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Abstract: We investigated—both experimentally and numerically—the operation of a weakly
birefringent cavity fiber laser under different net cavity dispersion values. Experimentally, we found
that under coherent cross-polarization coupling, either in-phase or anti-phase low frequency intensity
modulations between the two orthogonal polarization components of the laser emission could be
obtained. The evolution of the periodic intensity modulations in the fiber laser under different
operation conditions was studied. In this paper, we show that under suitable conditions, they can be
shaped into a train of bright-bright, dark-dark, or dark-bright vector solitons.
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1. Introduction

When two or more optical fields co-propagate in an optical fiber, they will couple with each other
through the fiber nonlinearity. The most common mode of coupling is cross-phase modulation (XPM),
which refers to the nonlinear changes of an optical field induced by the copropagating fields [1]. It has
been shown that under cross-phase modulation between lights, various new effects can occur in a
single-mode fiber (SMF) [2–6]. It is worth mentioning that, in 1987, Agrawal theoretically predicted
that, through incoherent coupling between two or more optical fields, modulation instability (MI)
could even occur in a normal dispersion fiber [7], despite the fact that conventional MI could only
occur in an anomalous dispersion fiber [8]. In addition, MI caused by cross-phase modulation has also
been observed in fiber amplifiers and fiber lasers [9–13].

It is well-known that, due to the existence of fiber birefringence, an SMF intrinsically supports
two orthogonal polarization modes. Therefore, in practice, the light propagation in SMFs can involve
coupling between the two modes. Depending on the strength of fiber birefringence, the two modes
can either be incoherently or coherently coupled [1]. In 1988, Wabnitz theoretically predicted a kind
of polarization modulation instability (PMI) [14]. He showed that, due to the coherent cross-phase
modulation between two circularly polarized modes in a weakly birefringent SMF, MI could occur
in both the normal and anomalous dispersion regimes. In particular, unlike conventional MI or MI
that occurred under incoherent cross-polarization coupling, where the MI gain peaks were always
located at a very high modulation frequency [8,15–18], under coherent cross-polarization coupling,
the modulation instability gain peaks could be situated at a low or even vanishing modulation
frequency. Later, Chiu and Chow theoretically showed that PMI could occur under coupling between
two orthogonal linearly polarized modes and a finite birefringence of the fiber could even enhance
the PMI [19].
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A fiber laser is an excellent testbed for the experimental study of nonlinear fiber optic effects as,
under suitable conditions, its dynamics mimics those of light propagation in fibers. Depending on the
laser configuration and operation conditions, different nonlinear fiber optical effects, such as MI [10,11]
and bright and dark soliton formation [20,21], have been observed and extensively investigated in
fiber lasers. Recently, in quasi-isotropic cavity fiber lasers, different types of vector solitons, such as
bright-bright [22], dark-dark [23], and dark-bright vector solitons [24], were also experimentally
observed. Different from the conventional phase-locked bright-bright vector solitons formed in mode
locked fiber lasers [25,26], the vector solitons could automatically appear in a fiber laser without
inserting a saturable absorber or mode locker into the cavity. To determine the formation mechanisms of
the vector solitons, we investigated—both experimentally and numerically—the formation procedure
of the vector solitons in the fiber lasers. In this paper, we report our research results. The paper is
organized as follows: In Section 2, we report on the experimental studies on vector soliton formation
in the fiber lasers; Section 3 presents the numerical simulation results; Section 4 discusses the possible
mechanisms of the variable vector soliton formation observed in the fiber lasers; and Section 5 presents
the conclusion.

