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Abstract: A method is described to solve the nonlinear Langevin equations arising from quadratic
interactions in quantum mechanics. While the zeroth order linearization approximation to the
operators is normally used, here, first and second order truncation perturbation schemes are proposed.
These schemes employ higher-order system operators, and then approximate number operators with
their corresponding mean boson numbers only where needed. Spectral densities of higher-order
operators are derived, and an expression for the second-order correlation function at zero time-delay
has been found, which reveals that the cavity photon occupation of an ideal laser at threshold
reaches

√
6− 2, in good agreement with extensive numerical calculations. As further applications,

analysis of the quantum anharmonic oscillator, calculation of Q-functions, analysis of quantum
limited amplifiers, and nondemoliton measurements are provided.
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1. Introduction

In quantum optomechanics, the standard interaction Hamiltonian is simply the product of
photon number n̂ = â† â and the position xzp(b̂ + b̂†) operators [1–6], where xzp is the zero-point
motion, and â and b̂ are, respectively, the photon and phonon annihilators. This type of interaction
can successfully describe a vast range of phenomena, including optomechanical arrays [7–13],
squeezing of phonon states [14–16], non-reciprocal optomechanics [17–20], Heisenberg’s limited
measurements [21], sensing [22–24], engineered dissipation and states [25,26], non-reciprocal
acousto-optics [27], and higher-order exceptional points [28]. In all these applications, the mathematical
toolbox to estimate the measured spectrum is Langevin equations [29–32].

Usually, the analysis of quantum optomechanics is done within the linearized approximation
of photon ladder operators, normally done as â → ā + δâ with |ā|2 = n̄ being the mean cavity
photon number, while nonlinear terms in δâ are ignored. However, this suffers from limited accuracy
wherever the basic optomechanical interaction HOM = h̄g0n̂(b̂ + b̂†) is either vanishingly small or
non-existent. In fact, the single-photon interaction rate g0 can be identically made zero by appropriate
design [33–36], when quadratic or even quartic effects are primarily pursued. This urges the need for
accurate knowledge of higher-order interaction terms.

Some other optomechanical phenomena, such as four-wave mixing, can also be suitably
understood by incorporation of higher-order interaction terms [37]. Recent experiments [38,39]
have already established the significance and prominent role of such type of nonlinear interactions.
In fact, quadratic nonlinear optomechanics [40–55] are now a well-recognized subject of study even
down to the single-photon level [56], for which circuit analogues have been constructed [57,58] and
may be regarded as fairly convenient simulators [59–61] of much more complicated experimental
optomechanical analogues. Dual formalisms of quadratic optomechanics are also found in ultracold
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atom traps [62,63] as well as optical levitation [64]. Such types of nonlinear interactions also appear
elsewhere in anharmonic quantum circuits [65]. Quadratic interactions are in particular important
for energy and non-demolition measurements of mechanical states [1,2,4,66–68]. While the simple
linearization of operators could be still good enough to explain some of the observations, there remains
a need for an exact and relatively simple mathematical treatment. Method of Langevin equations also
normally fails, and other known methods such as expansion into number states and master equation
require lots of computation while giving little insight into the problem.

Perturbative expansions and higher-order operators have been used by other researchers to
study noise spectra of lasers [69–72]. In addition, the master equation approach [73,74] can be
used in combination with the quasi-probablity Wigner functions [75,76] to yield integrable classical
Langevin equations. Nevertheless, a method recently has been proposed [77], which offers a truncation
correlation scheme for solution of driven-dissipative multi-mode systems. While being general, it deals
with the time evolution of expectation values instead of operators within the truncation accuracy,
so the corresponding Langevin equations cannot be analytically integrated.

Alternatively, a first-order perturbation has been proposed to tackle the nonlinear quadratic
optomechanics [78]. This method perturbatively expands the unknown parameters of classical
Langevin equations for the nonlinear system, and proceeds to the truncation at first order. However,
the expansion is accurate only where the ratio of photon loss rate to mechanical frequency κ/Ω is large.
This condition is strongly violated for instance in superconductive electromechanical systems.

So far and to the best knowledge of the author, no treatment of quadratic interactions using
Langevin equations for operators has been reported. This paper presents a perturbative mathematical
treatment within the first and second order approximations to the nonlinear system of Langevin
equations, which ultimately result in an integrable system of quantum mechanical operators. The trick
here is to introduce operators of higher dimensionality into the solution space of the problem. Having
their commutators calculated, it would be possible to set up an extended system of Langevin equations
that could be conveniently solved by truncation at the desirable order. To understand how it works,
one may consider the infamous first order quadratic nonlinear Riccati differential equation [79,80],
which is exactly integrable if appropriately transformed as a system of two coupled linear first order
differential equations. Alternatively, the Riccati equation could also be exactly transformed into a
linear second order differential equation. However, this is not what we consider here, since it will
result in a much more complicated second-order system of Langevin equations involving derivatives
of noise terms.

The method introduced here is useful in other areas of quantum physics [62,64] than optomechanics,
where nonlinearities such as anharmonic or Kerr interactions are involved. We also describe how
the Q-functions could be obtained for the anharmonic oscillator. Further applications of nonlinear
stochastic differential equations [81–83] beyond stochastic optomechanics [52,53] include finance and
stock-market analysis [84], turbulence [85,86], hydrology and flood prediction [87], and solar energy [88].
In addition, the Fokker–Planck equation [72,89–92] is actually equivalent to the nonlinear Schrödinger
equation with bosonic operator algebra, and its moments [93] translate into nonlinear Langevin equations.
Similarly, this method can deal with side-band generation in optomechanics [94], superconducting
circuits [95], as well as spontaneous emission in open systems [96,97]. Applications in estimation of
other parameters such as the second order correlation g(2)(0) [98–101], quantum limited amplifiers [102–104]
and quantum nondemolition measurements [104–107] are demonstrated, and, furthermore, it is found
that an unsqueezed ideal laser reaches

√
6− 2 cavity photons at threshold.

