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Abstract: Transmission demand continues to grow and higher capacity optical communication
systems are required to economically meet this ever-increasing need for communication services.
This article expands and deepens the study of a novel optical communication system for high-capacity
Local Area Networks (LANs), based on twisted optical fibers. The complete statistical behavior
of this system is shown, designed for more efficient use of the fiber single-channel capacity by
adopting an unconventional multilevel polarization modulation (called “bands of polarization”).
Starting from simulative results, a possible reference mathematical model is proposed. Finally,
the system performance is analyzed in the presence of shot-noise (coherent detection) or thermal
noise (direct detection).
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1. Introduction

The optical fiber constitutes the optimal communication channel for its efficiency, capacity, and
transmission rate. It forms the high-capacity transport infrastructure that enables global broadband
data services and advanced Internet applications. For this reason, countless studies have focused their
attention on how it could be possible to exploit all the characteristics of this medium in terms of the
transmission capacity. As it often happens, certain features, initially considered as drawbacks, can be
revealed to have advantages.

One of these natural characteristics of the optical fiber is the birefringence. It has been
widely studied, especially for the negative effects that it causes, such as the PMD (Polarization
Mode Dispersion). It is important to distinguish between linear and circular birefringence. Linear
birefringence has several origins: bending, geometrical imperfections, and stress-induced anisotropies.
All of them act randomly along optical fibers. Circular birefringence may be generated, instead, by
an external magnetic field aligned with the axis of propagation, or by twisting the fiber itself [1,2].
Basic models of the optical fiber birefringence have been described in [3,4]. These works only take into
account the linear birefringence, neglecting the circular one. This approach is justified by the fact that in
most of the fibers used in optical communications, circular birefringence can be considered negligible.
A successive work [5] focused on the development of a complete model of the birefringence that
also included the circular component. In this general model, during the production phase, a twisting
process of the fiber generates an induced circular birefringence. This production process has the
advantage of a PMD decrease [6]. Another advantage of twisted fiber is the opportunity to better
exploit the multilevel polarization modulations.
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The multilevel polarization modulations (M-PolSK—Multilevel-Polarization Shift Keying) exploit
the additional degrees of freedom provided by the use of the State of Polarization (SOP) of a fully
polarized light wave as a “modulation parameter” in a three-dimensional [7] and a four-dimensional
Euclidean space [8]. Birefringence causes SOP changes during the propagation of the signal along
the optical fiber. Therefore, M-PolSK modulations, despite a better exploitation of the single channel
bandwidth [9], require a complex receiver, able to track the birefringence for the correct estimation
of the transmitted symbols. In [10] it is shown that by applying a novel M-PolSK modulation in a
twisted fiber, it is possible to confine the SOP evolution of the transmitted symbols within specific
physical “polarization bands” (on the surface of the Poincaré sphere). In this way, at the receiver
end, there is no need to implement a complex mechanism for tracking the birefringence because it is
sufficient to identify the band of polarization of the received SOP to estimate the transmitted symbol.
This modulation also offers the advantage of a “fluid” constellation of symbols that no longer need to
belong to a rigid geometric structure. The advantage of a “fluid” constellation lies in the fact that the
decision regions may be associated directly with physical regions. The structure of the constellation
is such that the modulator must only change the value of the S3 component. The drawback is the
presence of a limited number of polarization bands (physical tracks), conditioned by the twisting
process that is possible to be introduced in the optical fiber. Moreover, the performance of the proposed
system is compatible with those systems with a similar number of symbols, but with the advantage of
a simpler receiver structure.

This paper, starting from the model proposed in [10], analyzes the statistical properties of this
novel multilevel polarization modulation for twisted fibers that can be used in a Local Area Network
(LAN) environment. In fact, the proposed system would fit the LAN environment very well, such
as the systems mentioned in [11,12]. In this case, the advantage is not related to the growth of the
total throughput, but rather to the complexity reduction of the transmitter and receiver. Moreover,
a mathematical model [13] for the evolution of the SOP along the twisted fiber is proposed and
compared with the simulative results. Finally, the performance of this system is compared with that of
the standard M-PolSK modulations both in the case of coherent detection (shot-noise limited) [7] and
direct detection (thermal noise limited) [14].