2. Experimental Details

We first constructed an all-normal dispersion cavity fiber ring laser, as schematically shown
in Figure 1. It had a ring cavity consisting of 3 m erbium-doped fiber (OFS-EDF80) with a group
velocity dispersion (GVD) coefficient of 61.7 ps2/km and 38.3 m dispersion compensation fiber (DCF)
with a GVD coefficient of 5.1 ps2/km. The fiber laser was pumped by a 1480 nm SMF Raman laser,
whose maximum output power was as large as ~5 W. A polarization-independent isolator (ISO) was
inserted into the cavity to force the unidirectional circulation of the cavity. In addition, an intra-cavity
polarization controller (PC) was used to fine-tune the linear cavity birefringence. A wavelength division
multiplexer (WDM) was used to couple the pump light in the cavity, and a 10% fiber coupler was used
to output the light. All the intracavity components (WDM, ISO, and PC) were made or pigtailed with
the DCF. No real or artificial saturable absorber was inserted into the cavity. Experimentally, to separate
the two orthogonal polarization components of the laser emission, the laser output was first sent to a
fiber pigtailed polarization beam splitter and then monitored with a high-speed electronic detection
system consisting of two 40-GHz photodetectors and a 33-GHz bandwidth real-time oscilloscope
(Agilent Technologies Singapore, DSA-93204A). A polarization controller was inserted between the
laser output and the polarization beam splitter to balance the linear polarization change caused by the
lead fibers. An optical spectrum analyzer (Yokogawa, AQ6375) was used in our experiment to monitor
the optical spectrum of the laser emission.
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While building the fiber cavity, special care was taken to ensure that the net cavity birefringence
was sufficiently small so that the laser could simultaneously oscillate in its two orthogonal linear
polarization modes. Strong coherent XPM between the two lasing modes could be achieved in
the laser by carefully tuning the intracavity PC paddles. Experimentally, we used the wavelength
separation between the two lasing modes as an indicator of the net cavity birefringence. Under coherent
cross-polarization coupling, the central wavelengths of the laser emissions along the two orthogonal
polarization directions virtually overlapped.

The fiber laser had an average cavity GVD coefficient β2 ≈ 9.7 ps2/km. When turning the pump
power up, above the laser threshold, the laser simultaneously emitted Continuous wave (CW) along
its two orthogonal cavity polarization directions. By increasing the pump power to 30 dBm, at an
appropriate setting of the PC paddles, the state shown in Figure 2 was obtained. Figure 2a shows the
polarization resolved laser emissions along the two orthogonal polarization directions of the cavity.
The intensity of the polarization resolved laser emissions was in-phase periodically modulated. In the
case shown, it had a modulation frequency of 400 MHz. Other low frequency periodic intensity
modulations were also experimentally obtained. The low frequency periodic intensity modulation
only appeared under coherent cross-polarization coupling and always simultaneously occurred on the
two orthogonal polarization components of the laser emission.
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Figure 2. Evolution of in-phase periodic intensity modulations in the fiber laser (erbium-doped fiber
(EDF): 3 m; single-mode fiber (SMF): 0 m; dispersion compensation fiber (DCF): 38 m). (a) Initial in-phase
periodic intensity modulation; (b) dark-dark pulse pairs formed; (c) corresponding polarization resolved
optical spectra of (b).

Starting from such a low frequency in-phase intensity modulation state, when the pump power
was further increased to 33 dBm, the state shown in Figure 2b could be obtained. The in-phase periodic
intensity modulation evolved into a stable train of coupled dark-dark pulse pairs. The dark pulses
had a pulse width of around 1 ns, which was much broader than those expected for the dark solitons
formed in the fiber laser [24]. Figure 2c shows the corresponding polarization resolved optical spectra
of the laser emission. The two spectra nearly overlap, indicating that they were coherently coupled.
The two symmetric broad sidebands located at 1593 and 1599 nm on the spectra were caused by the
periodic power variation of the laser beam in the cavity [27]. They are not the Kelly sidebands [28].
When increasing the pump power to 36.8 dBm, the widths of the dark-dark pulse pairs narrowed to
about 600 ps. However, when continuing to increase the pump power, instead of the narrowing of the
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pulse width continuing, the dark-dark pulse pairs started to split. New dark-dark pulse pairs with the
same pulse width (about 600 ps) were generated, as shown in Figure 3. Due to the new pulse pair
generation, the spacing between the pulse pairs became obviously unequal in the cavity.

Photonics 2020, 7, x  4 of 14 

 

Figure 3. Due to the new pulse pair generation, the spacing between the pulse pairs became obviously 
unequal in the cavity. 

 
Figure 3. Splitting of the dark-dark pulse pairs under large cavity dispersion (EDF: 3 m; SMF: 0 m; DCF: 38 
m). 

