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Abstract: In clinical medical applications, sparse-view computed tomography (CT) imaging is an
effective method for reducing radiation doses. The iterative reconstruction method is usually adopted
for sparse-view CT. In the process of optimizing the iterative model, the approach of directly solving
the quadratic penalty function of the objective function can be expected to perform poorly. Compared
with the direct solution method, the alternating direction method of multipliers (ADMM) algorithm
can avoid the ill-posed problem associated with the quadratic penalty function. However, the
regularization items, sparsity transform, and parameters in the traditional ADMM iterative model
need to be manually adjusted. In this paper, we propose a data-driven ADMM reconstruction
method that can automatically optimize the above terms that are difficult to choose within an
iterative framework. The main contribution of this paper is that a modified U-net represents the
sparse transformation, and the prior information and related parameters are automatically trained
by the network. Based on a comparison with other state-of-the-art reconstruction algorithms, the
qualitative and quantitative results show the effectiveness of our method for sparse-view CT image
reconstruction. The experimental results show that the proposed method performs well in streak
artifact elimination and detail structure preservation. The proposed network can deal with a wide
range of noise levels and has exceptional performance in low-dose reconstruction tasks.

Keywords: sparse-view CT; image reconstruction; ADMM; iterative reconstruction; deep learning

1. Introduction

Computed tomography (CT) is a nondestructive testing method that is widely used
in medical, industrial, and material applications as well as other fields. With its variety
of applications in clinical medicine, the problem of X-ray radiation has aroused broad
public concern [1,2]. Following the as low as reasonably achievable (ALARA) guidelines,
researchers have aimed to use all kinds of techniques to reduce radiation doses while
maintaining image quality [3]. There are two strategies for radiation dose reduction. One
strategy is to minimize the X-ray flux by reducing the tube current and exposure time of
the X-ray tube [4]. The other approach is to reduce the number of projection views [5]. In
clinical medical applications, sparse-view CT is an effective method for realizing low-dose
scanning. In this work, we focus on methods for obtaining high-quality images from
sparse-view CT.

Sparse-view CT imaging methods can be divided into model-driven and data-driven
strategies [6]. Model-driven methods include the analytical reconstruction method and the
model-based iterative reconstruction method (MBIR). Analytical reconstruction methods,
such as the traditional filter back-projection (FBP) algorithm, have been widely used in
industrial and medical fields because of their fast speed [7]. However, the analytical method
requires a high degree of completeness of the projection information. Due to the incomplete
projection data on sparse-view CT, the method will produce severe streak artifacts, which
will reduce the image quality. Compared with the traditional analytic algorithm, the MBIR
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algorithm integrates prior information, suppressing the artifacts when the projection data
are incomplete. Therefore, the MBIR method is generally used when the projection data
are incomplete. Classical MBIR algorithms include the algebraic reconstruction technique
(ART) method [8], the simultaneous algebraic reconstruction technique (SART) method [9],
and the expectation maximization (EM) method [10]. However, when the projection
data are highly undersampled, the traditional MBIR algorithms have difficulty obtaining
satisfactory results.

Although the MBIR reconstruction method has the advantage of eliminating artifacts,
the regularization terms and parameters still need to be selected manually, which can
be cumbersome. In recent years, with the continuous development of deep learning,
data-driven methods have received a large amount of attention and made progress in
many fields [11,12]. Boublil et al. [13] utilized a convolutional neural network (CNN) to
integrate multiple reconstructed results. Wolterink et al. [14] proposed to train a noise-
reducing generator CNN together with an adversarial discriminator CNN to reduce noise
for low-dose CT. Jin et al. [15] proposed the FBPConvNet network, which combines the
FBP algorithm with a deep CNN to solve ill-posed inverse problems. Chen et al. [16]
used a residual code–decoder convolutional neural network (Red-CNN) for low-dose CT
imaging. Zhang et al. [17] combined a gradient descent network with a deconvolution
network to eliminate streak artifacts while maintaining a high degree of structural similarity.
Kang et al. [18] proposed a deep CNN based on a directional wavelet. Yang et al. [19]
used a generative adversarial network (GAN) to recover detailed information on images
reconstructed by the FBP method. Zhang et al. [20] developed an initializer for the conjugate
gradient algorithm. Although these deep learning methods have achieved good results,
they are all a type of post-processing method. The relationship between the projection
information and the reconstructed image information is not considered, which means that
and the consistency of the data is ignored.

