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Abstract: We theoretically explore a scheme for generation of bright circularly and elliptically
polarized high-order harmonics by bursts of linearly polarized pulses with a rotating polarization
axis. Circularly polarized harmonics are formed if the bursts are comprised of N pulses that uphold
an N-fold rotational symmetry, for N > 2. Rotating the polarization axes of the comprising pulses
can generate elliptical harmonics with a collectively tunable ellipticity, from circular through elliptic
to linear. The method preserves the single-cycle, single-atom and macroscopic physics of ‘standard’
linearly polarized high harmonic generation, with a high yield and cutoff energy. We investigate the
method from a time-domain perspective, as well as a photonic perspective, and formulate the energy
and spin-angular momentum conservation laws for this scheme. We find that the case of N = 4 is
optimal for this method, resulting with the highest conversion efficiency of elliptical photons. The new
features of this source offer new applications to helical ultrafast spectroscopy and ellipsometry.
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1. Introduction

High harmonic generation (HHG) is a nonlinear process in which intense laser radiation interacts
with matter to emit extreme UV and X-ray coherent light [1,2]. The process is well described by the
semi-classical three-step model, where the strong electric field ionizes electrons, which then accelerate,
and proceed to re-collide with the ions. Upon re-collision, high energy photons are emitted [3,4].
The spectrum of this process is largely determined by the driving laser field. For example, dynamical
symmetries (DSs) present in the laser field can impose selection rules on the harmonic emission [5,6].
Additionally, if the driver is linearly-polarized, then so are the emitted harmonics, while an elliptically
polarized driver leads to elliptical harmonics [7–9]. Unfortunately, an elliptical driver drastically
reduces the probability for re-collisions, lowering the yield [10,11]. For many years this effect limited
the generation of bright highly helical high harmonics.

Nonetheless, theoretical [10–22] and experimental [23–35] advancements have been accomplished
over the years. In particular, circular harmonics were produced using a bi-circular driving laser
field [26,27,30,31,34,35]. In the bi-circular scheme, two counter-rotating circular pulses of different
frequencies drive HHG. The coherent superposition of two such pulses creates unique laser fields
with rotational DSs, in which the electron has a high probability to recombine, and due to symmetry
emit circular harmonics [6]. Additionally, high harmonics with a relatively high ellipticity (up to
0.8 at photon energy 25 eV) were generated with an elliptically polarized pump driving a gas of SF6

molecules [28], and with bi-chromatic co-propagating orthogonally polarized pumps driving atomic
Ne gas [29]. Circular harmonics were also produced by mixing non-collinear circularly polarized
counter-rotating pumps [30].
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The above methods have various advantages, but are still limited in several aspects. Importantly,
none of them allow to fully control the ellipticity of high harmonics (from circular through elliptical to
linear) in a manner that is uncoupled to the generation efficiency. Moreover, the ellipticity is tunable
for only a given harmonic at a time, and not for an entire spectral region. Lastly, compared to ‘standard’
linearly polarized HHG schemes driven by linearly polarized pulses, the conversion efficiency and
cutoff energy of circular HHG are smaller. Overcoming these limitations could have applications in
coherent control, and ultrafast spectroscopy of chiral processes. Also, a tunable polarization will allow
HHG based null-ellipsometry, generalized-ellipsometry, and imaging ellipsometry [36,37].

Recently, we theoretically proposed and demonstrated numerically a new scheme for generation
of bright circularly and elliptically polarized high harmonics [38]. In this scheme, the HHG process is
driven by a burst of linearly polarized quasi-monochromatic pulses with rotating polarization axes.
When the angle between consecutive pulses is 120◦, the driving laser exhibits a 3-fold DS, similarly
to theω-2ω bi-circular scheme, hence the generated high harmonics are circularly polarized and its
power spectrum consists of harmonic pairs with opposite helicity. However, while the frequency
difference between each pair isω in theω-2ω bi-circular scheme, it is much smaller in the new scheme
(it corresponds to the duration in which the driver field exhibits a 3-fold DS). Thus, this scheme
requires a high-resolution spectrometer or narrow chiral resonances. Tuning the relative orientation
of the pulses (away from 120◦) allows controlling the ellipticity of the entire spectrum collectively,
with almost no compromise on the yield, and with minimal coupling to the spectrum. The only small
coupling is manifested by the appearance of new ‘previously forbidden’ harmonic peaks, which radiate
with a relatively low intensity. Importantly, this scheme allows to fully control the polarization of the
harmonics while largely preserving the single-cycle, single-atom and macroscopic physics of ‘standard’
HHG, where the driver and the emitted harmonics are linearly polarized. A weakness of the method
is that it requires fine control over the driving pulse-burst (see Figure 5 in Reference [38]).