2. Theoretical Background

2.1. Birefringence Models

In the past, many studies focused on a possible mathematical model that could be adopted to
describe the phenomenon of birefringence in optical fibers. This physical feature of the fiber can be
characterized by means of β = (β1, β2, β3)T, which represents the local birefringence vector in any
point of the optical fiber propagation axis (z-axis).

The components β1 and β2 characterize the linear birefringence, while β3 takes into account the
circular birefringence. The above-mentioned works [3,4] described models for optical fibers with linear
birefringence (considering a negligible β3 component). This assumption is valid for most of the fibers
used in telecommunications. Linear birefringence is a stationary stochastic process [15], and according
to the Wai-Menyuk Model (WMM) [3], the components β1 and β2 are independent Langevin processes
(i = 1, 2),

∂βi/∂z = −ρβi(z) + σηi(z) (1)

with η1(z) and η2(z) as independent white noise processes with the following statistical properties
(i = 1, 2)

E [ηi(z)] = 0, E[ηi(z)ηi(z + υ)] = δ(υ) (2)
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with δ(ν) being the Dirac distribution. The terms ρ and σ represent the statistical properties of the
birefringence [3,5]

ρ =
1

hfiber
, σ =

4
LB

√
π

h f iber
(3)

where hfiber and LB are, respectively, the fiber autocorrelation length and the mean fiber beat length.
The fiber autocorrelation length is the length over which an ensemble of fibers, all of which initially
have the same orientation of the axes of birefringence, lose memory of this initial orientation (hfiber is
the distance over which the autocorrelation of the birefringence vector decays to 1/e). The fiber beat
length is the length required for a complete SOP rotation. Another important parameter is hE,local [3],
equal to hfiber, which represents the length scale over which the field, measured with respect to the
local axes of birefringence, loses memory of its own orientation with respect to those axes [16].

In [10], in order to study the spatial evolution of the birefringence (and, consequently, of the SOP),
a model is presented in which the component β3 (induced circular birefringence) of the local
birefringence vector β is no longer considered negligible. The simulations have been developed
according to the assumption of using an optical fiber subjected to a twisting process, for distances that
can be compared to those of a LAN. With this model, the local birefringence vector can be expressed in
the following way [5]

β(z) = T(z)

 β1(z)
β2(z)
gτ′(z)

 (4)

where T(z) is the rotation matrix of the cross-sectional plane z originated by the twisting process

T(z) =

 cos 2τ(z) − sin 2τ(z) 0
sin 2τ(z) cos 2τ(z) 0

0 0 1

 (5)

while τ(z) is the twist measured in radians and τ′(z) is the twist-rate expressed in rad/m. The parameter
g refers to the optical fiber coupling parameters and represents the proportionality coefficient between
the twist-rate and the induced circular birefringence, that is β3(z) = gτ′(z). Typically, experimental
results lead to the value g ∼= 0.14 [5].

2.2. M-PolSK Modulations

It is known that the M-PolSK modulations use the SOP of a fully polarized light wave as a
“modulation parameter”. Considering a reference plane (x, y), normal to the z propagation axis,
the complex components of an electromagnetic field that travels along the z-axis are given by

Ex = u(x, y)ax(t)ej(ωt+φx(t))x̂ = Exx̂

Ey = u(x, y)ay(t)e
j(ωt+φy(t))ŷ = Eyŷ

(6)

where ω is the angular frequency, ax, ay, φx, and φy are respectively the amplitude and phase of the x, y
field components, and u(x, y) is the transversal mode profile. It is possible to measure and to identify
univocally the SOP of the signal through the Stokes parameters

S0 = a2
x + a2

y S1 = a2
x − a2

y

S2 = 2axay cos δ S3 = 2axay sin δ
(7)
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with S2
0= S2

1 + S2
2 + S2

3 and δ =φx − φy. S0 is proportional to the power of the optical field travelling
along the fiber. A powerful way to visualize the SOP is represented by the Poincaré sphere of radius
S0, in which any point represents a SOP with a different longitude (ψ) and latitude (χ)

tan 2ψ = S2/S1, sin 2χ = S3/S0 (8)

In the Stokes space, the differential equation of motion, which describes the spatial response of
the SOP to the local birefringence, is

∂S/∂z = βxS (9)

where S = (S1, S2, S3) is the three-component Stokes vector. Equation (9) describes the spatial
evolution of the Stokes vector at a fixed angular frequency. Therefore, for Equation (9), the birefringence
causes random SOP fluctuations depending on the β behavior along the propagation z-axis. M-PolSK
modulation formats are possible because the rate of polarization changes along the propagation in the
optical fiber is very low and no significant variation can take place within a time interval comparable
with the symbol time.