With the development of compressed sensing (CS) theory [21], reconstruction al-
gorithms based on CS theory can now use image sparsity as prior information in the
reconstruction. CS theory overcomes the limitations of the Nyquist sampling theorem
and makes it possible to accurately reconstruct images from few projection data. The
iterative algorithms based on CS mainly include methods based on total variation (TV) and
dictionary learning. Using the sparsity of the l1 norm of the image gradient (also known as
the TV of the image), Sidky et al. [22] took the TV in the image as a regularization term and
proposed the total variation–projection onto convex sets (TV-POCS) image reconstruction
algorithm. Later, Sidky et al. [23] improved the algorithm and proposed the adaptive steep-
est descent projection onto convex sets (ASD-POCS) algorithm. To find a more suitable
sparse transformation and sparse representation method for CT images, scholars proposed
a method based on dictionary learning. By taking advantage of the fact that the image has
a large amount of redundant information, the overcomplete dictionary [24] was used to
obtain a sparse representation of the redundant information in the image. Chen et al. [25]
combined dictionary learning with the TV method for magnetic resonance imaging (MRI)
reconstruction and improved the image reconstruction quality. Xu et al. [26] incorporated
the dictionary learning method into the objective function model to better retain the de-
tailed information of the image. Although the reconstruction methods based on dictionary
learning can obtain higher-quality images, they are difficult to generalize because of the
large amount of computation.

To improve the reliability of the model, scholars have proposed the combination
of model-driven and data-driven methods to promote the consistency of data for CT
image reconstruction. The primary study on combining the data-driven model with
the analytical model is that of Wurfl et al. [27], who mapped the FBP algorithm into a
neural network, enabling joint learning of the compensation step projection and volume
domain. Lee et al. [28] complemented the missing projection information based on a U-Net.
Zhou et al. [29] proposed a cascading attention network of residual dense spatial channels
capable of generating high-quality reconstruction results.
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The combination of data-driven and MBIR models is a popular research topic among
scholars. For example, Gupta et al. [30] used the projection gradient descent method to
solve the least squares problem of the objective function and used a CNN to replace the
projection operator in the projection gradient descent algorithm. The LEARN method
proposed by Chen et al. [31] expands the iterative model into a deep learning network.
Specifically, they combined a generalized regularization term as a priori knowledge with
the least squares problem of the objective function and optimized it by applying a simple
gradient descent method. The CNN was used to represent the gradient expansion of the
generalized regularization term. All parameters except the system matrix were obtained by
training, and the method showed excellent performance in terms of reconstruction quality.

The above methods directly solve the quadratic penalty function of the objective
function. For inverse problems, there are many structural optimization problems in the
calculation due to the large-scale and ill-posed nature of the problems in practice, and
the ADMM is a better way to solve these problems [32]. The performance of the ADMM
algorithm is higher, especially in the case of non-smooth regularization (such as the l1 norm
penalty function) [33]. Based on the advantages of the ADMM algorithm’s performance,
Yang et al. [34,35] took the lead in developing the ADMM algorithm into a deep learning
framework for MRI image reconstruction. The proposed deep ADMM-Net framework can
learn the corresponding transforms, functions, and parameters adaptively. Li et al. [36]
proposed a robust composite regularization model based on the ADMM-Net framework to
exploit more prior knowledge and image features. For CT imaging, He et al. [37] used the
same framework [34] for low-dose CT image reconstruction. Zhang et al. [38] unrolled the
ADMM algorithm into a network and a mixed loss function was used to prevent images
from being oversmoothed. Wang et al. [39] used the ADMM algorithm to decompose a
regularization model to reduce artifacts and avoid the manual selection of parameters
and regularization terms. These methods confirm the advantages of the model of the
ADMM framework. The ADMM iterative model was used as the backbone architecture,
and the key components were replaced by networks to avoid having to manually adjust the
regularization terms, the sparsity transform, and the parameters. In particular, searching
for the best transform domain is an active research area because a sparser representation
usually leads to a higher reconstruction accuracy.