In a previous paper, we reported the observation of vector dark-dark soliton formation in a fiber 
laser with a net normal average cavity GVD coefficient 𝛽ଶ ≈ 0.61 psଶ km⁄  [29]. Although the dark 
solitons reported were incoherently coupled, their pulse widths were much narrower. Obviously, the 
dark-dark pulse pairs shown in Figures 2 and 3 are not a solitary wave in the sense of conventional dark 
solitons. We suspect this could be due to the fiber laser having a too large average cavity GVD. As 
soliton formation in media with large dispersion demands a higher threshold, if the cavity dispersion 
is too large, it is highly possible that the experimentally accessible pump power cannot reach the soliton 
formation threshold. To verify this, we inserted a piece of standard single-mode fiber (15 m, SMF-28) 
into the cavity, and shifted the average cavity GVD coefficient to 𝛽ଶ ≈ 0.61 psଶ km⁄ . Although the laser 
then had a dispersion-managed cavity, under coherent cross polarization coupling, exactly the same 
feature as described above could still be observed, e.g., an in-phase periodic intensity modulation state, 
as shown in Figure 2a, could still be obtained in the laser at a much lower pump power. As the pump 
power was increased to 36 dBm, an in-phase periodic intensity modulation state could indeed evolve 
into a dark-dark vector soliton emission state, as shown in Figure 4. We note that, in Figure 4, the 
displayed dark pulse widths are limited by the bandwidth of our detection system. 

 
Figure 4. Coherently coupled dark-dark solitons under small net cavity dispersion (EDF: 3 m; SMF: 
15 m; DCF: 38 m). 

With a dispersion-managed cavity, the net average cavity dispersion could also be easily tuned to 
the anomalous dispersion regime. Furthermore, under coherent cross-polarization coupling, in-phase 
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DCF: 38 m).

In a previous paper, we reported the observation of vector dark-dark soliton formation in a
fiber laser with a net normal average cavity GVD coefficient β2 ≈ 0.61 ps2/km [29]. Although the
dark solitons reported were incoherently coupled, their pulse widths were much narrower.
Obviously, the dark-dark pulse pairs shown in Figures 2 and 3 are not a solitary wave in the
sense of conventional dark solitons. We suspect this could be due to the fiber laser having a too large
average cavity GVD. As soliton formation in media with large dispersion demands a higher threshold,
if the cavity dispersion is too large, it is highly possible that the experimentally accessible pump power
cannot reach the soliton formation threshold. To verify this, we inserted a piece of standard single-mode
fiber (15 m, SMF-28) into the cavity, and shifted the average cavity GVD coefficient to β2 ≈ 0.61 ps2/km.
Although the laser then had a dispersion-managed cavity, under coherent cross polarization coupling,
exactly the same feature as described above could still be observed, e.g., an in-phase periodic intensity
modulation state, as shown in Figure 2a, could still be obtained in the laser at a much lower pump
power. As the pump power was increased to 36 dBm, an in-phase periodic intensity modulation state
could indeed evolve into a dark-dark vector soliton emission state, as shown in Figure 4. We note that,
in Figure 4, the displayed dark pulse widths are limited by the bandwidth of our detection system.
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With a dispersion-managed cavity, the net average cavity dispersion could also be easily tuned to
the anomalous dispersion regime. Furthermore, under coherent cross-polarization coupling, in-phase
low frequency periodic intensity modulation could also be obtained in the fiber lasers. In contrast to
fiber lasers with net normal average cavity dispersion where dark-dark vector solitons are obtained,
such an in-phase periodic intensity modulation state obtained in the anomalous dispersion fiber lasers
would quickly evolve into a phase-locked bright-bright vector soliton emission state, as reported in [22].