M-PolSK modulation schemes can be mapped onto the Stokes space. For higher order modulation
schemes, M-PolSK shows an increased efficiency with respect to the more conventional coherent
modulation schemes, based on amplitude and/or phase modulation [9]. These systems must provide
at the receiver end a tracking mechanism of the polarization changes due to the birefringence. M-PolSK
modulations are usually related to fixed and rigid constellations of symbols represented in the Stokes
space. Symbol constellations can be regular and symmetric polyhedra [7] inscribed into the Poincaré
sphere, or asymmetric polyhedra [9].

The M-PolSK modulator has to change the input SOP in such a way that the corresponding SOP
point in the Stokes space matches one of the symbols belonging to the signal constellation.

The Stokes receiver, in addition to the Stokes parameters extraction, must be able to compensate
the SOP fluctuations. Specific receiver schemes described in [7,9] are able to track time changes
of the SOP due to fiber birefringence. In the presence of slow fluctuations, the reference SOPs,
which are associated with the transmitted symbols, have to be updated every TUP seconds, with
1/W� TUP � TSOP, where W is the signal bandwidth and TSOP is the characteristic time of the
SOP fluctuations.

3. Statistics of the Proposed Model

The work in [10] proposed a new type of multilevel-polarization modulation (“bands of
polarization” modulation) that goes beyond the classical concept of symbols belonging to a rigid
constellation in the Euclidean space. This modulation model takes advantage of an intrinsic
characteristic of optical fibers such as the birefringence. As a matter of fact, with a suitable twisting
process, the induced circular birefringence β3 becomes predominant with respect to the linear
birefringence components β1 and β2. In this case, the evolution of the SOP during its spatial
propagation along the fiber is confined latitudinally within specific physical tracks (called “bands of
polarization”). Figure 1 shows the spatial evolution in the Poincaré sphere of five different SOPs in
their own “bands of polarization”; the simulated twisted fiber has a twist rate of 6 rad/m (~1 turn/m).

A fundamental benefit of this system consists of the reduced complexity of the receiver.
Its simplicity derives from the simple need to detect only the S3 component of the received SOP.
Therefore, there is no need to implement a specific circuit to track the birefringence’s variations.
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Figure 1. Spatial evolution of the States of Polarization (SOPs) in a twisted fiber.

3.1. Simulation Model

Starting from the simulative results described in [10], we analyzed the statistical behavior of
the different transmitted SOPs during their propagation along a twisted fiber. All of the statistical
results shown in this paper have been obtained using the model and the physical parameters reported
in [5]. In order to achieve statistically significant results, the simulations have been repeated 500 times
(cycles), for each value of twist and for each distance of propagation.

The simulation software used was MATLAB R2016a with an Academic License. In order to
perform, in a reasonable time, the onerous statistical calculations required by the adopted mathematical
model, we implemented a software code that could exploit all the available hardware of the workstation
dedicated to the simulations. Given the statistical independence of the parameters utilized in the
different simulation cycles, the serial calculation method was replaced with a parallel computing
method, thanks to the simultaneous use of eight independent logical processes that could run the
500 cycles in parallel. For this choice, the software code implemented in [10] was adapted and
configured for an efficient use of parallel computing.

3.2. Statistical Analysis

The five transmitted symbols were chosen in such a way that the relative “bands of polarization”
were symmetrical around the starting value of the latitude. To achieve this objective, we analyzed
the behavior of different SOPs that belonged to the same band of polarization; the chosen test band
was the equatorial band that included the linear polarizations. Figure 2 shows the spatial evolution
of different linear polarizations. It can be seen that the cycloidal spatial trajectory of the SOP is not
symmetrical with respect to the equatorial plane if the starting value of S2 is null, facing downwards if
S1 is positive (Figure 2a) and upwards in the opposite case (Figure 2b); conversely, the trajectory is
symmetrical with respect to the equatorial plane if the starting value of S2 is equal to one (Figure 2c).
Moreover, the trajectories in Figure 2a,b are prolate cycloids while that in Figure 2c is a curtate cycloid.
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To enhance the visualization of the cycloidal patterns, we chose a weak twist rate of 1.5 rad/m.
In fact, with a low twist rate, the spatial trajectory is a prolate cycloid, while when increasing the twist
rate, it becomes first an ordinary cycloid and then a curtate cycloid. The same behavior holds true for
the elliptical polarizations. On the contrary, circular polarization is flattened towards the pole because
of the presence of strong spatial constraints (Figure 3).