Here we extend our investigations of the previously proposed scheme for generation of bright high
harmonics with fully controllable polarization driven by bursts of three linearly polarized pulses. First,
we generalize the scheme to N pulses. The harmonics are polarized circularly when the polarization
axis of the pulses upholds an N-fold rotational DS. Varying the relative polarization axes of the pulses
(away from an N-fold symmetry) allows fine-tuning of the high harmonics ellipticity. Second, we
show that this process is analytically equivalent to diffraction from N-slits. Third, we investigate the
process and derive the selection rules using energy and spin angular momentum conservation laws for
the participating photons. Lastly, we show that in the case of N = 4 the method results in a maximal
conversion efficiency, and a noise free broad-wavelength elliptical spectrum for any target ellipticity.

The paper is ordered as follows: Section 2 presents the general scheme. Section 3 provides an
analytical time-domain model, and also discusses the frequency-domain perspective and conservation
laws. In Section 4 we numerically verify the scheme, and Section 5 summarizes our results.

2. High Harmonic Generation Scheme

HHG is a collision-based phenomenon. Unfortunately, a single electronic re-collision is not
likely to yield a highly helical photon. This is a consequence of the electron having a well-defined
vector momentum upon impact, which determines the polarization axis of the emitted photon.
Accordingly, it is challenging to generate bright highly elliptical harmonics from a single recollision
event. One method for overcoming this difficulty is obtaining helical harmonics through interfering
several recollision events. For instance, in the bi-circular scheme described above, three distinct events
from each sub-cycle interfere to produce circular harmonics. We describe here a scheme that also relies
on an interference mechanism, but in this case the events are temporally separated from one another
on much longer time-scales. This is accomplished by driving the process with a burst of pulses.

The pulse-burst is comprised of linearly-polarized pulses with a varying polarization axis.
When the pulses within the burst are temporally distinct, each pulse drives “regular” one-dimensional
HHG, producing linearly-polarized harmonics. Circularly polarized radiation can then be generated
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by correctly choosing the different parameters in the pulse-burst. The desired polarization direction
(orientation) of each pulse can be found from symmetry considerations. For a burst consisting of N
consecutive collinearly propagating, isochronal, linearly-polarized light pulses, circular polarization
is obtained only if the orientations of each pulse follows the consecutive roots of unity. That is,
the orientation angle of each pulse above the x-axis, θ, upholds: eiθ = N

√
1, thus, θ = k × 2π/N,

for k = 0, 1, . . . , N − 1. Clearly, circular polarization can only be attained for N > 2, since otherwise
all the pulses are polarized along the same axis. For instance, for N = 3 we require three pulses
oriented at 120◦ from one another, as we previously showed in Reference [38]. In the time-domain,
this criterion means the pulse-burst complies to a rotational DS of N’th order. Thus, a burst consisting
of N linearly-polarized pulses which leads to circular polarization upholds:

→
Eburst

(
t +

TN
N

)
= R̂

(
2π

N

)
·
→
Eburst(t) (1)

where
→
Eburst(t) is the driver laser field, TN is the cycle time of the DS, and R̂(2π/N) is a two

dimensional (2D) rotation operator by an angle of 2π/N. This DS leads to circular harmonics [6],
and is similar to the DS present in the bi-circular fields, but for a longer period. A general pulse-burst
that upholds Equation (1) can be written as:

→
Eburst

(N)

(t) =
(M−1)/2

∑
m=−(M−1)/2

→
EUC

(N)

(t−mTN) (2)

where the unit cell (UC) train is defined as:

→
EUC

(N)

(t) =
N−1

∑
k=0

→
E lin

(
t− k

TN
N

; θ = k
2π

N

)
, (3)

and →
E lin(t; θ) = E0 A(t) sin(ω0t)[cos(θ)x̂ + sin(θ)ŷ] (4)

