexible grid wavelength is called
the grid-less feature [10]. Colorless, directionless, contention-less, and grid-less (CDC/G) ROADMs
offer significant reductions in the network TCO. Since CDC/G nodes route wavelength in the photonic
domain, rather than electrically, OpEx can be 35% lower than with conventional alternatives. Thanks to
photonic operations, CDC/G ROADMs are more power efficient (about 30%–40% less power needed)
and introduce less wavelength service latency. Moreover, CDC/G ROADMs offer major scalability,
since they are capacity independent, and have major agility to adjust wavelengths to recover capacity.
It has been estimated that this technique can allow the recovery of 30% of network capacity, and thus a
30% CapEx savings, through deferring expensive network upgrades [11].

Nowadays, CDC/G ROADMs are a solution designed exclusively for core networks but, in the
opinion of the authors, some of their features could be implemented also in the next generation of metro
networks. Sub-optimal solutions are already ordinarily used in metro networks, such as tunable optical
add drop multiplexers (TOADMs) which employ tunable filters to select and add/drop a channel or
band without the need for demultiplexing and multiplexing [47]. Metro ROADMs (especially CDC/G)
are not a cheap solution, but over the long-term, they could represent the most reliable, robust, and cost
effective option to reduce OpEx, increase network reliability, and manage more traffic [46].

4.3. Technologies for Optical Processing

In the Section 3.2.4, optical switching was presented with efficient techniques to switch optical
signals in a re-configurable network. Optical switches can thus be ascribed to the category of SDP
devices, since their switching table (implemented in the switch fabric) can be considered a key feature
re-configurable by software, i.e., through the header information. Several solutions have been proposed
in order to implement header (or label) processing wholly in the optical domain.

In particular, nonlinear optical (NLO) transfer functions of optical components can be exploited
for signal processing. Optical logic gates have been proposed: ultrafast nonlinear interferometers
(UNIs) can be used to realize a high-speed logic processor, as well as cascaded semiconductor optical
amplifier-Mach-Zehnder interferometers (SOA-MZIs) can be used to construct an optical XOR logic
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gate useful for header detection and processing [72]. Moreover, SOA-MZI can be used as a building
block to implement other subsystems, such as wavelength converters, label/payload separation,
clock-recovery circuits, or optical flip–flops [73]. All-optical subsystems based on SOA-MZIs capable
of performing on-the-fly packet clock recovery, 3R regeneration, label/payload separation, and packet
routing have been reported by Kehayas et al. [74].

A different approach for label pattern recognition is using optical code-division-multiple-access
(O-CDMA) techniques to code the header. If such a coding is used, correlation techniques based on
fiber Bragg gratings (FBGs) can be used to perform label detection [72].

Hu et al. [75] have proposed an innovative packet switching mechanism for OPS and OBS, based
on cross-phase modulation (XPM) in a silicon nanowire fabricated in SOI technological platform. When
the OOK control signal at the wavelength λC is ‘on’, the packet at the wavelength λD is switched out
at the wavelength λC + ∆λ, as sketched in Figure 10a. If different wavelengths (λC1, λC2, . . . λCN)
are used as control signals, the incoming packet can be switched out at different wavelengths
(λC1 + ∆λ, λC2 + ∆λ, . . . λCN + ∆λ) to different outputs, as sketched in Figure 10b.
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4.4. Technologies for Energy Harvesting

In the metro and access segments, the software-defined nodes providing physical-layer
re-configurability to the network are expected to be placed also in street environments and not
only in COs, since most of the operators have plans to consolidate the number of COs in order to
reduce real estate costs [76]. This means that the provisioning of power supply will become an
increasingly critical issue, given the major complexity of a field-installed supply. This reason, added
to the obvious necessity to reduce the power consumption to achieve OpEx saving, underpins the
research for energy harvesting/scavenging mechanisms. In fact, one of the main roadblocks that could
prevent the introduction of flexible optical networking technology in the access segments is to retain a
fully passive outside fiber plant [39].

In some of the metro-access topologies which will be introduced in the Section 5.2, erbium doped
fiber amplifiers (EDFAs), remotely pumped from the CO, are used in the remote nodes (RNs) to
compensate both fiber attenuation and insertion losses. On one hand, this configuration avoids local
power supply provisioning but, on the other hand, the total amount of pump power demanded for the
CO is an important limitation of the network.

Baptista et al. [77] have proposed an improved energetically-efficient RN able to select a different
EDFA optimized to the necessary gain, thus reducing the total amount of pump power. Moreover,
in particular conditions, the pump extra-power is used to convert to electrical power by a special
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harvesting device and stored electrically in order to be used to control the switches, thus keeping the
network fully passive.

