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Abstract: Pacemaker cardiomyocytes of the sinoatrial node (SAN) beat more rapidly than cells of
the working myocardium. Beating in SAN cells responds to β-adrenergic and cholinergic signaling
by speeding up or slowing, respectively. Beat rate has traditionally been assessed using voltage or
calcium sensitive dyes, however these may not reflect the true rate of beating because they sequester
calcium. Finally, in vitro differentiated cardiomyocytes sometimes briefly pause during imaging
giving inaccurate beat rates. We have developed a MATLAB automation to calculate cardiac beat
rates directly from video clips based on changes in pixel density at the edges of beating areas. These
data are normalized to minimize the effects of secondary movement and are converted to frequency
data using a fast Fourier transform (FFT). We find that this gives accurate beat rates even when there
are brief pauses in beating. This technique can be used to rapidly assess beating of cardiomyocytes
in organoid culture. This technique could also be combined with field scanning techniques to
automatically and accurately assess beating within a complex cardiac organoid.
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1. Introduction

Enormous strides have been made in our ability to grow donor cardiomyocytes from pluripotent
cells, such as human embryonic stem cells and induced pluripotent stem cells. Both human and mouse
pluripotent cells can be differentiated into all types of cardiomyocytes, including both immature
fetal cardiac cells and more mature cells expressing a full range of cardiac subtypes, including atrial,
ventricular and conduction system [1–3]. More recently, protocols have been developed that strongly
bias cardiomyocyte differentiation toward specific lineages. For example, it is now feasible to make
nearly pure populations of highly mature ventricular cardiomyocytes [4] that are capable of restoring
ventricular function in non-human primates after infarct [5]. These studies also present new challenges
since it is now clear that even a small number of ectopic pacemaker cells can cause arrhythmias after
grafting [5]. This is consistent with previous data demonstrating that grafts of pacemaker-like cells to
canine hearts can initiate action potentials [6–11].

A major challenge in the field of cardiac stem cell biology is the ability to distinguish different
cardiomyocyte subtypes either within complex organoid cultures, such as embryoid bodies (EBs), or
within a heart following a graft to identify and isolate ectopic pacemaker cells. Realization of the full
therapeutic potential of in vitro derived cardiomyocytes will require protocols to differentiate pure
subtypes and, in particular, to insure that grafts of cells to the working myocardium do not contain
sinoatrial node (SAN) pacemaker cells.
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Conversely, sinus node dysfunction is a major source of morbidity and mortality in humans. Loss
of sinus node function causes bradycardia and patients with this disease suffer from fatigue, dizziness,
chest pain, exercise intolerance and fainting. Severe bradycardia can be fatal. Nearly 3 million
people worldwide have electronic pacemakers, and each year 600,000 new pacemakers are implanted.
Mechanical pacemakers are effective at alleviating the major symptoms of bradycardia, however they
have limitations—they are prone to lead slippage and battery issues that may be fatal. They also affect
quality of life because devices such as cell phones, metal detectors and some household appliances
affect their function. Given the recent success with the implantation of ventricular cardiomyocytes,
it now seems feasible to generate SAN cells in vitro for use as biological pacemakers; however, again,
this will require protocols for the efficient differentiation of pure pacemakers from pluripotent sources.
Early work in this field suggests that this can be accomplished by the addition of small molecules and
growth factors as cells differentiate in vitro [12–15], however much work remains to be done. One tool
that is currently lacking is the ability to rapidly distinguish cardiac subtypes. Currently, this requires
dissociating differentiated EBs and performing electrophysiological studies on single cells to identify
characteristic currents that are generated by specific channel proteins. Such electrophysiological
approaches are time consuming and require specialized equipment and skill to perform them correctly.