TN = N(Np + 1)T + Nτ (5)

where
→
E lin(t, θ) is the electric field of a single pulse, polarized at an angle θ above the x-axis, with

a duration of (Np + 1) optical cycles. E0 is the field amplitude,ω0 is the optical frequency, and A(t) is
a real envelope function. The burst in total contains M repetitions of TN long cycles, and each of the
individual linearly-polarized pulses is separated by a time τ from the next, such that the overall period
of the DS is given in Equation (5), where T is the cycle of the optical frequency T = 2π/ω0. Figure 1
shows examples of such a pulse-burst for M = 1, and N = 4 and 5.

Beyond circular harmonics, this approach can be used to manipulate the ellipticity of the harmonic
spectrum. Tweaking the relative angles between pulses varies the polarization of the harmonics across
the spectrum. This process breaks the circular DS in Equation (1), but in a controlled manner, because
the physical nature of the scattering events remains unchanged. In Reference [38] we showed this is
the case for N = 3, but generally a similar approach can be used for an arbitrary amount of pulses, N.
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a rise and drop of one optical cycle long. Front view (Lissajous curve) of the pulse-burst is shown in 

inset, each arrow represents a linearly-polarized pulse within the burst. The pulses are numbered in 

red according to their chronological order. 
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is the response to a single linearly-polarized pulse with (Np + 1) fundamental cycles, δ(t) is the Dirac 
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Figure 1. Example driving laser burst of linearly-polarized pulses according to Equation (2). (a) N = 4,
M = 1, Np = 2, τ = 0; (b) N = 5, M = 1, Np = 2, τ = 0. In (a) and (b), A(t) is taken as a trapezoidal envelope
with a rise and drop of one optical cycle long. Front view (Lissajous curve) of the pulse-burst is shown
in inset, each arrow represents a linearly-polarized pulse within the burst. The pulses are numbered in
red according to their chronological order.

3. Analytical Model

3.1. Circular Harmonics

We begin our analysis by formulating an analytical model for the harmonic dipole response
induced by a pulse-burst consisting of N linearly-polarized pulses of the form of Equation (2). Since the
pulses are temporally distinct, we model each recollision as a simple delta-function like response
occurring at the peak of every half-optical cycle of the driver. For simplicity, we assume the pulse-bursts
are temporally symmetric, such that Np is an even integer, and M is an odd integer. The vectorial
components of the harmonic emission then take the form:

ax
(N)(t) =

(M−1)/2

∑
m=−(M−1)/2

N−1

∑
k=0

cos
(

2π

N
k
)

f
(

t− TN
N

k−mTN

)
(6)

ay
(N)(t) =

(M−1)/2

∑
m=−(M−1)/2

N−1

∑
k=0

sin
(

2π

N
k
)

f
(

t− TN
N

k−mTN

)
, (7)

where

f (t) ≡
Np/2

∑
n=−Np/2

δ(t− nT)−
Np/2

∑
n=−Np/2

δ(t− nT − T/2) (8)

is the response to a single linearly-polarized pulse with (Np + 1) fundamental cycles, δ(t) is the Dirac

delta function,
→
a (t) = ax(t)x̂ + ay(t)ŷ is the vector polarization, and other parameters are as detailed

previously. The assumed delta function form can be relaxed to some other broadened function, like
a Gaussian, without quantitatively changing the analysis. In particular, broadening adds a spectral
envelope function, which does not change the polarization.
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Next, we calculate the harmonic spectrum defined by a Fourier transform of the dipole response,
where the spectrum is projected onto left and right circular components through:

ã+/−(Ω) = F
[
ax(t)± iay(t)

]
= ãx(Ω)± iãy(Ω) (9)

where F represents a Fourier transform. The spectral power of the left and right helical components is
retrieved as the absolute power of Equation (9):

Ĩ+/−(Ω) = |ã+/−(Ω)|2 (10)

Calculating the Fourier transforms of Equations (6)–(8) we find:

Ĩ(N)
+/−(Ω) =

2
π

sin2
(

ΩT
4

)(
1 + 2

Np/2

∑
n=1

cos(nΩT)