2. Theory

2.1. Hamiltonian

A nonlinear quadratic optomechanical interaction in the most general form [108] is here defined as

H = h̄γ(b̂± b̂†)2(â± â†)2, (1)
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where γ is the interaction rate. Furthermore, bosonic photon â and phonon b̂ ladder operators satisfy
[b̂, b̂†] = [â, â†] = 1 as well as [b̂, â] = [b̂, â†] = 0. Meanwhile, quadratic interactions normally are [1,2,4]

H = h̄γâ† â(b̂± b̂†)2, (2)

which, by defining the photon number operator n̂ = â† â, takes essentially the same algebraic form.
Direct expansion of Hamiltonian (1) shows that it essentially brings in a different interaction type

compared to Hamiltonian (2). Doing so, we obtain H = h̄γ(b̂2 + b̂†2 ± 2m̂± 1)2(â2 + â†2 ± 2n̂± 1),
where m̂ = b̂† b̂. Hence, Equation (1) includes interactions of type â2b̂2, â2b̂†2, and so on, which
are absent in (2). It should be noticed that the widely used standard optomechanical interaction
HOM results in nonlinear and linear Langevin equations when expressed respectively in terms of
{â, b̂} and {n̂, x̂}. Hence, this type of interaction is not addressed here. In addition to the above
Hamiltonians (1) and (2), there exist still other types of nonlinear optomechanical interactions [16,109]
such as H = h̄g(b̂± b̂†)(â2 ± â†2), which is also not considered explicitly here, but can be well treated
using the scheme presented in this article.

2.2. Linear Perturbation

This approach is being mostly used by authors to solve the systems based on either (1) or (2).
To this end, ladder field operators are replaced with their perturbations, while product terms
beyond are neglected and truncated. Obviously, this will give rise to interactions of the type
h̄(b̂± b̂†)2(qδâ + q∗δâ†), where q = 2γ(ā± ā∗) for (1) and q = γā for (2) are some complex constants
in general, and δâ now represents the perturbation term around the steady state average |ā| =

√
n̄.

This technique is mostly being referred to as the linearization of operators, and directly leads to an
integrable set of Langevin equations if also applied to the mechanical displacement as well.

2.3. Square Field Operators

Here, we define the square field operators [108]

ĉ =
1
2

â2, (3)

d̂ =
1
2

b̂2,

for photons, which obviously satisfy [ĉ, â] = [ĉ, b̂] = [d̂, â] = [d̂, b̂] = [ĉ, d̂] = 0. Now, it is not difficult
to verify that these operators furthermore satisfy the commutation relationships:

[ĉ, ĉ†] = n̂ +
1
2

, (4)

[ĉ, n̂] = 2ĉ,

[ĉ†, n̂] = −2ĉ†,

[ĉ, â†] = â.

Defining the phonon number operator as m̂ = b̂† b̂, in a similar manner, we could write

[d̂, d̂†] = m̂ +
1
2

, (5)

[d̂, m̂] = 2d̂,

[d̂†, m̂] = −2d̂†,

[d̂, b̂†] = b̂.
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The set of commutator Equations (4) and (5) enables us to treat the quadratic nonlinear interaction
perturbatively to the desirable accuracy, as is described in the following.

2.4. Langevin Equations

The input/output formalism [29–32] can be used to assign decay channels to each of the quantum
variables of the system. This will result in the set of Langevin equations

d
dt
{A} = [M]{A} −

√
[Γ]{Ain}, (6)

where {A} is the system vector, [M] is the coefficients matrix whose eigenvalues need to have negative
or vanishing real parts to guarantee stability, and [Γ] is a real-valued matrix that is diagonal if all noise
terms corresponding to the members of {A} are mutually independent. When [M] is independent
of {A}, Equation (6) is linear and integrable and otherwise nonlinear and non-integrable. If [M(t)]
is a function of time, then (6) is said to be time-dependent. Furthermore, {Ain} represents the input
fields to the system at the respective ports, and {Aout} is the output fields, which are related together
as [5–7]

{Aout} = {Ain}+
√
[Γ]{A}. (7)

Here, [Γ] is supposed to be diagonal for simplicity. From the scattering matrix formalism,
we also have

{Aout} = [S]{Ain}. (8)

Hence, taking w as the angular frequency and performing a Fourier transform on (6), the scattering
matrix is found by using (7) and (8) as

[S(w)] = [I]−
√
[Γ] (iw[I] + [M])−1

√
[Γ]. (9)

Hence, [S] is well-defined if [M] is known. This can be obtained by using the Langevin equations

˙̂z =
d
dt

ẑ = − i
h̄
[ẑ,H]− [ẑ, x̂†](

1
2

Γx̂ +
√

Γẑin) + (
1
2

Γx̂† +
√

Γẑ†
in)[ẑ, x̂], (10)

where x̂ is any system operator, which is here taken to be the same as ẑ to comply with (8).
By setting either ẑ = ĉ or ẑ = d̂, the commutators in (10) by (4) or (5) always lead back to

the same linear combination of these forms. Thus, the new set of Langevin equations is actually
linear in terms of the square or higher-order operators, if perturbatively truncated at a finite order.
Thus, instead of solving the nonlinear system in linearized 2× 2 space {A}T = {â, b̂}, one may employ
an expanded dimensional space with increased accuracy. There, truncation and sometimes mean field
approximations are necessary to restrict the dimension, since commutators of new operators mostly
lead to even higher-orders and are thus not closed under commutation. As examples, a 4× 4 space
{A}T = {â, d̂, d̂†, m̂} truncated at the first-order, or a 6× 6 space {A}T = {ĉ, ĉ†, n̂, d̂, d̂†, m̂} truncated
at the second-order could be used for (1) and (2). To illustrate the application of this method,
we describe two examples in the next section. It could also be extended to the accuracy of the
second-order perturbation, by defining appropriate cross product operator terms between photonic
and phononic partitions.

3. Examples

Here, we describe two examples from the nonlinear interactions of having type (1) or (2).
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3.1. Standard Quadratic Interaction (2)

Analysis of such systems requires analysis in a 4-dimensional space, spanned by {A}T =

{â, d̂, d̂†, m̂}. Taking the plus sign here without loss of generality and after dropping a trivial
non-interacting term H0 = h̄γn̂, the nonlinear interaction is

H = 2h̄γn̂(d̂ + d̂† + m̂). (11)

This can be found by expansion of (2), plugging in (3) and [b̂, b̂†] = 1, and dropping a trivial term
h̄γn̂. Using (5), [â, n̂] = â and [â†, n̂] = −â† in the non-rotating frame of operators, and ignoring the
self-energy Hamiltonian Hself = h̄(ω + γ)n̂ + h̄Ωm̂ for the moment, Langevin equations become

˙̂a = −2iγâ(d̂ + d̂† + m̂)− 1
2

Γ1 â−
√

Γ1 âin,

˙̂d = −2iγn̂(2d̂ + m̂ +
1
2
)− (m̂ +

1
2
)(

1
2

Γ2d̂ +
√

Γ2d̂in), (12)

˙̂d† = 2iγn̂(2d̂† + m̂ +
1
2
)− (m̂ +

1
2
)(

1
2

Γ2d̂† +
√

Γ2d̂†
in),

˙̂m = 4iγn̂(d̂− d̂†).