An alternative simplified approach entails measuring the beating frequency of cardiomyocyte
populations within intact EBs to identify cardiac subtypes. Traditionally, beating frequency has been
measured manually by counting contractions per unit of time, either in live cultures or from recorded
videos. However, manual analyses are prone to bias and inaccuracies, especially when attempting to
measure fast beating cells such as SAN-like cells. Recently, several procedures based on algorithmic
analyses of segmented live cell image series have been introduced in an attempt to automate the
measurement of beat frequency [16,17]. While these automated approaches introduce improvements
over manual measurements, they may fail to accurately represent fast beating cells due to intermittent
pauses in contraction that are induced by environmental stresses (e.g., light exposure, rapid changes
in temperature, etc.) during imaging or experimental manipulation. To circumvent the issue of
pausing and reliably extract fast beating frequencies from time lapse image series, we have created a
MATLAB algorithm that transforms time domain data into the frequency domain using a fast Fourier
transform (FFT). Subsequent to applying the FFT, our algorithm performs a power spectrum analysis
that identifies the dominant beat frequency within a given imaged area, regardless of variations or
pauses in contractions. The incorporation of our FFT algorithm into fully automated workflows
is expected to provide improvements in the identification of cardiac subtypes in stem cell-derived
organoid cultures for the purposes of drug screening and cell type-specific bioengineering applications.

2. Materials and Methods

Murine embryonic stem (ES) cells of the R1 strain expressing the cardiac specific fluorescent
reporter, MHCα::GFP [18] were co-cultured with mouse embryonic fibroblasts (MEFs) on
gelatin-coated plates and were maintained in ES cell growth medium (DMEM + 10%FBS, supplemented
with 0.1 mM non-essential amino acids, 2 mM L-glutamine, 1 mM sodium pyruvate, 10−4 mM
β-mercaptoethanol, 1X antibiotics/antimyoctic and 1000 U/mL LIF). Clonal lines were established
and were checked to ensure that the MHCα::GFP is expressed in all cardiac cells and only in cardiac
cells [19]. For differentiation studies, ES cells were passaged off of MEFs and were differentiated
as embryoid bodies (EBs) using the hanging drop method, as previously described [19]. Single EBs,
consisting of approximately 300 cells each, were plated in each well of a 48-well plate and were allowed
to differentiate for 17–21 days prior to imaging.

Areas with beating cardiomyocytes were identified using the GFP reporter. Epifluorescence and
phase-contrast imaging were performed using an Olympus CKX41 inverted microscope that was
equipped with a 10× objective. The images were acquired with a Leica DFC365 FX CCD camera at
8-bit depth and 2 × 2 binning using Leica Application Suite (LAS) X software. Calcium imaging was
performed using a Fluo-4 Direct Calcium Assay Kit (ThermoFisher Scientific, Waltham, MA, USA).
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Regions of Interest (ROIs) from the video clips were manually chosen for the presence of beating
and confirmed for cardiomyocyte identity based on expression of the cardiac-specific GFP fluorescent
reporter. Changes in mean pixel brightness over time with individual ROIs were analyzed using
LAS X software and were converted into an Excel file format for importation into MATLAB (R2017a,
MathWorks, Natick, MA, USA). A custom MATLAB code was developed to read time series data from
Excel files, to normalize the time series data and to execute a FFT to identify the dominant frequency.

Normalization (adapted from [20]) was carried out using the following equations:

1. R(t) = F(t)−F0(t)
F0(t)

where F is intensity and t is time. F0, the local minimum intensity, is found by

2. F0(t) =
{

min(F(x))
∣∣∣(t + τ1

2 ≤ x ≤ t + τ2, x = t + τ1
2 + 0.01n

}
where n = 0, 1, 2, . . . etc.

3. F(x) ≈ 1
τ1

∫ x+ τ1
2

x− τ1
2

F(z)dz

where F(x) = 1
τ1

{ τ1
n [F(z1) + 2F(z2) + 2F(z3) + · · ·+ 2F(zn−2) + 2F(zn−1) + F(zn)]

}
And zn = z1 + 0.01n and z1 = x − τ1

2
4.

{
t = τ1

2 + τ0n
∣∣0 < t < a − τ2

}
where n = 0, 1, 2, . . . etc. and a = max(t)

The parameters τ0, τ1, and τ2 are spacing parameters and can be adjusted for different methods
of imaging. The parameter τ0 can be adjusted for different frequency images using the following
equation:

τ0 =
1
f

where f is the frequency.
After the algorithm identified the maximum peak that was produced by the FFT, the frequency

data were output as beats per minute (bpm). Output also included several graphical representations of
the algorithmic processes. Each step of the algorithm is annotated in the MATLAB code (Supplemental
Materials, Reno_FFT_bpm.m).