)2(
1 + 2

(M−1)/2

∑
m=1

cos(mΩTN)

)2 sin2
(

ΩTN
2

)
sin2

(
ΩTN
2N ±

π
N

) (11)

where the sum of a geometric series was used. The spectral power in Equation (11) can be seen in
Figure 2 for several values of parameters, and is comprised of four dominant terms. The two leftmost
terms provide an envelope function which intensifies near odd integers of the optical frequency, and
goes to zero at even integers. This is understood as a consequence of “standard” linearly-polarized
HHG selection rules, since each individual pulse complies to a 2-fold DS of period T. The third term
determines the spectral width of any allowed emission, which is inversely proportional to the square
root of the length of the pulse-burst, 1/

√
M, as seen in comparing Figure 2c to Figure 2d. The last

term dictates the new selection rules for an N’th order burst, which are found by straightforward
functional analysis:

Ω(N),q
−/+ =

2π

TN
(Nq± 1), q ∈ Z (12)

These are also the expected selection rules due to the rotational DS the pulse-burst upholds, as
has been previously derived [6,39]. The allowed harmonics are therefore found at the frequencies in
Equation (12), and are exactly circular at the peak, with alternating helicities. The only exceptions
are for the trivial N = 1 and N = 2 cases, which result in linearly-polarized light. This emission
forms an uneven and dense frequency comb, where for increasing TN the comb’s density is increased
(the limiting factor of spectral resolution is the free spectral range: 2π/TN). By changing the delay
between the linearly-polarized pulses, τ, one can shift the harmonic frequencies such that they are
not necessarily rational fractions of the original optical frequency (according to Equations (5) and (12)).
This gives exact continuous control of the emitted frequencies, and can be seen for example in Figure 2a
compared to Figure 2b.

Interestingly, HHG with this scheme is mathematically equivalent to a diffraction pattern in
the far field from N slits (as seen in the last term in Equation (11), which is identical to an N-slit
diffraction pattern). The amount of pulses in the burst (N) act as the number of slits (or point sources
for diffraction). The “order” of diffraction corresponds to the harmonic order of the emitted frequency,
where the repetition time, TN, acts the role of the distance between slits. The duration of each pulse
(Np) and the fundamental optical period (T) together give rise to a spectral envelope function (as the
first two terms in Equation (11) suggest), and thus correspond to the width of each slit.
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Figure 2. Analytically calculated spectral power and relative intensity of left and right circular spectral
components according to Equation (11) for several values of parameters. (a) N = 4, M = 3, Np = 2,
τ = 0; (b) N = 4, M = 3, Np = 2, τ = 5.25; (c) N = 5, M = 1, Np = 2, τ = 0; (d) N = 5, M = 3, Np = 2, τ = 0.
The spectra are shown for representative harmonic orders 20–22 since within the analytical model the
spectrum is repetitive due to the delta function responses.

3.2. Polarization Control

The above scheme can be altered in order to produce harmonics with a desired degree of ellipticity.
This is achieved by changing the relative orientations of the pulses within the burst. In previous
work [38] we directly showed this is the case for N = 3, where it was shown that a single free parameter
could be used as a knob for collectively controlling the ellipticity of harmonics in the spectrum, with
minimal energy loss. We now show that this is also the case for any order N.

The ellipticity of the emitted harmonics is determined by the relative amplitude and phase of
the x and y components of the polarization. Therefore, rotating the orientations of the pulses allows
controlling the projections of the harmonics on the polarization ellipse. For each order N, many
possible schemes to manipulate the emitted harmonics’ ellipticity in this manner exist. In all these
schemes, the degree of symmetry breaking can be described by a single “progression parameter”, “e”,
which is continuously varied from 1 to 0. We set that for e = 1, all schemes degenerate to the symmetric
configuration described above, yielding circular harmonics. For e = 0, all pulses are oriented along
the x-axis, and thus all harmonics are linearly-polarized. In between we get the full range of elliptical
polarization control.