So far, the set of Equation (13) is exact. However, integration of (13) is still not possible at this
stage, and taking Fourier transformation must be done later when arriving at a linear operator system.
We present a first-order and second-order perturbative method to deal with this difficulty.

It should be furthermore noticed that using a non-rotating frame with the self-energy Hamiltonian
Hself not ignored would have resulted in identical equations, except with the addition of the trivial
terms −i∆â, −i2Ωd̂, and +i2Ωd̂†, respectively, to the first three equations, where ∆ = ω + γ− ν is the
optical detuning with ν being the cavity optical resonance frequency, and ω and Ω are, respectively,
the optical and mechanical frequencies. In addition, the damping coefficient in high mechanical quality
factor Qm limit could be estimated as Γ2 = 2Γm, where Γm is the damping rate of the b̂ phononic
field. Here, it is preferable not to use the rotating frames since the coefficients matrix [M] becomes
time-dependent.

First-Order Perturbation to (13)

Now, if the photon and phonon baths each have a mean boson number, respectively, as 〈n̂〉 = n̄
and 〈m̂〉 = m̄, we could immediately write down the linear system of equations in the non-rotating
frame of operators and neglection of self-energies Hself as

˙̂a = −3iγm̄â− iγād̂− iγād̂† − 1
2

Γ1 â−
√

Γ1 âin,

˙̂d = −2iγn̄
(

2d̂ + m̂ +
1
2

)
−
(

m̄ +
1
2

)(
1
2

Γ2d̂ +
√

Γ2d̂in

)
, (13)

˙̂d† = 2iγn̄
(

2d̂† + m̂ +
1
2

)
−
(

m̄ +
1
2

)(
1
2

Γ2d̂† +
√

Γ2d̂†
in

)
,

˙̂m = 4iγn̄
(

d̂− d̂†
)

,

which is now exactly integrable. Here, we use the linearization 2âd̂ = (ā + δâ)d̂ + â(d̄ + δd̂)→ ād̂ + d̄â,
where d̄ = 1

2 ā2 and higher-order terms of the form δâδd̂ are dropped, and so on. However, this cannot
be applied to n̂m̂ = â† âm̂ since n̂ and â† are absent from the basis. Furthermore, any linearization of
this expansion would generate terms âm̂ and â†m̂ that are still nonlinear. Both of these issues can be
resolved by a second-order perturbation as follows next. This results in the operator equations
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d
dt


â
d̂
d̂†

m̂

 =


−i3γm̄− 1

2 Γ1 −iγā −iγā 0

0 −i4γn̄− 1
2

(
m̄ + 1

2

)
Γ2 0 −i2γn̄

0 0 +i4γn̄− 1
2

(
m̄ + 1

2

)
Γ2 i2γn̄

0 i4γn̄ −i4γn̄ 0




â
d̂
d̂†

m̂



−


√

∆1 âin√
∆2d̂in√
∆2d̂†

in
0

 , (14)

where
√

∆1 =
√

Γ1 and
√

∆2 =
(

m̄ + 1
2

)√
Γ2. The set of Equation (14) is linear and can be

easily addressed by standard methods of stochastic Langevin equations used in optomechanics
[1,2,4,29,30] and elsewhere. More specifically, one may employ analytical Fourier methods in
frequency domain as a matrix algebraic problem to obtain spectra of variables, or integrate the
system numerically by stochastic numerical methods in a time domain to obtain time dependent
behavior of expectation values.

All that remains is to find the average cavity boson numbers for photons n̄ and phonons m̄.
In order to do this, one may first arbitrate d/dt = 0 in the system (14) at steady state, and then use
the equality of real parts in the first equation to find the expression for n̄. Doing this results in n̄ =

4|āin|2/Γ1, where |āin| represents the amplitude of coherent laser input. In addition, the initial cavity
phonon occupation number at t = 0 could be estimated simply as m̄ = 1/ [exp(h̄Ω/kBT)− 1] [29,30],
where kBT is the thermal energy with kB and T being, respectively, the Boltzmann’s constant and
absolute temperature. Detailed numerical examinations reveal that the system of Equation (14) is
generally very well stable with <{eig[M]} < 0 at sufficiently low optical intensities.

3.2. Full Quadratic Interaction (1)

Analysis of a fully quadratic system requires analysis in a 6× 6 dimensional space, spanned by
{A}T = {ĉ, ĉ†, n̂, d̂, d̂†, m̂}. Taking both of the plus signs here, the Hamiltonian could be written as

H = 4h̄γ(d̂ + d̂† + m̂)(ĉ + ĉ† + n̂), (15)

where a trivial non-interacting term H0 = 2h̄γ(1 + n̂ + m̂ + d̂ + ĉ + d̂† + ĉ†) is dropped. The set of
Langevin equations can be obtained in a similar manner, and in a non-rotating frame of operators with
neglect of self-energies Hself = h̄(ω + 2γ)n̂ + h̄(Ω + 2γ)m̂ for the moment, results in

˙̂c = −i4γ(d̂ + d̂† + m̂)

(
2ĉ + n̂ +

1
2

)
−
(

n̂ +
1
2

)(
1
2

Γ1 ĉ +
√

Γ1 ĉin

)
,

˙̂c† = i4γ(d̂ + d̂† + m̂)

(
2ĉ† + n̂ +

1
2

)
−
(

n̂ +
1
2

)(
1
2

Γ1 ĉ† +
√

Γ1 ĉ†
in

)
,

˙̂n = i8h̄γ(d̂ + d̂† + m̂)(ĉ− ĉ†), (16)

˙̂d = −i4γ(ĉ + ĉ† + n̂)
(

2d̂ + m̂ +
1
2

)
−
(

m̂ +
1
2

)(
1
2

Γ2d̂ +
√

Γ2d̂in

)
,

˙̂d† = i4γ(ĉ + ĉ† + n̂)
(

2d̂† + m̂ +
1
2

)
−
(

m̂ +
1
2

)(
1
2

Γ2d̂† +
√

Γ2d̂†
in

)
,

˙̂m = i8h̄γ(ĉ + ĉ† + n̂)(d̂− d̂†).

Similar to the system (13), the damping rate for sufficiently high optical quality factors Q could
be estimated as Γ1 = 2κ, where κ is the damping rate of the â photonic field.