The first objective is to study the dependency of the transmitted SOP spatial evolution from the
propagation distance of the optical field along the fiber for different values of the twisting process.
For each simulation cycle, we calculated the probability density function (hereinafter referred to
as the pdf) of the third Stokes vector component S3 relative to the transmitted symbols. In fact,
as demonstrated by Equation (8), S3 depends directly on the latitude angle and its variance is closely
related to the width of its associated “band” (Figure 1).
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Figure 3. Top view of the spatial evolution of a circular SOP.

Afterwards, in order to consider all the cycles’ contributions, we derived the average pdf as the
mean curve of all the executed simulations. In Figure 4, the behavior of the above-described mean pdf
for different propagation distances is shown.
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Figure 4. Mean S3 pdf for different distances.

These plotted functions were obtained with different fiber distances but with the same value of
the twist rate (6 rad/m). The transmitted symbol had a 45◦ linear polarization SOP with a Stokes vector
equal to [0,1,0]. The S3 variance, and consequently the width of the bands of polarization, widens
with increasing the distance of propagation. This variance growth has a linear dependence on the
propagation distance as shown in Figure 5, which shows a comparison between the simulated values
and a linearly fitted curve.
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Figure 6, instead, shows the dependency of the S3 pdf on different values of the twisting process.
These plotted functions were obtained by considering a fixed value of the propagation distance equal
to 500 m. In this case, the transmitted symbol also had a 45◦ linear polarization SOP with a Stokes
vector equal to [0,1,0]. The S3 variance, and consequently the width of the bands of polarization,
narrows with increasing the twisting value. Therefore, an increase of the twisting process generates a
potential throughput rise, with the same available bandwidth, for this type of multilevel polarization
modulation, because it allows for the presence of a greater number of bands (and consequently,
symbols) on the Poincaré sphere.
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The variance decrease has an exponential dependence on the twist rate, as shown in Figure 7,
which shows a comparison between the simulated values and an exponentially fitted curve. Therefore,
the statistical results show how the width of the polarization bands has a dependence on the twisting
process that is much stronger (exponential) than that of the propagation distance (linear).
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The data originating from these simulations show that the twisting process gives rise to a physical
track even tighter for circular polarization than for those equatorial and elliptical polarizations.
Considering the same values of distance (500 m) and twist rate (6 rad/m), Figure 8a shows the
comparison between a linear and an elliptical SOP, while in Figure 8b a circular SOP is added. It is
clear from Figure 8b, how large the difference is between the pdf curves of circular polarization on one
side and those of the equatorial and elliptical polarizations on the other side.

Another important result that can be deduced by Figure 8a,b is that the width of the “bands”
decreases, starting from the equator to the pole. This behavior proves how a transmitted circular SOP
is physically advantaged with respect to the other SOPs, in terms of a less probable deviation from its
initial position, during the spatial propagation in a twisted optical fiber. It is reasonable to assume
that this behavior is determined by the greater strength of the circular polarization with respect to the
symmetry, also circular, of the fiber core.Photonics 2017, 4, 5  8 of 13 
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4. Mathematical Model

The statistical analysis performed by simulation can be matched with the mathematical model
proposed by Perrin [13], which characterizes the Brownian motion of a particle on the surface of a
sphere. Perrin showed how the pdf of the colatitude angle θ as a function of time is given by:

f (θ, t) =
∞

∑
k=0

1
4π

(2k + 1)e−k(k+1)RtPk(cos θ) (10)

where Pk is the Legendre polynomial of order k and R is the rotational diffusion coefficient (in rad2/s).
This function is obtained by starting from the initial conditions f (0, 0) = ∞ and f (θ, 0) = 0 (initial
conditions equivalent to a circular polarization). The pdf of Perrin has been manipulated using the
methods described in [13] in order to calculate the pdf of S3 = cos θ, as a function of a random variable.
Moreover, Equation (10) has been adapted to the various initial conditions that correspond to the SOP
of the transmitted symbols. For example, for the linear polarizations (colatitude equal to π/2), it has
been set to f (π/2, 0) = ∞ and f (θ, 0) = 0. In order to make a valid comparison between the simulated
model and the mathematical model, we adopted the following assumption: it is not possible to use, in
this case, the rotational diffusion coefficient R indicated by Perrin, so it has been deduced by simulation
results through the diffusion equation