For the sake of simplicity, we focus on ellipticity control schemes that are symmetric with respect
to the x-axis. For instance, one such choice is to slowly orient all pulses towards the positive or negative
directions along the x-axis according to their initial orientation, such that they follow the shortest path.
This is seen for example in the insets of Figure 3 for N = 3–5. Mathematically, this is described by
rotating the dipole response of the k’th pulse in the burst from Equations (6)–(8) by an angle shift θk(e),
such that the angle of each pulse is θ = 2π

N k + θk(e) above the x-axis:
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ax
(N)(t) =

(M−1)/2
∑

m=−(M−1)/2

N−1
∑

k=0
cos
( 2π

N k + θk(e)
)

f
(

t− TN
N k−mTN

)
ay

(N)(t) =
(M−1)/2

∑
m=−(M−1)/2

N−1
∑

k=0
sin
( 2π

N k + θk(e)
)

f
(

t− TN
N k−mTN

)
,

(13)

where

θk(e) ≡



−(1− e)× 2π
(

k
N

)
; 0 ≤ 2k

N < 1
2

(1− e)× 2π
(

1
2 −

(
k
N

) )
; 1

2 ≤
2k
N < 1

−(1− e)× 2π
(

k
N −

1
2

)
; 1 ≤ 2k

N < 3
2

(1− e)× 2π
(

1− k
N

)
; 3

2 ≤
2k
N < 2

0 ; otherwise


(14)

With this approach, the ellipticity of the harmonics from Equation (12) can be
calculated analytically:

ε(N)
(

Ω(N),q
±
)
=

∣∣∣∣∣∣∣∣∣
N−1
∑

k=0
sin
( 2π

N k + θk(e)
)

exp
(

i2π k
N

)
N−1
∑

k=0
cos
( 2π

N k + θk(e)
)

exp
(

i2π k
N

)
∣∣∣∣∣∣∣∣∣ (15)

where the calculation applies for the allowed frequencies given in Equation (12). Equation (15) shows
that the ellipticity does not depend on the harmonic order (the index q or ± sign do not appear in
Equation (15)), and is thus identical for all harmonics in the spectrum of the form of Equation (12).
For the choice θk(e) according to Equation (14), the ellipticity is almost linear in “e”, and becomes
closer to linear for higher orders of N. For example, for N = 4 Equation (15) reduces to:

ε(4)(Ωq
±) = tan

(π

4
e
)

(16)

Figure 3 shows the deviation between the ellipticity as a function of “e” and the linear line ε(N) = e
for the cases N = 3–9. All cases closely follow the linear line (up to variations of 0.1 in ellipticity),
while higher values of N approach the linear limit as N → ∞ (even and odd values of N separately).
The approximately linear control over an extremely nonlinear process such as HHG, is due to the linear
nature of interference which determines the ellipticity in our scheme, even though the generation
process is highly nonlinear. Moreover, the intensities of the high harmonics in this interference-based
approach are largely insensitive to the ellipticity tuning. Any small variation in the intensities of
the harmonics is due to the appearance and growth of harmonics that become allowed when the
rotational DS is broken. Thus, minimizing the number of these new harmonics increases the intensity
robustness to ellipticity tuning. For example, for even values of N, there is always a θk(e) scheme which
maintains a 2-fold rotational DS, allowing only odd-only harmonics in the spectrum [5]. A particularly
special case is N = 4, where all odd harmonics are allowed. During ellipticity tuning no new peaks
appear in the spectrum, resulting in maximal conversion efficiency, and a “clean” spectrum of elliptical
harmonics for any desired ellipticity.
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Figure 3. Analytical model for N’th order ellipticity control schemes for N = 3–9. The plot shows the
deviation of the scheme progression parameter, e, from the ellipticity ε(N) (calculated according to
Equations (14) and (15)), where the respective N value is given above each curve. For large values
of N the ellipticity closely follows a linear dependence on the scheme progression parameter, e, with
continuous control over the polarization of the emitted spectrum, from linear, through elliptic, to fully
circular. The inset above the plot shows schematically how the pulses in the burst are rotated upon the
variation of e in a manner that is symmetric about the x-axis. Arrows represent the original polarization
axis of the pulses in the symmetric case yielding circular harmonics, and black arrows the direction in
which these are rotated.

3.3. Photonic Conservation Laws

The selection rules in the above time-domain analysis are derived from the DS of the driver.
Additionally, we wish to accompany the above formulation with a photonic derivation of energy
and spin-angular momentum (SAM) conservation laws, which result in the same selection rules, but
different intuition. Especially, one might be concerned that nonlinear mixing of linearly polarized
photons yields circularly polarized high harmonic photons, since this seems to defy conservation
of SAM.