Quite clearly, we should not have ignored the self-energy Hamiltonian Hself, then addition of the
diagonal terms −i2∆ĉ, +i2∆ĉ† to the first two where ∆ = ω + 2γ− ν with ν being the optical cavity
resonance frequency, and, similarly, −i2Ωd̂ and +i2Ωd̂† to the fourth and fifth equations would have
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been necessary. These are not shown here only for the sake of convenience. Again, it is emphasized
that transformation to the rotating frame of operators here would make the coefficients time-dependent
in an oscillating manner, and it is far better to be avoided for these classes of nonlinear problems.

First-Order Perturbation to (16)

In a similar manner to the system (14), we may assume photon and phonon baths each have a
mean boson number, respectively, as 〈n̂〉 = n̄ and 〈m̂〉 = m̄, which gives

˙̂c = −i4γm̄(2ĉ + n̂)− i4γ(n̄ +
1
2
)(d̂ + d̂† + m̂)− (n̄ +

1
2
)(

1
2

Γ1 ĉ +
√

Γ1 ĉin),

˙̂c† = i4γm̄(2ĉ† + n̂) + i4γ(n̄ +
1
2
)(d̂ + d̂† + m̂)− (n̄ +

1
2
)(

1
2

Γ1 ĉ† +
√

Γ1 ĉ†
in),

˙̂n = i8h̄m̄(ĉ− ĉ†), (17)

˙̂d = −i4γn̄(2d̂ + m̂)− i4γ(m̄ +
1
2
)(ĉ + ĉ† + n̂)− (m̄ +

1
2
)(

1
2

Γ2d̂ +
√

Γ2d̂in),

˙̂d† = i4γn̄(2d̂† + m̂) + i4γ(m̄ +
1
2
)(ĉ + ĉ† + n̂)− (m̄ +

1
2
)(

1
2

Γ2d̂† +
√

Γ2d̂†
in),

˙̂m = i8h̄γn̄(d̂− d̂†).

We here need to assume the redefinition
√

∆1 = (n̄ + 1
2 )
√

Γ1. Now, without taking Hself into
account, this will lead to the linear system of matrix Langevin equations

−i8γm̄− 2n̄+1
4 Γ1 0 −i4γm̄ −i2γ(2n̄ + 1) −i2γ(2n̄ + 1) −i2γ(2n̄ + 1)

0 i8γm̄− 2n̄+1
4 Γ1 i4γm̄ i2γ(2n̄ + 1) i2γ(2n̄ + 1) i2γ(2n̄ + 1)

i8γm̄ −i8γm̄ 0 0 0 0
−i2γ(2m̄ + 1) −i2γ(2m̄ + 1) −i2γ(2m̄ + 1) −i8γn̄− 2m̄+1

4 Γ2 0 −4iγn̄
i2γ(2m̄ + 1) i2γ(2m̄ + 1) i2γ(2m̄ + 1) 0 i8γn̄− 2m̄+1

4 Γ2 i4γn̄
0 0 0 i8γn̄ −i8γn̄ 0





ĉ
ĉ†

n̂
d̂
d̂†

m̂



−



√
∆1 ĉin√
∆1 ĉ†

in
0√

∆2d̂in√
∆2d̂†

in
0


=

d
dt



ĉ
ĉ†

n̂
d̂
d̂†

m̂


, (18)

which is, of course, integrable now. The initial cavity boson numbers n̄ and m̄ can be set in the same
manner, which was done for the system of Equation (14). Numerical tests reveal that the system (18) is
conditionally stable if the optical intensity is kept below a certain limit on the red detuning, and is
otherwise unstable.

3.3. Second Order Perturbation to (13,16)

The set of Langevin Equations (13) and (16) can be integrated with much more accuracy, if we first
identify and sort out the cross terms as individual operators. For instance, Equation (16) contains the
cross operators ĉd̂, ĉd̂†, ĉm̂, ĉ†d̂, ĉ†d̂†, ĉ†m̂, n̂d̂, n̂d̂†, as well as n̂m̂, which is self-adjoint. These constitute
an extra set of nine cross operators to be included in the treatment. All these cross operators are formed
by multiplication of photonic and phononic single operators, whose notation order, such as ĉd̂ = d̂ĉ
and so on, is obviously immaterial.

Now, one may proceed first to determine the commutators between these terms where relevant,
which always result in linear combinations of the other existing terms. This will clearly enable a more
accurate formulation of system (16) but in a 6 + 9 = 15 dimensional space, which is given by the array
of operators {A}T = {ĉ, ĉ†, n̂, d̂, d̂†, m̂, ĉd̂, ĉd̂†, ĉm̂, ĉ†d̂, ĉ†d̂†, ĉ†m̂, n̂d̂, n̂d̂†, n̂m̂}.

The independent non-trivial quadratic commutator equations among cross operators here are
found after tedious but straightforward algebra as
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[ĉd̂, ĉ†d̂†] =
1
8
[(2n̂m̂ + 3)(m̂ + n̂ + 2) + n̂2 + m̂2 − 4],

[ĉd̂, ĉ†m̂] =
1
2
(n̂2 + 2n̂m̂ + 2n̂ + m̂ + 2)d̂,

[ĉd̂, n̂d̂†] =
1
2
(m̂2 + 3m̂ + 2m̂n̂ + n̂ + 2)ĉ,

[ĉd̂, n̂m̂] = (n̂ + m̂ + 4)ĉd̂,

[ĉd̂†, ĉ†d̂] =
1
8
(2n̂m̂ + m̂ + n̂− 1)(m̂− n̂),

[ĉd̂†, ĉ†m̂] =
1
2
[(2n̂ + 1)m̂− (n̂ + 1)(n̂ + 2)] d̂†,

[ĉd̂†, n̂d̂] =
1
2
[m̂(m̂− 2n̂)− (m̂ + n̂)] ĉ,

[ĉd̂†, n̂m̂] = 2(m̂− n̂− 2)ĉd̂†,

[ĉm̂, n̂d̂] = 2(m̂ + n̂ + 2)ĉd̂,

[ĉm̂, n̂d̂†] = 2(m̂ + n̂)ĉd̂†. (19)

The rest of commutators among cross operators are either adjoints of the above, or have a
common term, which makes their evaluation possible using either the commutation relations (4)
or (5). Commutators among cross operators and single operators can be always factored, such as
[ĉd̂, n̂] = [ĉ, n̂]d̂. Commutators among single operators are already known such as (4,5). It can be
therefore seen that commutators (19) always lead to operators of higher orders yet, so that they do
not terminate at any finite order of interest by merely expansion of operators basis. This fact puts the
perturbative method put into work. There are, however, nonlinear systems such as semiconductor
optical cavities [71,74] in which higher-order operators yield an exact closed algebra and satisfy a
closedness property within the original space by appropriate definition.