3. Results and Discussion

Cardiomyocytes that are differentiated from pluripotent cells are a promising source of cells
for cardiac regenerative medicine. However, it has long been known that EB-derived cardiac cells
express a full range of cardiac phenotypes. The most recent work suggests that fully differentiated
and subtype-pure populations of cardiac cells are best for grafting into damaged ventricular
myocardium [4,5]. One concern with this approach is that if cells of the wrong electrophysiological
characteristics are present in a graft, then it will cause arrhythmias. Therefore, it is important to develop
techniques to rapidly identify cardiac phenotypes. Definitive identification of cardiac phenotype is
based on single-cell patch clamp studies, however several other techniques, including beat rate, can
be used for the provisional identification of various cardiac phenotypes. Beat rate can be assessed
by loading cells with fluorescent dyes which change brightness according to changes in calcium
concentration or voltage, however these techniques may not represent true beat rate since they also
sequester calcium and other ions that are necessary for beating to occur. Similarly, beat rate can be
determined by hand counting the number of beats per unit of time and converting this into beats per
minute (bpm). This method is time consuming and prone to human error, particularly for fast beating
cardiac cells, such as SAN cells [15]. In addition, cardiac cells may pause during imaging, which could
be triggered by changes in temperature, changes in light intensity, interference from other beating
areas in the dish, or experimental manipulation.
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Beat rate can also be discerned directly from video clips and we hypothesized that this process
could be semi-automated since pixel density should change as cells contract during beating. We
hypothesized that by measuring the changes in pixel brightness at the edge of beating areas, we
could accurately determine how fast an area is beating. Such a technique would not only eliminate
human error, however when combined with fast Fourier transform (FFT) analysis, it should be able to
accurately calculate beat rate even when cells briefly pause during imaging.

To test this, EBs possessing a reporter construct in which the cardiac specific promoter for myosin
heavy chain drove the expression of green fluorescent protein (GFP) (MHCα::GFP) [18]. These ES cells
were differentiated as EB organoids with one EB placed in each well of a 48-well plate. At 21 days,
all of the EBs possessed significant beating areas expressing GFP. We noted that many EBs had both
a main beating area consisting of many cardiomyocytes and also smaller beating areas consisting of
either single cardiac cells or small clusters of cells.

Video recordings were made of these beating areas under phase-contrast lighting to highlight
the edges of the beating areas (Figure 1A; Video S1). In phase contrast microscopy, structures with
different optical densities differentially diffract light, thus providing contrast [21]. As cardiomyocytes
contract, areas of contrast move, therefore contractions events can be recorded as fluctuations in mean
pixel intensity within a defined region of interest (ROI) over time (Figure 1B).
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room temperature), with values of τ1 = 0.75 and τ2 = 2 found empirically to be optimal. However, the 
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Figure 1. Time-lapse series of beating cardiomyocytes with ROIs (region of interest) placed to extract
motion. (A) Phase-contrast image of beating areas within an EB (embryoid bodies), and corresponding
MHCα::GFP image confirming cardiomyocyte identity. ROIs (5 × 5 pixels) are placed at the edges
of the beating areas (purple, green and orange squares) and a non-beating control area (cyan square).
Scale bare = 100 µm; (B) Plot showing changes in the mean pixel intensities within ROIs over time,
which correspond to beating motion.

To extract beating frequency data from phase-contrast recordings, we identified ROIs at the edges
of the beating areas (where contrast in pixel brightness was the greatest) to generate intensity versus
time plots. The time series data were then run through a MATLAB algorithm to extract accurate
beating frequencies. Time domain data were first normalized (see Materials and Methods) using a
weighted moving average to account for movements of the sample—which appear as larger amplitude,
longer wavelength shifts in the data—that were not related to local beating.