To begin this analysis, we first calculate the spectral intensity of our driver pulse-burst, where for
simplicity we assume that the individual pulses are square and not trapezoid. The spectral power is
calculated as the absolute value of the Fourier transform of the driver (Equation (2)), projected onto
left and right helical components:

P̃(N)
± (Ω) =

∣∣F [Ex(t)± iEy(t)
]∣∣2 =

= |E0|2
sin2

(
(Ω−ω0)

2

(
TN
N −τ

))
(Ω−ω0)

2

(
1 + 2

(M−1)/2
∑

m=1
cos(m ΩTN)

)2
sin2

(
ΩTN

2

)
sin2

(
ΩTN
2N ±

π
N

) (17)

where P̃(N)
± is the left/right circularly projected spectral power of the driver field with N pulses, and

other parameters are as previously defined. The leftmost term in Equation (17) is a sinc envelope
around the fundamental frequency due to the finite duration of each linear pulse within the burst.
The next terms are familiar from Equation (11) for the HHG spectrum, and play a similar role. This is
not surprising, since the driver itself complies to the N-fold DS, thus the selection rules for the emitted
light should also apply to the driver. Therefore, the spectrum of the driver field is comprised of left
and right circularly polarized photons at identical energies to those in Equation (12). This can be seen
in Figure 4 for exemplary cases. It should be noted that the driver primarily contains two types of
circular photons appearing near the fundamental frequency ω0. Other types of photons in the driver
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are a result of multiple pulses within the burst, but are scarce due to the sinc envelope. We will return
to this point later.

Next, due to conservation of SAM:

σ(p) = ±1 = N1 − N2 (18)

where σ(p) is the spin of the p’th emitted harmonic, N1 and N2 are the number of right and left circularly
polarized photons annihilated in the process, respectively, and the index “N” was omitted since the
following analysis is performed for the general case of bursts consisting of N pulses. This is under
the assumption that the orbital-angular momentum of the driven atom/molecule is unchanged in the
process, otherwise it should be added to the analysis as well [39]. Equation (18) means there must
be one more, or one less, right polarized photon than left polarized photons annihilated. Also, this
means N1 + N2 is an odd integer, which conserves parity (thus in this case SAM conservation is a much
stronger constraint compared to parity conservation).

To explicitly write out the energy conservation law, in annihilating N1 + N2 driver photons into a
single high-harmonic photon, we must know the energies of each of the annihilated photons. However,
since the driver is only quasi-monochromatic, it has an infinite amount of photons with different
energies, making this analysis complicated. To overcome this complexity, we first assume N1 > N2,
meaning σ(p) = 1. Furthermore, due to the driver’s spectrum and its comprising photons, each
annihilated photon can be characterized by a single integer number, q. Then the energy of the p’th
emitted harmonic is:

Ω(p)
+ =

2π

TN

[
N1

∑
k=1

(
Nq(+)

k − 1
)]

+
2π

TN

[
N2

∑
k=1

(
Nq(−)k + 1

)]
(19)

where q(+/−)
k are integers determining the energy of the kth annihilated photon with +/− helicity,

using Equation (12). Plugging in the SAM conservation constraint, we get N1 = N2 + 1, which reads:

Ω(p)
+ =

2π

TN

[
N2+1

∑
k=1

(
Nq(+)

k − 1
)]

+
2π

TN

[
N2

∑
k=1

(
Nq(−)k + 1

)]
(20)

Now we single-out the last (+) polarized annihilated photon (last term in the left sum), which
allows combining the two sums:

Ω(p)
+ =

2π

TN

[
N

{
q(+)

N2+1 +
N2

∑
k=1

(
q(+)

k + q(−)k

)}
− 1

]
(21)

Finally, we note that the term in the curly brackets in Equation (21) is a sum of integers, therefore
it is an integer number itself, which we denote by p ∈ Z:

Ω(p)
+ =

2π

TN
(Np− 1) (22)

Without any other assumption, we directly obtain the selection rules as derived in the previous
section: a right circularly polarized photon can only be emitted at energies of 2π

TN
(Np− 1), where p

is any integer. Repeating this derivation for N2 > N1 results in a similar conclusion: a left circularly
polarized photon can only be emitted at energies of 2π

TN
(Np + 1).