The set of ten commutators now can be perturbatively linearized as a second-order approximation,
by replacing the number operators with their mean values, wherever needed to reduce the set of
operators back to the available 15-dimensional space. This will give rise to the similar set of equations
after some algebra:

[ĉd̂, ĉ† d̂†] =
1
16

(m̄ + n̄ + 8)n̂m̂ +
1
8

[
m̄(n̄ + 1) +

1
2

n̄2 + 3
]

m̂ +
1
8

[
n̄(m̄ + 1) +

1
2

m̄2 + 3
]

n̂ +
1
4

,

[ĉd̂, ĉ†m̂] =
1
2
(n̄ + 2m̄ + 2)n̂d̂ +

1
2
(m̄ + 2)d̂,

[ĉd̂, n̂d̂†] =
1
2
(m̄ + 3 + 2n̄)ĉm̂ +

1
2
(n̄ + 2)ĉ,

[ĉd̂, n̂m̂] = (n̄ + m̄ + 4)ĉd̂,

[ĉd̂†, ĉ† d̂] =
1
16

(m̄− n̄)n̂m̂ +
1
8

[
m̄(n̄ + 1)− 1− 1

2
n̄2
]

m̂− 1
8

[
n̄(m̄ + 1)− 1− 1

2
m̄2
]

n̂,

[ĉd̂†, ĉ†m̂] =
1
2
(2m̄− n̄− 3)n̂d̂† +

1
2
(m̄− 2)d̂†,

[ĉd̂†, n̂d̂] =
1
2
(m̄− 2n̄− 1)ĉm̂− 1

2
n̄ĉ,

[ĉd̂†, n̂m̂] = 2(m̄− n̄− 2)ĉd̂†,

[ĉm̂, n̂d̂] = 2(m̄ + n̄ + 2)ĉd̂,

[ĉm̂, n̂d̂†] = 2(m̄ + n̄)ĉd̂†, (20)

where the reduction of triple operator products among single and cross operators as 4x̂ŷẑ →
x̄ŷẑ + x̄ȳẑ + ȳz̄x̂ + z̄x̄ŷ is used where appropriate. For instance, the term 4n̂m̂2 is replaced as
m̄m̂n̂ + 2m̄n̄m̂ + m̄2n̂ and so on. In addition, similar to the system (14), products among single
operators are reduced as 2x̂ŷ→ x̄ŷ + ȳx̂. This is somewhat comparable to the mean field approach in
cross Kerr optomechanics [110].
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There are two basic reasons why we have adopted this particular approach to the linearization
and cutting off the diverging operators of higher orders. The first reason is that number operators vary
slowly in time as opposed to their bosonic counterparts, which oscillate rapidly in time, given the fact
that the use of rotating frames is disallowed here. Secondly, number operators are both positive-definite
and self-adjoint, and thus can be approximated by a positive real number. These properties make
the replacements n̂ → n̄ and m̂ → m̄ reasonable approximations, and the replacement with mean
values needs only to be restricted to the number operators, to yield a closed algebra necessary for
construction of Langevin equations. Hence, the correct application of replacements only to the triple
operator products appearing in the set of commutators (19) will make sure that no operator having an
order beyond that of cross operators will appear in the formulation.

Anyhow, it can be seen now that all approximate commutators in Equation (20) allow the set
of operators {A}T ∪ {1̂} = {1̂, ĉ, ĉ†, n̂, d̂, d̂†, m̂, ĉd̂, ĉd̂†, ĉm̂, ĉ†d̂, ĉ†d̂†, ĉ†m̂, n̂d̂, n̂d̂†, n̂m̂} to take on linear
combinations of its members among every pair of commutations possible, where 1̂ is the identity
operator. Obviously, this approximate closedness property now makes the full construction of Langevin
equations for the operators belonging to {A} possible. It is noted that 1̂ is not an identity element for
the commutation.

We can now define the set {S} = span({A} ∪ {1̂}), which is spanned by all possible linear
combinations of {1̂} and the members of {A} together with the associative binary commutation
operation [] defined in Equations (4), (5) and (20). The ordered pair ({S}, []) is now a semigroup.

Having therefore these ten commutators (20) known, we may proceed now to composing the
second-order approximation to the nonlinear Langevin Equation (16), from which a much more
accurate solution could be obtained. Here, the corresponding Langevin equations may be constructed
at each step by setting both ẑ and x̂ in the Langevin Equation (10) equal to either of the 15 operators,
while the noise input terms for cross operators is a simple product of related individual noise terms.
The linear damping rates of higher-order operators is furthermore simply the sum of individual
damping rates of corresponding single operators, which completes the needed parameter set of
Langevin equations.

4. Further Considerations

4.1. Optomechanical Interaction and Drive Terms

The method described in the above can be simultaneously used if other terms such as the standard
optomechanical interaction HOM is non-zero, or there exists a coherent pumping drive term that can be
expressed as Hd = ∑k Fk b̂† + F∗k b̂, where Fk are time-dependent drive amplitudes. While Hd does not
appear directly in the Langevin equations, treatment of HOM requires inclusion of additional Langevin
equations for â and b̂, where appropriate, as well as a few extra terms in the rest. This can be done in a
pretty standard way and is not repeated here for the sake of brevity [1,2,29–32].

4.2. Multi-Mode Fields

The analysis is also essentially unaltered if there is more than one mechanical mode to be
considered [19,111,112], and the method is still easily applicable with no fundamental change. Suppose
that there are a total of M mechanical modes with the corresponding bosonic operators b̂k and b̂†

k ,
where k ∈ [1, M]. Then, these modes are mutually independent in the sense that [b̂j, b̂k] = 0 and
[b̂j, b̂†

k ] = δjk. The set of commutators (5) will be usable for all M modes individually and, as a result,
the commutator relationships (19) and therefore (20) may be still used. The first and second order
perturbations will respectively result in 3 + 3M = 3(M + 1) and 3 + 3M + 9M = 3(4M + 1) equations.
The redefined set of operators will be respectively now {A}T = {ĉ, ĉ†, n̂, d̂k, d̂†

k , m̂k; k ∈ [1, M]} and
{A}T = {ĉ, ĉ†, n̂, d̂k, d̂†

k , m̂k, ĉd̂k, ĉd̂†
k , ĉm̂k, ĉ†d̂k, ĉ†d̂†

k , ĉ†m̂k, n̂d̂k, n̂d̂†
k , n̂m̂k; k ∈ [1, M]}. Similarly, in the

case of N optical modes satisfying [âj, âk] = 0 and [âj, â†
k ] = δjk, the set of commutators (4) can be used