For phase-contrast time lapse recordings of cardiomyocyte contractions, we found imaging at
10 Hz (τ0 = 0.1) satisfied the Nyquist sampling criteria to detect fast, SAN-like beating (<300 bpm at
room temperature), with values of τ1 = 0.75 and τ2 = 2 found empirically to be optimal. However,
the algorithm can easily be adapted for other time parameters and, therefore, is not limited to use with
a single sampling frequency, time length, or type of imaging. Figure 2 shows how the normalization
process eliminates low frequency noise from the data.
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incorporating FFT analysis into the workflow of any automated procedure that is designed to detect 
and quantify cardiomyocyte contraction. 

Figure 2. Normalization of time series data and FFT (fast Fourier transform) power spectrum analysis
to beating frequency. (A) Raw time series data showing high frequency changes in mean intensity
combined with slow, sinusoidal changes due to secondary motion imaging artifact. (B) FFT plot
of the raw time series data attributes dominant beating frequency (6 bpm) to motion caused by
imaging artifact. (C) Normalization of time series data eliminates changes due to secondary imaging
artifacts. (D) FFT plot of normalized time series data correctly identifies fast beating (166 bpm) as the
dominant frequency.

Once the data had been normalized, the algorithm extracted the dominant beating frequency
from the time domain data using a fast Fourier transform (FFT). In theory, a filter could have been used
to extract only one frequency from the normalized data. However, filters work best when expected
values fall within a relatively small range [22]. Cardiomyocytes in EB culture displayed a wide range
of beating frequencies, thus a simple filter was not appropriate [23]. The Fourier transform treats the
raw signal like a sum of many sinusoids and generates a value that is representative of the energy
of each individual frequency within the signal. Fourier transform is therefore ideal to determine
which frequency is the most prominent within a signal that is relatively complex [24]. Our MATLAB
automation used FFT to generate a graph of the frequencies of the sinusoidal waves in the power
spectrum in order to identify the dominant frequency within the signal (Figure 2).

Often times, imaging or experimental conditions cause cardiomyocyte contraction to pause
(Figure 3A). Whereas manual averaging of contractions over time will frequently underestimate the
actual beating frequency, FFT provides a robust method to extract the dominant beating frequency,
even when the signal contains intermittent pauses (Figure 3B). This feature underscores the utility of
incorporating FFT analysis into the workflow of any automated procedure that is designed to detect
and quantify cardiomyocyte contraction.

Finally, as mentioned above, the application of FFT analysis using our MATLAB algorithm is not
limited to imaging that is performed with phase-contrast microscopy. For example, we were able to
compare calcium transients (Video S2) with cardiomyocyte contractions in EB cultures (Figure 4). We
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anticipate that our FFT algorithm will also prove useful for correlating mechanical contraction activity
with other dye-based imaging modalities, such as voltage-sensitive dyes.Photonics 2018, 5, x FOR PEER REVIEW  6 of 8 
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Figure 3. FFT analysis correctly identifies dominant frequencies despite pauses in beating. (A) Time
series plot showing intermittent pauses (red bracket) in fast beating. (B) FFT plot reveals a single
dominant beating frequency (145 bpm) that is approximately double the value calculated manually by
averaging the number of spikes over time (~84 bpm).
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Figure 4. Comparison of cardiomyocyte contraction and calcium transients using FFT analysis.
(A) Time series plot of cardiomyocyte contractions measured by phase-contrast intensity fluctuations
and (B) corresponding FFT plot that identifies the dominant beating frequency (58 bpm). (C) Time
series plot of cardiomyocyte calcium transients that were measured by Fluo-4 fluorescence intensity
fluctuations in the same beating area as (A). Video S2 shows Fluo-4 imaging with the ROI (green
square) used to measure intensity fluctuations. (D) FFT plot of Fluo-4 data identifies a dominant
beating frequency (65 bpm) based on calcium transients that is similar to the contraction frequency that
is based on phase-contrast imaging. Sampling frequency was 18 Hz for both imaging modalities.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2304-6732/5/4/39/
s1, Video S1: Phase contrast time lapse series of beating cardiomyocytes with ROIs placed to extract motion;
Video S2: Fluo-4 time-lapse series of calcium transients in beating cardiomyocytes; MATLAB code for FFT analysis:
Reno_FFT_bpm.m.
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