Overall, the selection rules resulting from conservation laws are identical to those derived
analytically in the previous section. Harmonics are circularly polarized at the frequencies given
by Equation (12), with the exception of N = 1 and N = 2, which result in linearly-polarized harmonics
since then the pulse-burst is polarized along a single dimension.
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The envelope function that prefers odd integer harmonics of the fundamental (the first two terms
in Equation (11)) can also be explained intuitively in the photonic picture: due to the sinc envelope
around the fundamental frequency in the driver’s spectrum (first term in Equation (17)), processes
involving photons with energies close to ω0 are greatly preferred, seeing as there are simply many
more of these types of photons. Additionally, since only an odd number of photons is annihilated
due to Equation (18), multiple annihilation of these photons leads to odd integer multiples of ω0

at a high probability. In contrast, in order to get emission near even integer multiples of ω0, two
photons with energies close toω0, plus an additional low energy photon need to be annihilated, which
has a low probability to occur. Gaining intuition through the conservation-law arguments presented
above is somewhat limited, since the number of possible channels contributing to the emission of a
given harmonic grows combinatorically with the harmonic order, and as such is large. For instance,
combinatorial arithmetics shows that there are a total of 21 different channels through which a photon
of energy 2π

TN
(Np− 1) with an index p = 15 can be created. Nevertheless, since the abundance of driver

photons is limited to only few type of photons, not all harmonic channels contribute, and the general
qualitative behavior of the HHG emission can still be grasped using the conservation-law picture.

Lastly, we note that this approach is not very effective for the general elliptical case. In this case
the requirement for conservation of parity and SAM is not strong enough to derive information on
the possible harmonic channels. The driver now has both (+) and (−) spin photons in every allowed
energy with a known ratio determined by the relative angle between pulses. However, this ratio is not
kept in the individual channels of emitted photons due to the extreme non-linear nature of the HHG
process. This is somewhat analogous to the loss of rotational symmetry in the time-domain.
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4. Quantum Simulations

4.1. Numerical Model

Our analytical considerations are supported by numerical simulations. We numerically solved the
2D time dependent Schrödinger equation (TDSE) in the length gauge, within the single active electron
(SAE), and the dipole approximations. The TDSE in atomic units is:

i
∂

∂t
|ψ(t)〉 =

(
−1

2

→
∇

2
+ Vatom

(→
r
)
+
→
r ·
→
Eburst(t)

)
|ψ(t)〉 (23)

where |ψ(t) is the time-dependent wave function of the single electron, and Vatom
(→

r
)

is the atomic
potential well. We used a spherical atomic potential model, where the electron is initially in the 1s
ground state orbital, found by complex time propagation. We used a softened Coulomb interaction,
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set for the first ionization potential of Ne atom (Ip = 0.793 a.u.). The atomic potential is taken according
to Reference [40]:

Vatom

(→
r
)
= − 1√

r2 + a
(24)

where a = 0.1195 a.u. Absorbing boundaries were used with the absorber set to:

Vab

(→
r
)
= −iη

∣∣∣→r −→r 0

∣∣∣α (25)

where η = 5 × 10−4, α = 3, and r0 = 36 a.u. The laser intensity (I0) was set in the range of 1014 W/cm2

in all calculations, such that the overall ionization does not exceed 4%. Equation (23) was solved with
a 3rd order split operator method [41,42]. The time and spatial grids were discretized on an L × L
Cartesian grid for L = 120 a.u., with spacing dx = dy =0.2348 a.u., and dt = 0.02 a.u. Convergence was
tested with respect to the grid densities and sizes. The dipole acceleration was calculated using
Ehrenfest theorem [43]:

→
a (t) = −〈ψ(t)|

→
∇Vatom +

→
Eburst(t)|ψ(t)〉 (26)

The harmonic spectra were calculated as the Fourier transform of Equation (26).