and the operator set should be now expanded as {A}T = {ĉj, ĉ†
j , n̂j, d̂k, d̂†

k , m̂k; j ∈ [1, N]; k ∈ [1, M]}
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and {A}T = {ĉj, ĉ†
j , n̂j, d̂k, d̂†

k , m̂k, ĉjd̂k, ĉjd̂†
k , ĉjm̂k, ĉ†

j d̂k, ĉ†
j d̂†

k , ĉ†
j m̂k, n̂jd̂k, n̂jd̂†

k , n̂jm̂k; j ∈ [1, N]; k ∈ [1, M]},
respectively, for first and second order perturbations. Hence, the corresponding dimensions will be
now respectively either 3(N + M) or 3(N + M + 3NM). Higher-order commutators (19) and (20) can
be still used again by only addition of appropriate photonic j and phononic k mode indices to the
respective operators contained in the expanded operator basis set {A}.

4.3. Noise Spectra

The required noise spectra [113] of cross operators is clearly a product of each of the individual
terms, since the nature of particles are different. However, the noise spectra of quadratic operators
themselves need to be appropriately expressed. For instance, d̂in actually corresponds to the
spectral input noise of the square operator d̂ = b̂b̂/2

√
Γ from equation (3), which clearly satisfies

d̂in(t) = 1
2 b̂in(t)b̂in(t)/

√
Γ, or d̂in(w) = 1

2 b̂in(w) ∗ b̂in(w)/
√

Γ in the frequency domain, where ∗merely
represents the convolution operation. Therefore, once âin(w) and b̂in(w) are known, all relevant
remaining input noise spectra could be obtained accordingly using simple convolutions or products in
frequency domain.

As a result, the corresponding spectral density of the noise input terms to the cross operators can
be determined from the relevant vacuum noise fluctuations and performing a Fourier transform.
For instance, we have SCDCD[w] = SCC[w]SDD[w], where SCC[w] = 1

4 SA2 A2 [w] and SDD[w] =
1
4 SB2B2 [w]. Then, the Isserlis–Wick theorem [38,114] could be exploited to yield the desired expressions.
If we assume 〈

f̂ (t) f̂ (τ)
〉

= ζ(t− τ),〈
f̂ (t) f̂ †(τ)

〉
= ψ(t− τ), (21)

[ f̂ (t), f̂ †(τ)] = υ̂(t− τ),

where the dimensionless correlation integrator runs on phase, instead of time, as〈
f̂ (t)ĝ(τ)

〉
=
∫

f̂ (t + τ)ĝ(τ)d(ωτ), (22)

then the functions ζ(·), ψ(·), and the operator v̂(·) should all be all having the dimension of f̂ 2(·) as well.
This means that, if f̂ is dimensionless, which is the case for the choice of ladder operators, then ζ(·),
ψ(·), and v̂(·) also become dimensionless. The functions ζ(·) and ψ(·) together can cause squeezing
or thermal states if appropriately defined [29,32]. By the Isserlis–Wick theorem applied to scalars,
we have 〈x1x2x3x4〉 = 〈x1x2〉 〈x3x4〉+ 〈x1x3〉 〈x2x4〉+ 〈x1x4〉 〈x3x4〉. This gives for the operators

SF2 F2 [w] =
1

2π

∫ +∞

−∞

〈
f̂ 2(t) f̂ 2†(0)

〉
eiwtdt =

1
2π

∫ +∞

−∞

〈
f̂ (t) f̂ (t) f̂ †(0) f̂ †(0)

〉
eiwtdt

=
1

2π

∫ ∞

−∞

{〈
f̂ 2(t)

〉 〈
f̂ 2†(0)

〉
+ 2

〈
f̂ (t) f̂ †(0)

〉2
+ 2

〈
f̂ (t)

[
f̂ (t), f̂ †(0)

]
f̂ †(0)

〉}
eiwtdt

=
1

2π

∫ ∞

−∞

[
ζ(0)ζ∗(0) + 2ψ2(t) + 2

〈
f̂ (t)υ̂(t) f̂ †(0)

〉]
eiwtdt (23)

= |ζ(0)|2δ(w) +
1
π

∫ ∞

−∞

[
ψ2(t) +

〈
f̂ (t)υ̂(t) f̂ †(0)

〉]
eiwtdt.

Hence, for a given stochastic process where
〈

f̂ (t) f̂ (τ)
〉
= 0,

〈
f̂ (t) f̂ †(τ)

〉
= Ψ(t− τ), and having

the scalar commutator [ f̂ (t), f̂ †(τ)] = Υ(t− τ), we simply get

SF2F2 [w] =
1
π

∫ ∞

−∞
Ψ2(t)eiwtdt +

1
π

∫ ∞

−∞
Υ(t)Ψ(t)eiwtdt. (24)
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Now, suppose that we have a coherent field of photons at the angular frequency ω with an initial
Gaussian distribution, in which Ψ(t) = exp(−χ2ω2t2/2) exp(−iωt) and Υ(t) = Ψ(t), while having
the linewidth ∆ f = 1

2π χω. Clearly, χ is a dimensionless and positive real number. In the limit of
χ→ 0+, the expected relationship Ψ(t) =

√
2πδ(ωt)/χ is easily recovered.

This particular definition of the correlating function Ψ(t) ensures that the corresponding spectral
density is appropriately normalized, which is

∫ +∞

−∞
SFF[w]dw =

∫ ∞

−∞

[
1

2π

∫ +∞

−∞

〈
f̂ (t) f̂ †(0)

〉
eiwtdt

]
dw (25)

= 1.

Hence, one may obtain the following spectral density

SF2F2 [w] =
χ

π
√

πω
exp

[
− (w− 2ω)2

4χ2ω2

]
, (26)

which is centered at the doubled frequency 2ω, has a linewidth of
√

2∆ f , and satisfies the property

∫ +∞

−∞
SF2F2 [w]dw =

2
π

χ2. (27)

Once the spectral densities of input noise terms are found, spectral densities of all output
fields immediately follows input-output relations (8) and the scattering matrix (9) as {A[w]}out =

[S†(w)S(w)]{A[w]}in, in which [S†(w)S(w)] = [|Sij(w)|2], {A[w]}in is an array containing the spectral
densities of inputs, and, similarly, {A[w]}out is the array of spectral densities at each of the output fields.