< θ2 >

2
= R t (11)
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in which the simulative values of <θ2> were used. An important result is that for the linear and
elliptical polarizations, this mathematical model represents an upper limit (the dotted envelope in
Figure 9) with respect to the pdf curves of S3.
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In the case of circular polarization, the mathematical model has an asymptotic behavior (the dotted
curve in Figure 10) with respect to the pdf curves of S3.
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Simulated values in Figures 9 and 10 were obtained for a fixed distance of 300 m and a constant
twist rate of 6 rad/m. A general result is that the diffusion process studied by Perrin flattens (with a
trend towards uniform distribution) the pdf of the colatitude with increasing time as well as increasing
distance. The decrease of the twist rate instead flattens the pdf obtained from the simulation results.
It seems that the constraint introduced by the twist process is able to create privileged physical channels
for the spatial evolution of the transmitted SOPs. These channels resist as long as the twist constraint
is stronger than the natural process of diffusion.

5. Performance Evaluation

As described above, the circular birefringence, induced by the twisting process, defines the
physical bands. In order to analyze the system performances, these bands, which constitute the
decision regions, have been chosen after an optimization process. The performance evaluation starts
from the considerations described in [7], about the optimal decision regions for M-PolSK modulations
as constellations of regular polyhedra inscribed in the Poincaré sphere. In particular, in [7] the decision
regions, which are different for the various M-PolSK modulations, coincide with regular spherical
polygons identified by all the spherical coordinates. Nevertheless, the topological concept of the
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proposed modulation is completely different because it creates a “fluid” constellation of symbols
belonging to physical bands of polarization and is no longer anchored to rigid geometrical structures
such as polyhedra. Therefore, only a spherical coordinate (colatitude) is involved in the definition of
decision regions that, for this reason, present only a colatitude upper bound beyond which decision
errors always occur. This limit is equal to π/(M − 1), where M is the number of symbols of the
proposed system.

The system performance for the “bands of polarization” modulation was calculated with respect
to the statistical properties of two different noises: shot-noise and thermal noise. Previous sections of
this work show how the probability density functions are different depending on the transmitted SOP
(narrower band of polarization and lower error probability for the circular SOP). This result is valid
until the signal propagates along the fiber. At the receiver side, other noise sources must be considered.
As a matter of fact, the birefringence effect is selective in its influence on SOP; on the contrary, noise
processes such as shot and thermal noise have the same behavior against all the SOPs. Under the
hypothesis of independent equiprobable symbols, the symbol error probability can be written as

P(e) =
1
M

M

∑
k=1

P(e|
→
Sk) = P(e|

→
Sk) (12)

where P(e|
→
Sk) is the error probability conditioned to the transmission of the symbol

→
Sk.

5.1. Coherent Detection Performance

In this case, we assumed the hypothesis of a receiver based only on the estimation of the Stokes
parameter S3 of the received optical field by means of a coherent optical front end. Therefore,
the dominant noise source is the shot-noise.

Coherent detection offers many benefits with respect to sensitivity, spectral efficiency, and
equalization potential [17,18]. With the above described choice about the decision regions, only
the colatitude θ is involved in the performance analysis. Starting from the results derived in [7] and
after suitable manipulations due to the different considered decision regions, the conditional error
probability can be expressed as

P(e|
→
Sk) = 1− Fϑ(ϑ1), (13)

where θ1 = π/(M − 1) is the optimized colatitude upper bound of the decision regions and Fϑ is the
cumulative density function (cdf). The cdf has the following expression [7]

Fϑ(t) = 1− 1
2

e−
S0

4σ2 (1−cos t)
(1 + cos t) (14)

with t ∈ [0, π] and σ2 as the noise variance. The resulting error probability was analyzed in a function
of the signal to noise ratio per transmitted information bit ηb [7]

ηb = ηs
1

log2 M
(15)

where, for M-PolSK systems, the term ηs is equal to S0/2σ2.
Figure 11 shows the comparison between the results reported in [7] and the performance relative

to the proposed 5-PolSK bands polarization system.
The proposed system is located between the 6-PolSK octahedron and 8-PolSK cube curves.