4.2. Numerical Results

We solved the TDSE for the case of a driver field with circular DS (e = 1) as given by Equation (2),
and also for the non-circular case (e 6= 1) for the scheme described by Equation (14). For all various
degrees of freedom in the driver (parameters N, M, Np, and τ) the numerical spectra match the
analytical model derived in Section 3. Simulations show harmonic emission at identical frequencies to
those derived analytically in Equation (12). In terms of the ellipticity of the emitted harmonics, for the
case of e = 1 all harmonics are fully circular (as seen in Figure 5a). For the non-circular case (e 6= 1),
the ellipticity closely follows the results of the analytical derivation of Section 3.2, and varies from
1 to 0 continuously (as seen in Figure 5a–e). The simplicity of our analytical model is a consequence
of the temporal separation of the groups of “linear” HHG events from each pulse within the burst.
Hence, the major features in the scheme allowing efficient harmonic polarization control result from
simple interference phenomena. Significantly, the case of N = 4 presented in Figure 5, exhibits a
“clean” spectrum that contains only the desired elliptical peaks, as expected from the analytical
derivation. For other values of N, breaking the circular symmetry is accompanied by the appearance
of new (previously forbidden) harmonic peaks, which radiate weakly. However, for N = 4 a 2-fold
rotational symmetry prevents this, meaning that no energy is wasted through new harmonic channels.
The numerical variation in peak intensities can be seen in Figure 5f for a sample spectral region, and
clearly show a minimal coupling between the intensity and the target ellipticity, all the way from fully
circular to fully linear (up to ~10%).

Finally, we note that we tested our approach for initial states with nonzero orbital angular
momentum (in such cases, theω-2ω bi-circular scheme results with asymmetric spectra that prefer
one circular polarization over the other [21,34,39,44]). We found that our approach does not depend on
the initial state’s angular momentum, as long as the total valence electronic states angular momentum
is zero, which makes sense because within each ionization-recollision-emission process the driving
laser is linearly polarized.
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Figure 5. Numerical time dependent Schrödinger equation (TDSE) simulations for: N = 4, M = 3,
Np = 2, τ = 0, I0 = 3 × 1014 W/cm2, and λ = 800 nm, where the relative angle is changed according to
Equation (14) to give a target ellipticity of: (a) ε(4) = 1; (b) ε(4) = 0.75; (c) ε(4) = 0.5; (d) ε(4) = 0.25. In each
case the target ellipticity should be identical in all peaks in the spectrum. A Lissajous curve describing
the shape of the pulse-burst is shown in inset, where blue arrows represent the linearly-polarized
pulses in the burst. The numerically calculated ellipticity is indicated in black on top of each spectral
peak. The spectra are presented for a selected region in the plateau 33–35ω0. (e) Ellipticity calculated
numerically for each peak in the same spectral region compared to the analytically predicted ellipticity
from Equation (16), linear line indicated in dashed black. (f) The intensity variation for all the peaks
in the same spectral region as a function of target ellipticity, showing minimal coupling of ellipticity
and yield.

5. Conclusions

We extended our recently proposed scheme for generation of bright helically polarized high
harmonics [38]. We showed that a quasi-monochromatic linearly polarized pulse-burst drives circular
HHG if the pulses polarization axes uphold an N-fold rotational DS (for N > 2). The harmonics are
born in integer multiples of the frequency of the DS itself, which can be tuned by controlling the
duration of the pulses in the burst, and their temporal separation. By rotating the polarization axes
of the comprising pulses, the ellipticity of the harmonic spectrum can be finely-tuned (collectively)
from fully circular, through elliptical, to linear. We investigated the method from a time-domain
perspective, as well as a photonic perspective, and showed the energy and spin-angular momentum
conservation laws are upheld. We showed that HHG with this method is mathematically equivalent
to N-slit diffraction, where the allowed harmonics and their respectful polarization is determined by
the interference of N successive linearly-polarized harmonic spectra. Importantly, we found that the
case of N = 4 yields an optimal elliptical harmonic spectrum for any target ellipticity, with a maximal
conversion efficiency. Our method could open up a wide range of applications in coherent control and
ultrafast chiral spectroscopy for processes with narrow resonances and above 10 fs durations (e.g.,
X-ray magnetic circular dichroism measurements [27], and spin-flipping in magnetic materials [45]).
Furthermore, it may find use in HHG-based ellipsometry [37].
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