4.4. Estimation of g(2)(0)

Many of the important features of an interacting quantum system is given by its second-order
correlation function g(2)(0) at zero time-delay [98–100] defined as

g(2)(0) =
〈â†(0)â†(0)â(0)â(0)〉
〈â†(0)â(0)〉2 . (28)

It is fairly easy to estimate this function once the spectral densities of all higher order operators of
the nonlinear system are calculated. For this purpose, we may first employ the definition (3) to rewrite

g(2)(0) = 4
〈ĉ†(0)ĉ(0)〉
〈n̂(0)〉2 =

4
n̄2 〈ĉ

†(0)ĉ(0)〉 = 4
n̄2

[
〈ĉ(0)ĉ†(0)〉 − n̄− 1

2

]
. (29)

Estimation of the average within brackets can be done by having SCC[w] = 1
4 SA2 A2 [w]

corresponding to the higher-order operator ĉ. This can be assumed to have been already found from
knowledge of the scattering matrix [S(w)], spectral densities of input fields {A[w]}in, and subsequent
derivation of spectral density array of output fields {A[w]}out. Then, SCC[w] will be simply an element
of the vector {A[w]}out. Using the Equation (24), this results in a fairly brief representation

g(2)(0) =
4
n̄2

(∫ +∞

−∞
SCC[w]dw

)
− 4n̄ + 2

n̄2 =
2
n̄2 Ψ(0) [Ψ(0) + Υ(0)]− 4n̄ + 2

n̄2 . (30)

With the assumptions above for an ideal initial Gaussian distribution, we have Ψ(0) = Υ(0) = 1
and thus g(2)(0) = 4( 1

2 − n̄)/n̄2. One should have in mind that this relationship cannot be readily used
for a coherent radiation, since, for a practical laser, the true statistics is Poissonian and not Gaussian.
This analysis thus reveals that the cavity occupation number of such an ideal laser with the threshold
defined as g(2)(0) = 1 is exactly n̄ =

√
6− 2 ≈ 0.450. This is in contrast to the widely used assumption
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of quantum threshold condition n̄ = 1 [115–120]. Interestingly, a new study [121] of photon statistics
in weakly nonlinear optical cavities based on extensive density matrix calculations [122,123] yields
the value n̄ = 0.4172, which is in reasonable agreement with our estimate. An earlier investigation on
quantum-dot photonic crystal cavity lasers [124,125] also gives the value n̄ = 0.485.

5. Anharmonic Oscillator

The quantum anharmonic oscillator appears in many nonlinear systems including quadratic
optomechanics [126,127], where our method here is applicable. The anharmonic Kerr Hamiltonian
is [128,129]

H = h̄ωâ† â +
1
2

h̄ζ â†2 â2 = h̄ωâ† â + 2h̄ζ ĉ† ĉ = h̄
(

ω− 1
2

ζ

)
n̂ +

1
2

h̄ζn̂2, (31)

in which ζ is a constant. It is well known that, in the case of ζ > 2ω, this system exhibits an effective
bistable potential, and is otherwise monostable. However, we are here very interested in a slightly
different but more complicated form given by [130]

H = h̄ωâ† â− 1
2

h̄ζ
(

â† + â
)4

, (32)

which is monostable or bistable if both ω and ζ are, respectively, positive or negative. This type
of nonlinearity is of particular importance in fourth-order analysis of qubits [131–137]. While the
Hamiltonian (32) is for a single-mode field, the case of multi-mode electromagnetic field could be
easily devised following the existing interaction Hamiltonians [130] and the presented method in this
article. Nevertheless, the above expression after some algebraic manipulations can be put into the form

H = h̄(ω− 3ζ)n̂− 3h̄ζn̂2 − 2h̄ζ
[
ĉ2 + ĉ†2 + 3

(
ĉ + ĉ†

)]
− 4h̄ζ

(
n̂ĉ + ĉ†n̂

)
, (33)

where a trivial constant term h̄ζ is dropped. Here, we may proceed with the 8-dimensional basis
operator set {A}T = {ĉ, ĉ†, n̂, n̂2, ĉ2, ĉ†2, n̂ĉ, ĉ†n̂}, resulting in a second order perturbation accuracy.

Treating this problem using the Langevin Equation (10), regardless of the values of ζ and ω,
is possible only if the following non-trivial exact commutators

[n̂, ĉ2] = −4ĉ2, (34)

[n̂2, ĉ] = −3n̂ĉ− 7
2

ĉ,

[n̂2, ĉ2] = 4(n̂− 2)n̂ĉ2,

[ĉ2, ĉ†] = 2n̂ĉ + 3ĉ,

[ĉ2, ĉ†2] = n̂3 +
3
2

(
n̂2 + 1

)
+

1
4

n̂,

[ĉ2, ĉ†n̂] = 3 (n̂ + 2) n̂ĉ + 6ĉ,

[ĉ, ĉ†n̂] =
3
2

n̂2,

[n̂ĉ, ĉ†n̂] =
1
2

(
4n̂2 − 3n̂ + 2

)
n̂,

are known, which may be found after significant algebra. The rest of the required commutators, which
are not conjugates of those in the above, can either directly or after factorization of a common term
be easily found from the commutation relations (4). Again, the set of commutators (34) does not yet
satisfy the closedness property within {S} = span({A} ∪ {1̂}), unless the approximate linearization
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[n̂, ĉ2] = −4ĉ2, (35)

[n̂2, ĉ] = −3n̂ĉ− 7
2

ĉ,

[n̂2, ĉ2] = 4(n̄− 2)n̄ĉ2,

[ĉ2, ĉ†] = 2n̂ĉ + 3ĉ,

[ĉ2, ĉ†2] =
1
2
(2n̄ + 3) n̂2 +

1
4

n̂ +
3
2

,

[ĉ2, ĉ†n̂] = 3 (n̄ + 2) n̂ĉ + 6ĉ,

[ĉ, ĉ†n̂] =
3
2

n̂2,

[n̂ĉ, ĉ†n̂] =
1
2
(4n̄− 3) n̂2 + n̂,

is employed. The rest of the process is identical to the one described under the system of Equation (20).
Construction of the respective noise terms is also possible by iterated use of the results in Section 4.3
and so on.