Shrenk et al. [39] have demonstrated a fully-passive yet reconfigurable optical cross-connect
(FOX), i.e., a special ROADM for metro-access networks, based on micro-opto-electro-mechanical
system (MOEMS) technology, which is fed through energy scavenging at the optical network layer
through a photovoltaic PIN diode.

5. Architectures

Network re-configurability at the physical layer is treated in this paragraph from an architectural
point of view. Firstly, the necessity for all-optical operations is described. Then, several proposals for
metro-access and fixed-mobile network convergence are briefly reviewed.

5.1. All-Optical Operations

In a whole optical network, the greatest part of operative costs is related to optical transponders,
i.e., tunable lasers and photo-receivers. For example, in the Italian network, their cost is about 60%–70%
of the whole network cost [70]. In order to reduce costs, the number of transponders (so, the number
of optical-electro-optical (O-E-O) conversions) has to be reduced. Reducing the power consumption is
a critical issue not only for cost reduction but also for a greener environment. It has been estimated
that, in 2007, 37% of the total carbon emissions of the whole ICT industry was due to the network
infrastructure and devices. By 2020, ICT is expected to account for around 2% of the global carbon
emissions [78]. In 2007, metro and access networks consumed the 60% of the total power amount used
in the entire telecommunication network [79]. In 2013, the total contribution to energy consumption
due to legacy fixed access, fiber-to-the-X (FTTx) new generation access, aggregation, and transmission
networks, is about 40% of the total energy consumption in the telecommunication system [78], as shown
in Figure 11.
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In order to reduce the power consumption also in the metro and access segment, a different
approach is needed. All-optical networks (AONs), where O-E-O transponders are used only at the
network edge, have been proposed a quarter of a century ago and, despite the progress made in the
last decades, their acceptance has encountered skepticism regarding optical impairments [80]. It can be
envisioned that AONs could get new emphasis from the possible application in re-configurable metro and
access networks, where launch power is lower and distances are shorter, so optical impairments are less
impactful. While O-E-O regenerations in opaque networks do not allow ‘analog transparency’ since
they reshape optical waveforms, AONs allow transparency for both digital content of signals (‘digital
transparency’) and their analog waveform. AONs also allow ‘spectral transparency’, i.e., flexibility
in the placement of wavelengths within the optical spectrum [80]. Analog, digital, and spectral
transparency allowed by AONs appears particularly attractive for the deployment of flexible
transceivers, flexible grids, and optical switches for future software-defined metro and networks.
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5.2. Unified Metro-Access Networks

Unified all-optical metro-access networks represent one of the best possible solutions to realize
re-configurability at the physical layer in these network segments [10]. Several converged metro-access
architectures have been proposed in recent years, where a certain number of PON access stress is
merged with a metro ring through ROADMs. Today, the large-scale deployment of optical fiber in
the access segment provides a common transmission medium to both access and metro networks [81].
Moreover, the WDM-PON architectures can even extend the application range of PONs when compared
to conventional GPONs. Higher per-ONU bandwidth and splitting ratios in conjunction with
extended power budgets enable the use of PON technologies for a unified metro-access network [10].
Nevertheless, in a short-term perspective, a cost-effective and scalable solution could be to increase
the transmission capacity deploying WDM in the former metro part, while TDM could be kept in the
former access part [81].

These TDM/WDM metro-access networks will face some technical challenges: the backward
compatibility with existing PON systems have to be preserved; a higher network reach must be
accomplished, thus amplification in the RNs will be needed; burst-mode upstream transmission has to
be managed, due to the TDM operation in this network segment.

One of the first proposals to merge the metro and access segments has been the metro and access
ring integrated network (MARIN) in 2007 [82]. MARIN is based on several interconnected DWDM
rings, each one with its own CO to manage the traffic related to the WDM-PONs linked to the ring.
Two kinds of nodes are considered: (i) the MARIN gateways, which manage add/drop functionalities
towards PON trees, as shown in Figure 12; (ii) the MARIN switches, which manage metro traffic
routing. The nodes are equipped with tunable transmitters and use OBS.
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The scaled advanced ring-based passive dense access network architecture (SARDANA)
architecture has been proposed in 2011 [83]. This metro-access architecture is based on a bidirectional
WDM ring with 32 wavelength channels; the ring is merged with 10 Gbit/s TDM PON trees through
RNs capable of channel add/drop functionalities, as shown in Figure 13. All the network nodes are
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passive except to the OLT placed in the CO of the WDM ring. The RNs are equipped with splitters
and remotely pumped EDFAs. The ONTs are equipped with colorless transceivers based on reflective
semiconductor optical amplifiers (RSOAs), which reflect and modulate the downstream traffic signal
to generate the upstream signal. The ring topology enhances network resiliency and ensures double
links between OLT and ONTs, with a recovery time of less than 50 ms in case of failure.Photonics 2017, 4, 1  21 of 26 
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A proposal for the application of the OBS technique in a metro-access network has recently been
advanced in order to ensure all-optical operations in a SDN-like optical architecture which offers the
possibility to manage traffic data thanks to re-configurability in the physical layer and a centralized
controller [49].