Under coherent cross-polarization coupling, not only in-phase periodic intensity modulation,
but also anti-phase periodic intensity modulation, could be obtained. A typical case is shown in
Figure 5a, where the polarization resolved laser emissions are anti-phase periodically modulated
at a frequency of 333 MHz. Similar to the in-phase periodic intensity modulation cases described
above, when we increased the pump power, the anti-phase intensity modulations evolved further
into a train of dark-bright pulse pairs, as shown in Figure 5b. Figure 5c shows the corresponding
polarization resolved optical spectra. We note that the bright pulses shown in Figure 5b are on a CW
background; meanwhile, the intensities of the dark pulses do not drop to zero. Zhang et al. previously
reported the observation of phase-locked dark-bright polarization domain wall solitons in a fiber
laser [23]. Although both phenomena were formed as a result of coherent cross-polarization coupling
between the two orthogonal oscillating laser cavity modes, they displayed different features. In the
case of Zhang et al., domain wall solitons were formed, whose intensity always dropped to zero
intensity. Again, limited by the large cavity dispersion, the dark-bright pulse pairs were not shaped
into dark-bright vector solitons. To obtain dark-bright vector solitons, we further reduced the average
cavity GVD coefficient using the cavity dispersion-management technique. In a cavity with an average
GVD coefficient β2 ≈ 0.96ps2/km, the result shown in Figure 6 was obtained. Figure 6b presents the
corresponding optical spectra. Both the Kelly sidebands and Four-wave mixing (FWM) sidebands
confirmed that they were vector solitons. In addition to the CW background underneath the bright
pulses disappearing, the depth of the dark pulses also reduced to zero intensity, which is a typical
characteristic of coherently coupled black-white vector solitons [24].
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Low frequency anti-phase periodic intensity modulations could also be obtained in the anomalous
cavity dispersion regime. Again, in fiber lasers with a small average cavity GVD coefficient,
the coherently coupled dark-bright vector solitons were experimentally obtained, suggesting that
the occurrence of dark-bright vector solitons is independent of the sign of the cavity dispersion.
However, in fiber lasers with large average cavity GVD coefficients, only coupled bright soliton-dark
pulse pairs could be obtained [30].

3. Numerical Simulations

To corroborate the experimental observations, we numerically studied evolutions of periodic
intensity modulations in a quasi-isotropic cavity single-mode fiber laser. In order to make the simulation
results comparable to the experimental observations, we used the real fiber parameters in the simulations.
Specifically, the fiber laser was made of two different types of fiber: One was an erbium-doped fiber
(EDF) with a GVD coefficient of 61.87 ps2/km, and the other was a dispersion compensation fiber
(DCF) with a GVD coefficient of 5.1 ps2/km. We assumed that the birefringence axes of the fibers were
aligned and the laser cavity had sufficiently small linear birefringence. Therefore, the two orthogonal
polarization components of the light in the laser were coherently coupled. We employed the technique
described in [26] to numerically simulate the laser operation. Briefly, we always started a simulation
with a weak initial CW field whose intensities along the two orthogonal polarization modes of the cavity
were either in-phase or anti-phase periodically modulated. We let the light circulate unidirectionally
in the fiber laser cavity. The light propagation in a weakly birefringent gain fiber is governed by
coherently coupled Ginzburg–Landau equations (GLEs) [31]:
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where u and v are the normalized envelopes of the optical fields along the two orthogonal polarized
modes, 2k = 2π∆n/λ is the wave number difference between the modes and the inverse group velocity
is represented by 2δ1 = 2kλ/2πc, and β2,e f f is the effective second order dispersion coefficient along
the two orthogonal axes and can be represented by

β2,e f f = β2 +
g

Ωg2

δ(δ2
− 3) + i(1− 3δ2)

(1 + δ2)3

, (2)

where β2 is the second order dispersion coefficient with the unit of ps2/km, Ωg is the gain bandwidth,
δ = (ω0 −ωa)/Ωg is the gain detuning parameter, ω0 is the angular frequency of the propagating light
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field, ωa is the angular frequency of the fiber gain peak position, γ represents the nonlinearity of the
fiber, and g is the saturable gain coefficient of the gain fiber where

g = g0 exp

−
∫ (
|u|2 + |v|2

)
dt

Esat

, (3)

where g0 is the small signal gain coefficient and Esat is the saturation energy. In the passive fiber, we set
g = δ = 0. When the light meets the cavity output port, 10% of the light intensity is deducted from the
light fields, and the rest of the light fields are then re-injected into the cavity as the input for a new round
of cavity circulation. We used the standard split-step Fourier method to solve the coupled extended
GLEs (1). The numerical calculations were made on a 2 ns window and the periodic boundary condition
was adopted. Using the simulation technique, many experimentally observed soliton features, such as
soliton energy quantization [32] and noise-like pulse emission [33], are reproduced. In the current
simulations, we focused on the evolution of periodic intensity modulations in fiber lasers under general
laser operation conditions.