5.1. The Husimi–Kano Q-Functions

It is mostly appropriate that moments of operators are known, which are scalar functions and
much easier to work with. The particular choice of Q-functions [138] is preferred when dealing
with ladder operators, and are obtained by taking the expectation value of density operator with
respect to a complex coherent state |α〉 and dividing by π. This definition leads to a non-negative real
valued function Q(α) = Q(<[α],=[α]) of |α〉. Then, obtaining Q-function moments of any expression
containing the ladder operators would be straightforward [138]. However, it must be antinormally
ordered, with creators being moved to the right. In {A}T above, all operators are actually in the normal
form, except n̂2. It is possible to put the nontrivial members of {A} in the antinormal order

n̂ = ââ† − 1,

n̂2 = âââ† â† − 2ââ†,

n̂ĉ =
1
2

ââââ† − 3
2

ââ, (36)

ĉ†n̂ =
1
2

ââ† â† â† − 3
2

â† â†.

While evaluating Q-function moments, â and â† are replaced with α and α∗, respectively, as

〈n̂〉 = |α|2 − 1,

〈n̂2〉 = |α|4 − 2|α|2,

〈n̂ĉ〉 =
1
2

α2|α|2 − 3
2

α2, (37)

〈ĉ†n̂〉 =
1
2

α∗2|α|2 − 3
2

α∗2.

All that remains now is to redefine the array of Q-functions bases, using common terms as
{〈A〉}T = {α2, α∗2, |α|2, |α|4, α4, α∗4, α2|α|2, α∗2|α|2} from which the original Q-functions could be
readily restored. This translates into a set of scalar differential equations that conveniently could be
solved. Fluctuations of noise terms also vanish while taking the expectation values, and only their
average values survive. To illustrate this, suppose that the system is driven by a coherent field âin

with the normalized electric field amplitude β = α/
√

2 and at the frequency ω. Then, the Q-function
moments of the input fields after defining the loss rates Γ3 = 2Γ2 = 4Γ1 become 〈âin〉 =

√
2Γ1β,

〈ĉin〉 =
√

Γ2β, 〈n̂in〉 =
√

Γ2(2|β|2 + 1), 〈ĉ2
in〉 =

√
Γ3β2, and 〈n̂in ĉin〉 =

√
Γ3β2(2|β|2 + 3).
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5.2. Quantum Limited Amplifiers

The same method can be extended to the quantum limited amplifiers, which in the general form
coincides with the expression (31), but is usually solved using a zeroth-order perturbation [102]. For the
single-mode degenerate quantum limited amplifier [6,102,103], the corresponding Hamiltonian is
slightly different given by H = h̄ωn̂+ h̄(gĉ+ g∗ ĉ†), with the three-dimensional basis {A}T = {n̂, ĉ, ĉ†}
that satisfies closedness. Then, the second-order accurate Langevin equations with inclusion of the
self-energy Hself = h̄ωn̂ can be shown to be unconditionally stable with <{eig[M]} < 0, given by

˙̂n = −i2(gĉ− g∗ ĉ†),

˙̂c = (−2iω− 2n̄ + 1
4

Γ2)ĉ− ig∗n̂− i
1
2

g∗ − (n̄ +
1
2
)
√

Γ2 ĉin, (38)

˙̂c† = (2iω− 2n̄ + 1
4

Γ2)ĉ† + ign̂ + i
1
2

g− (n̄ +
1
2
)
√

Γ2 ĉ†
in.

In the presence of Kerr nonlinearity [104] as H = h̄ωn̂ + h̄(gĉ + g∗ ĉ†) + h̄γĉ† ĉ, one may
use 4ĉ† ĉ = n̂2 − n̂, [n̂2, ĉ] ≈ − 1

2 (6n̄ + 7)ĉ, and the basis {A}T = {n̂, n̂2, ĉ, ĉ†} to construct a set
of 4 × 4 integrable Langevin equations. The rest of necessary commutators are already found in
Equations (4), (34) and (35).

5.3. Quantum Nondemolition Measurements

Quantum nondemolition measurements of states require a cross-Kerr nonlinear interaction of
the type H = h̄ωâ† â + h̄Ωb̂† b̂ + h̄χâ† âb̂† b̂ = h̄ωn̂ + h̄Ωm̂ + h̄χn̂m̂, in which â and b̂ fields, respectively,
correspond to the probe and signal [105,106]. This system can be conveniently analyzed by the
preferred choice [105] of the higher-order operators {A}T = {n̂, m̂, Ĉ, Ŝ}, where

Ĉ =
1
2

[
(n̂ + 1)−

1
2 â + â†(n̂ + 1)−

1
2

]
,

Ŝ =
1
2i

[
(n̂ + 1)−

1
2 â− â†(n̂ + 1)−

1
2

]
, (39)

are quadratures of the readout observable. It is straightforward to show by induction that [ f (â†), â] =
− f ′(â†) and [â†, f (â)] = − f ′(â) with f (·) : R 7→ R being a real function of its argument. Now,
the non-zero commutators of the basis {A}T can be found after some algebra as [n̂, Ĉ] = −iŜ, [n̂, Ŝ] =
iĈ, and [Ĉ, Ŝ] = 1

2 i(n̂ + 2)−1. All remains to construct the Langevin equations now is to linearize
the last commutators as [Ĉ, Ŝ] ≈ 1

2 i(n̄ + 2)−1, by which the basis {A}T = {n̂, m̂, Ĉ, Ŝ} would satisfy
closedness. Input noise terms to the operators Ĉ and Ŝ should be constructed by linear combinations
of âin and â†

in while replacing the multiplier term 1/
√

n̂ + 1 with the linearized form 1/
√

n̄ + 1.
In the end, it has to be mentioned that, under external drive, periodicity, or dynamical control

[M(t)] in the system of Langevin Equation (6) is time-dependent [104,139]. For instance, the ultimate
optomechanical cooling limit is a function of system dynamics [140]. Then, integration should be done
numerically, since exact analytical solutions without infinite perturbations exist only for very restricted
cases. This is, however, beyond the scope of the current study.

6. Conclusions

A new method was described to solve quadratic quantum interactions using perturbative
truncation schemes, by including higher-order operators in the solution space. Spectral densities
of higher-order operators, calculation of the second-order correlation function, as well as the
quantum anharmonic oscillator and transformation to scalar forms using Q-functions were discussed.
Finally, applications of the presented approach to quantum limited amplifiers and nondemolition
measurements were demonstrated.
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Supplementary Materials: The following are available online at www.mdpi.com/2304-6732/4/4/48/s1,
Figure S1: The stochastic solution function u(t) = 〈û(t)〉 versus time given in various orders of approximation,
Figure S2: Expectation value function 〈û(t)〉 versus time given in various orders of approximation. Convergence
to the exact solution obtained from numerical solution of (S4) is rapid by increasing order.
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