A SDN-based metro-access architecture has also been proposed by Sarmiento et al. [84].
The network is based on cost-effective, energy-efficient, and flexible nodes and transceivers, remotely
managed by a SDN controller, able to support 5G services.

The following proposals for converged metro-access networks have been reviewed by Guo and
Tay [85]. Super passive optical networks (SuperPON) have been developed based on the old G.983
broadband PON (B-PON) architecture, upgradable through a larger splitting factor and longer reach.
Townsend and Talli [86] have proposed a hybrid DWDM-TDM long-reach PON. The architecture
proposed by Segarra et al. [50] leverages the concept of an OBS multiplexer to transparently interface
to distant metro routers in an all-optical manner. Stanford University ACCESS (SUCCESS) network
is a hybrid WDM/TDM architecture based on a single-fiber collector ring and stars attached to it,
designed for practical migration steps from current TDM-PONs to WDM optical access networks.

Finally, a reconfigurable metro-access network which can be used for dynamic inter-PON
bandwidth allocation for optimal bandwidth availability to the end-user has been discussed by
Roy and van Etten [87].

5.3. Converged Fixed-Mobile Networks

In Section 2.2, the reasons to adopt the SDN model in the metro and access networks was
described with reference to the requirement of future 5G cellular networks. The re-configurability
required by mobile RAN systems will be reflected in the fixed line access networks. Therefore,
similarly to the convergence of metro and access segments, a convergence between the fixed and
mobile service environments and networks, sometimes referred as fixed mobile convergence (FMC),
can be envisioned.

The schematic representation of a generic fixed-mobile metro-access network architecture is
shown in Figure 14. The figure shows metro switches and both MBH and MFH links. A centralized
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SDN controller can drive all the switches involved to provide connections at the different required
granularities and ensure the cooperation among BBUs, as will be required by 5G.Photonics 2017, 4, 1  22 of 26 
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SDN concepts applied to efficient 5G MBH and MFH networks have been proposed by
Jungnickel et al. [88], in order to enable multiple operators to share the same physical infrastructure.
In particular, for the use of SDN in the MFH network, CPRI over Ethernet (CoE) is proposed as a new
transport protocol.

Several concrete proposals have been brought forward in recent years to merge fixed and mobile
access networks.

Roger and Niger [51] have proposed a metro-access network architecture which makes use of
PON-based access, optical cross-connect metro, and WR-OBS transport. Flexible resource allocation
mechanisms and mobility management procedures allow the native support of mobile services in a
fully integrated mode.

Schmuck et al. [89] have presented a trial demonstration based on flexible operating access nodes
within a shared metro-access reconfigurable infrastructure. Virtual paths are proposed to transport
mixed data format/rates carrying different services. One of the services provided by the network is
an OFDM transmission system operating at 2 Gbit/s per channel for interconnecting neighboring 4G
mobile nodes using coordinated multi-point processing [89].

6. Conclusions

The application of the SDN paradigm to reconfigurable and programmable optical metro and
access networks has been described. This concept has been widely contextualized in the general
scenario of SDN technology, with reference also to the related market place evolution.

Firstly, the reasons for SDN extension to the edge network segments have been presented,
considering the metro and access traffic evolution, the future 5G RAN requirements, the trends
of data centers interconnect and edge cloud, the benefit in terms of end-user quality of experience,
and the TCO savings.

Then, the practical solutions for SDN metro and access networks have been outlined with reference
to both higher-layer and physical-layer re-configurability. Physical-layer solutions have been focused
on in more detail and its major trends have been overviewed: flexible transceivers, super-channels and
flexible grids, optical routing and switching.
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After that, several SDP devices and components have been reviewed, especially ROADMs and optical
switches, also taking into account the technological aspects and mechanisms for energy harvesting.

Finally, possible future architectures for SDN metro and access networks have been envisioned.
Given that all-operations will represent one of the major requirements, several proposals for converging
metro-access and fixed-mobile networks have been presented.
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