3.1. Evolution of In-Phase Intensity Modulations

We first investigated the situation where the initial periodic intensity modulation between the
two orthogonal polarization components was in-phase and the laser cavity had a relatively large
normal GVD coefficient. We used the following set of fiber parameters to simulate the laser operation:
EDF fiber gain bandwidth Ωg = 10 nm; small signal gain coefficient g0 = 60 km−1; and gain saturation
energy Esat = 1 pJ. The fiber laser cavity had a 3 m EDF with a GVD coefficient of 61.87 ps2/km, and a
38 m dispersion compensation fiber (DCF) with a GVD coefficient of 5.1 ps2/km. Therefore, the average
GVD coefficient of the cavity was β2 = 9.2 ps2/km. The beat lengths of the EDF and DCF were set to
50 km, so the average group velocity mismatch was δ1 = 5× 10−5 ps/km. We assumed that the central
wavelength of the light and the gain peak of the EDF w not matched, e.g., the central wavelength of the
light was located at 1559.6 nm, while the peak gain of the EDF occurred at 1560 nm. Therefore, the gain
detuning parameter was δ = 1.2. The initial slowly varying envelopes of the orthogonally polarized

optical fields were set as u = A ·
√

1 + (B · cos(ωc · t))
2 and v = A ·

√
1 + (B · cos(ωc · t))

2. Here, A is
related to the power level of the continuous wave background, B is related to the intensity modulation
depth, and ωc is the angular frequency of the modulation. We circulated the light fields in the ring
cavity until a stable operation state was obtained, and then considered the state obtained as a possible
laser emission.

We set the modulation frequency at 5 GHz. A typical result obtained is shown in Figure 7. In that
case, an initial in-phase periodic intensity modulation evolved to form a stable train of dark-dark pulse
pairs. When increasing the pump power, which corresponds to increasing the g0 and Es values, the CW
power level of the dark pulses increased and the pulse width of the pulses decreased. The formed
dark-dark pulse pairs were very stable in the cavity. However, as the pulse width narrowed to
about 100 ps, further increasing the pump power, the dark-dark pulse pairs no longer narrowed;
instead, they started to split up. The newly formed dark pulses also had a pulse width of about 100 ps,
which is still much broader than those of conventional dark solitons formed in the laser [21]. The stable
dark pulse train formation and dark pulse splitting under strong pumping are in good agreement with
the experimental observation shown in Figure 3.
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Figure 7. Evolution of initially in-phase intensity modulated vector fields to a train of dark-dark pulse
pairs (EDF: 3 m; SMF: 0 m; DCF: 38 m). A = 0.1; B = 1; ωc = 2π fc; fc = 5 GHz. (a,b) Evolution of
the in-phase intensity modulations along the two orthogonally polarized directions with the cavity
roundtrips and (c) a stable train of dark-dark pulse pairs formed at the roundtrip of 20,000.

Numerically we found that, in order to form a stable train of dark-dark pulse pairs, the gain
detuning parameter and laser gain bandwidth must be appropriately selected. Only in a certain range
of gain detuning, i.e., 1 < δ < 1.5, and laser gain bandwidth, i.e., 10 nm < Ωg < 20 nm, could the initial
periodic intensity modulations evolve into a stable train of dark-dark pulse pairs. If the gain detuning
effect was ignored, i.e., by setting ωa = ω0 and δ = 0, no stable train of coupled dark-dark pulse pairs
could be obtained, as shown in Figure 8.
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Figure 8. The same as in Figure 7, except for the gain detuning parameter δ = 0. (a,b) Evolution of
the in-phase intensity modulations along the two orthogonally polarized directions with the cavity
roundtrips and (c) a state formed at the roundtrip of 10,000.
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Experimental studies have shown that by implementing the cavity dispersion-management
technique, the average cavity dispersion can be deliberately decreased. Therefore, with an
experimentally accessible pump power, vector dark solitons can be formed from an in-phase intensity
modulation state. We also numerically simulated the situation. To this end, we used a fiber laser whose
cavity was made of a 3 m EDF, 9 m SMF, and 6 m DCF. The average GVD coefficient of the cavity
was β2 = 0.43 ps2/km. We kept the other simulation parameters the same as those used in Figure 7.
The result is presented in Figure 9. The initial in-phase intensity modulation was shaped into a stable
train of vector dark solitons whose pulse width was about 8 ps.
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Figure 9. Formation of vector dark solitons from in-phase intensity modulations (EDF: 3 m;
SMF: 9 m; DCF: 6 m). Parameters are the same as those used in Figure 7, except for the GVD
coefficient β2 = 0.42 ps2/km. (a,b) Evolution of the in-phase intensity modulations along the two
orthogonally polarized directions with the cavity roundtrips and (c) Vector dark solitons formed at the
roundtrip of 10,000.