It is slightly better (~0.1 dB) than the optimum 8-PolSK non-regular polyhedron described in [7],
not reported in Figure 11. The decision regions are calculated by means of a unique angle (colatitude),
neglecting the longitudinal one. This choice from one side causes a penalty of less than 1 dB (~0.7 dB)
with respect to the 6-PolSK octahedron, but from the other side it guarantees a simpler receiver based
only on the knowledge of S3 and with no birefringence tracking circuit.
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5.2. Direct Detection Performance

In this case, we assumed the hypothesis of a receiver based only on the estimation of the Stokes
parameter S3 of the received optical field by means of a direct detection optical front end. Therefore,
the dominant noise source is the receiver thermal noise. The objective was to compare the performances
of the proposed system with the Polarization Modulated Direct Detection (PM-DD) systems described
in [14]. In order to achieve a better comparison, the method used for the performance evaluation was
the so-called union bound approximation utilized in [14] and described in [19,20].

As described in [10], this novel modulation model does not need fixed constellation symbols,
but only the knowledge of the associated bands of polarization. Nevertheless, in order to evaluate the
performance using the distance criterion, it is necessary to choose a reference constellation of symbols.
The chosen coordinates for the constellation symbols in the Stokes space are listed in Table 1.

Table 1. Symbols in the Stokes Space.

N S1 S2 S3

1 0 0 1
2 0

√
2/2

√
2/2

3 0 1 0
4 0

√
2/2 −

√
2/2

5 0 0 −1

This choice fell on the symbols in Table 1 because it was considered the worst possible case
with the minimum distance among all the nearest neighbors. Distances between the symbols of the
proposed system are reported in Table 2.

Table 2. Distance Matrix for the 5-PolSK Bands Modulation.

N 1 2 3 4 5

1 0 0.765
√

2 1.847 2
2 0.765 0 0.765

√
2 1.847

3
√

2 0.765 0 0.765
√

2
4 1.847

√
2 0.765 0 0.765

5 2 1.847
√

2 0.765 0

Under the hypothesis of independent equiprobable symbols, the symbol error probability was
written as in Equation (12). The conditional error probability was derived as in [14], by using the same
receiver parameters. The system bit error probability Pbit was calculated as a function of the symbol
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error probability Psymbol by means of the expression Pbit =
(

e·Psymbol

)
/ log2 M, where M is the number

of symbols and e is the average number of wrong bits in a wrong symbol [19]

e =
1

M− 1

log2 M

∑
k=1

(
log2 M

k

)
k =

M log2 M
2(M− 1)

(16)

Therefore, the bit error probability is given by

Pbit =
M

2(M− 1)
Psymbol (17)

The resulting bit error probability was evaluated in the function of the received optical power,
measured in dBm. Figure 12 shows the comparison between the results described in [14] and the
evaluated performance of the 5-PolSK bands polarization system in the presence of thermal noise.

The proposed system is located between the 4PM-DD and 8PM-DD curves, with a performance
penalty of less than 1 dB (~0.9 dB) with respect to 4PM-DD.Photonics 2017, 4, 5  12 of 13 
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6. Conclusions

This work has presented a novel scheme of a multilevel polarization modulation system.
By exploiting the twisting process of an optical fiber, it is possible to create physical tracks, the so-called
bands of polarization, within which the transmitted SOP can be confined.

A statistical theory, originating from simulative results, has shown the different behavior, with
respect to the birefringence, of the linear and elliptical polarizations on one side and the circular
polarization on the other side. In particular, it was shown how the circular polarization is favored
in terms of a less probable deviation from its initial position, because of its peculiar geometric and
physical features.

Another important result is the proof of the dependency of the width of the bands of polarization
on the distance of propagation and on the strength of the twisting process. In particular, the dependency
on the twisting process is exponential while that on the distance of propagation is linear.

This consideration is fundamental for the achievable throughput; in fact, by enhancing the twisting
strength, the width of the bands of polarization decreases and more symbols can be transmitted.
The twisting process becomes a project parameter together with the propagation distance.

Then, the mathematical model proposed by Perrin for describing the Brownian motion of a point
on the surface of a sphere was adopted to check the simulation results. In conclusion, the system
performance has been evaluated both for coherent and direct optical detection.
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