However, none of the above methods train the sparsity transform directly. In [38],
the authors did not train the sparsity transform but fixed the sparsity transform to a tight
wavelet frame. In [34–36], the authors only trained the coefficients of the DCT combination.
In [37,39], the authors used a deep network to replace parts of the formula, such as the
regularization term gradient [37], and a specific ADMM unfolding step [39]. Differently
from the algorithms mentioned above, the proposed ADMM-SVNet network directly trains
the most suitable sparse transform through the network, which increases the accuracy and
robustness of the methods. In the training process, the sparsity transform and parameters
are learned adaptively, thereby making the reconstruction network more accurate, effective,
and robust.

The rest of the paper is organized as follows. Section 2 introduces the proposed
reconstruction method. The experimental steps and results are described in Sections 3
and 4, respectively. A discussion and our conclusions are presented in Section 5.

2. Methods

In this work, we aimed to perform accurate, effective, and robust CT image reconstruc-
tion with an ADMM-based network. In the following, we first describe the Total Variation
(TV) model and its optimization method, which formed the basis of our research. Then, we
present details of the network architecture of the proposed ADMM-SVNet network and the
adopted techniques.
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2.1. Total Variation (TV) Method

CT projection can be mathematically formulated as a linear equation:

Ax = y (1)

where A is the system matrix, x is the unknown image to be reconstructed, and y represents
the projection data measured by detectors at various projection angles.

If a set of projections is complete without a significant amount of noise, Equation (1)
can be analytically inverted with the FBP algorithm in a fan-beam geometry [40]. However,
in undersampled problems, infinite solutions to Equation (1) exist. The ART algorithm
and its variations can obtain the solution closest to the initial guess. To obtain a reason-
able approximated solution, various regularization-based optimization models have been
proposed. For simplicity, the regularization-based reconstruction model can be expressed
as:

x = argmin
x

E(x) = argmin
x

1
2
‖Ax− y‖2

2 + λR(x) (2)

where || · ||22 denotes the l2 norm. The first term is used for data fidelity, which addresses
the consistency between the reconstructed x and projection data y. The second term is used
for regularization, and λ is the regularization parameter that balances the fidelity term and
the regularization term.

In most cases, the gradient of the image is zero in the flat region and nonzero at the
edges, so the gradient is very sparse. The l1 norm applied to the gradient image as the
regularization term is known as the TV. Here, we use the definition of the anisotropy of the
TV, and the regularization term of Equation (2) can be formulated by:

R(x) = ‖x‖TV = ∑
j
‖Djx‖1 (3)

where Dj is the difference operator in the direction of j. In the two-dimensional case, D1 and
D2 represent the horizontal and vertical difference operators, respectively. || · ||1 denotes
the l1 norm.

2.2. ADMM Algorithm for an Optimized Model

In this work, we adopted the model given in Equation (4) as our general framework
for sparse-view CT image reconstruction. Despite the intuitive appeal and simplicity of
the quadratic method of the framework, the ADMM method is generally preferred. In
general, the subproblems are not difficult to solve, and the introduction of multipliers
avoids ill-conditioning of the subproblems. Therefore, the ADMM method is the proper
method for solving the optimization problem in Equation (4).

x = argmin
x

1
2
‖Ax− y‖2

2 + λ‖Dx‖1 (4)

where D is the sparse transformation of images. To simplify the problem, we introduce an
auxiliary variable z for x. Then, Equation (4) is equivalent to:

x = argmin
x

1
2
‖Ax− y‖2

2 + λ‖z‖1 s.t. z = Dx. (5)

The augmented Lagrangian function can be written as:

Lρ(x, z, α) =
1
2
‖Ax− y‖2

2 + λ‖z‖1+ <α, Dx− z> +
ρ

2
‖Dx− z‖2

2 (6)

where α is the Lagrangian multiplier and ρ is a penalty parameter. The symbol <α, Dx-z>
denotes the inner product operation. To solve the optimization problem in Equation (6),
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the ADMM algorithm is used to separate variables x, z, and α. Therefore, each variable
corresponds to a subproblem and alternately minimizes {x, z, α}. Equation (6) can be
decomposed into three subproblems as follows:

min
x

1
2‖Ax− y‖2

2+ <α, Dx− z> + ρ
2‖Dx− z‖2

2

min
z

λ‖z‖1+ <α, Dx− z> + ρ
2‖Dx− z‖2

2

min
α

< α, Dx− z >

(7)