We also numerically investigated the evolution of in-phase intensity modulations in fiber lasers
with anomalous cavity dispersion. As experimentally observed, in the anomalous dispersion cavity
fiber lasers, bright-bright vector solitons were always formed, as shown in Figure 10. The bright
solitons were equally spaced in the cavity, forming a so-called harmonic mode-locked vector soliton
state. However, we note that no mode locking actually occurred in the fiber laser.
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Figure 10. Formation of vector bright solitons from in-phase intensity modulations (EDF: 3 m;
SMF: 10.7 m; DCF: 6 m). Parameters are the same as those used in Figure 7, except for the GVD
coefficient β2 = −1.6 ps2/km. (a,b) Evolution of the in-phase intensity modulations along the two
orthogonally polarized directions with the cavity roundtrips and (c) a stable train of vector bright
solitons formed at the roundtrip of 10,000.
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3.2. Evolution of Anti-Phase Intensity Modulations

To simulate the evolution of an initially cross-polarization anti-phase periodic intensity
modulated light in the laser, we set the initial slowly varying envelopes of the optical fields as

u = A ·
√

1 + (B · cos(ωc · t))
2 and v = A ·

√
1 + (B · sin(ωc · t))

2. The other simulation parameters
were kept the same as those in Figure 7. Again, we circulated the light in the ring cavity for
10,000 roundtrips. The evolution of the light with the cavity roundtrips and the final stable state
obtained are shown in Figure 11.
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Figure 11. The same as Figure 7, except for the anti-phase intensity modulation. (a,b) Evolution of
the anti-phase intensity modulations along the two orthogonally polarized directions with the cavity
roundtrips and (c) a stable train of dark-bright pulse pairs formed at the roundtrip of 10,000.

Like the experimental observations, in cavities with a large normal GVD coefficient, the anti-phase
intensity modulations evolved into a stable train of dark-bright pulse pairs. With the current parameter
selection, the stable pulses had a width of about 100 ps. Similar to the case with in-phase periodic
intensity modulations, in order to form a stable train of dark-bright pulse pairs, the gain detuning
and laser gain bandwidth had to be carefully selected. The pulse width narrowed as the pump
power increased. Once the pulse width narrowed to ~80 ps, further increasing the pump power,
the dark-bright pulses started to break up.

We also simulated anti-phase periodic intensity modulations in dispersion-managed cavity fiber
lasers where small net cavity dispersion could be realized. We numerically confirmed that in fiber
lasers with a small average GVD coefficient, coherently coupled dark-bright vector solitons could
be easily formed, either in the net normal or net anomalous cavity dispersion regimes, as shown
in Figure 12, which is in good agreement with the experimental observations. Moreover, we also
numerically verified that when a laser cavity displays relatively large net anomalous dispersion,
e.g., β2 = −1.6 ps2/km, starting from an initial anti-phase periodic intensity modulation state, a stable
train of coupled bright soliton-dark pulse can also be obtained. Such a laser emission state was
reported in [25].
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4. Discussion

Our study focused on a coherent cross-polarization coupling case. Experimentally, this occurs
when the net cavity birefringence of a fiber laser is sufficiently small. Our experiments reveal that,
under coherent cross-polarization coupling, the laser emissions along the two orthogonal polarization
directions of the cavity can become either in-phase or anti-phase periodically intensity modulated at a
low frequency. The occurrence of these low frequency intensity modulations played a crucial role in the
various types of vector solitons in our fiber lasers. Previous studies have shown that both the cross-gain
saturation and PMI effects can lead to low intensity modulations [14,34,35]. However, the population
relaxation time for an erbium dope fiber is particularly long, being about 10 ms. The slow intensity
modulations observed in our experiments are in the order of hundreds of MHz. Therefore, we could
exclude the possibility that the observed low frequency anti-phase intensity modulation was caused by
cross-gain competition in the laser. Given the coherent cross-polarization coupling requirement and
low frequency modulation feature, which are well-aligned with the theoretical prediction on the PMI
in fibers [14,19], we would attribute the formation of the low frequency laser intensity modulations
to the PMI in the fiber laser. Based on this understanding, one could also explain why the various
vector solitons could be formed in the fiber laser, even without mode locking. We note that in the
net anomalous dispersion regime, conventional MI also occurred in our fiber lasers. However, as the
modulation frequency was very high, and is normally larger than 100 GHz, it could not be detected by
our detection system. Moreover, we emphasize that, even under the existence of the MI effect in the
anomalous dispersion regime, dark-bright vector solitons could still be formed in the fiber lasers and
remain stable. This is different from the case of the light propagation in weakly birefringent SMFs [36],
where the MI could destroy the dark-bright vector solitons.

Based on the coupled extended Ginzburg–Landau equations that also take into account the
gain detuning effect, vector soliton shaping of the periodic intensity modulations was reasonably
reproduced. We point out that, when obtaining a stationary and stable train of coherently coupled
dark-dark or dark-bright pulse pairs in the simulation window, the gain detuning and gain bandwidth
limitation play a crucial role. We suspect that this is due to the gain dispersion, as the laser could
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always self-select a wavelength to fulfil the cavity boundary condition. Therefore, a train of stationary
dark-dark or dark-bright vector solitons could be formed in the cavity.

Both the experimental studies and numerical simulations have shown that under in-phase intensity
modulation, only dark-dark (bright-bright) vector solitons can be formed in normal (anomalous)
dispersion cavity fiber lasers, while under anti-phase intensity modulations, independent of the sign of
the cavity dispersion, dark-bright vector solitons can be formed. The formation of dark-bright vector
solitons is a very interesting phenomenon. In contrast to dark-dark or bright-bright vector solitons,
whose formation can also be considered as a result of the soliton–solitons interaction, the formation
of coupled dark-bright vector solitons is purely a result of coherent cross-polarization coupling of
the light in the laser. As the bright (dark) soliton formation is an intrinsic feature of the self-phase
modulation in anomalous (normal) dispersion SMFs, dark-bright vector soliton formation can be
considered an intrinsic feature of cross-phase modulation in SMFs.

Based on our research, coherently coupled dark-dark and dark-bright vector solitons can be
relatively easily formed in fiber lasers with a small average cavity GVD. This could be related to
the lower soliton formation threshold in the smaller GVD, as in the case of scalar soliton formation.
To help readers understand our results, we have summarized the laser operation under different
average cavity dispersions in Figure 13. Based on our research, we can now explain the physical
mechanisms of the different laser operation states observed. Under weak net cavity birefringence,
coherent cross-polarization coupling can lead to either in-phase or anti-phase low frequency periodic
intensity modulations on the two orthogonal polarization components of the laser. Depending on
the strength of the cross-polarization coupling, these in-phase or anti-phase low frequency periodic
intensity modulations can then be shaped into dissipative dark-dark, bright-bright, or dark-bright
pulse pairs or vector solitons.
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5. Conclusions

In conclusion, we have presented detailed studies on the operation of a quasi-vector cavity fiber
laser. Experimentally, we found that under coherent cross-polarization coupling, the intensity of the
laser emissions along the two orthogonal polarization directions of the cavity could become either
in-phase or anti-phase low frequency periodically modulated. Depending on the laser operation
conditions, these low frequency periodic intensity modulations could further be shaped into dark-dark
or dark-bright dissipative vector solitons in the fiber lasers. Numerical simulations also confirmed
the experimental observations. Our research explained why, in a quasi-vector cavity fiber laser,
even without any real or artificial saturable absorber in the cavity, different types of dissipative vector
solitons can still be formed, as well as their formation conditions. Our results can provide a deep
understanding of the vector soliton formation that occurs in fiber lasers.
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