The subproblems are solved with the gradient descent algorithm. Using the scaled
Lagrangian multiplier β = α/ρ, the corresponding ADMM optimization procedure can be
expressed as follows:

x(n) = x(n−1) − ηρDT(Dx(n−1) + β(n−1) − z(n−1))− ηAT(Ax(n−1) − y)
z(n) = z(n−1) + ϕρ(Dx(n) + β(n−1) − z(n−1))− ϕλsgn(z(n−1) )

β(n) = β(n−1) + γ(Dx(n) − z(n))
(8)

where η, ϕ, and γ are the step sizes of the gradient descent algorithm for the three subprob-
lems that need to be manually selected. In CT imaging, the ADMM algorithm usually needs
to run hundreds of iterations to obtain satisfactory reconstruction results. To overcome
these difficulties, we propose an ADMM-based network.

2.3. Proposed ADMM-Based Network

To solve the optimization problem with the ADMM algorithm as expressed in Equation (8),
several parameters (i.e., {η, ρ, ϕ, γ}) need to be manually selected, and the sparse trans-
formation of TV-based methods should be explicitly handcrafted and cannot be used for
all kinds of images in different applications [31]. Therefore, in this paper, we propose an
ADMM-based network to optimize the sparse transformation and the parameters in order
to reconstruct high-quality CT images. The proposed network is shown in Figure 1.
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Figure 1. The overall structure of our proposed network. The modules with the three different colors
correspond to layer(X(n)), layer(Z(n)), and layer(β(n)). Each ADMM iteration of the network consists
of these three types of layers.

We unified the parameters in Equation (8) in order to simplify the iteration process.
The product of the two parameters was simplified to one parameter, which is convenient
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when training the network and improves the reconstruction efficiency. Specifically, θ = η ρ,
ψ = ϕ ρ, and ϕ = ϕ λ. After these modifications, Equation (8) can be summarized as follows:

x(n) = x(n−1) − θDT(Dx(n−1) + β(n−1) − z(n−1))− ηAT(Ax(n−1) − y)
z(n) = z(n−1) + ψ(Dx(n) + β(n−1) − z(n−1))− ϕsgn(z(n−1) )

β(n) = β(n−1) + γ(Dx(n) − z(n))
(9)

The proposed method uses two modified U-net networks to replace D and DT. Specifi-
cally, we used two sets of U-Net networks with the same structure but different random
initial values to replace D and DT. The gradient operator in the traditional TV-based re-
construction algorithm cannot express the edge and texture details well. In addition to the
TV-based method, other methods can be used to represent the image sparse transformation,
such as the dictionary [41] and wavelet-based [42] sparse representation methods. For im-
ages with different characteristics, different sparse transforms need to be manually selected.
CNN-based networks give an outstanding performance in various imaging problems [43].
CNNs are capable of learning multiscale image features from large datasets with a cascade
of simple modules. Among these CNN methods, because of the encoding and decoding
structure with skip connections, the U-net [44] is capable of extracting more features from
different layers.

To this end, a modified U-net network was used to represent the sparse transformation
in this study. The architecture of the proposed modified U-net network is shown in Figure 2.
The operators D and DT in Equation (9) are regarded as two U-net architectures. Through
training, the network learns the sparse transformation and all parameters adaptively.
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Figure 2. The structure of the proposed network, where the numbers in each layer indicate the shape
of its output. Conv, convolution layer; DeConv, deconvolution layer; BN, batch normalization; ReLU,
rectified linear unit.

As shown in Figure 2, the modified U-net consists of a reshaping operation, a con-
volution layer, a batch normalization layer, a rectified linear unit (ReLU), a max pooling
layer, a deconvolution layer, and a skip connection layer. We made two changes to the
U-net’s architecture. First, to control the scale of the network, we reduced the depth of
the network and made the structure relatively compact, thus making the network more
suitable for processing images that are 256 × 256 pixels in size. Second, to better connect
the sparse transformation with other operations, we added reshaping operations to our
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network’s input and output. Since the other operations in Equation (9) are all for vectors,
the convolution layer is an operation on images.

The proposed network needs to optimize the operators D and DT (i.e., the parameters
of the U-net architecture, denoted by ΘD) and the parameter set {η, ψ, ϕ, γ} (denoted by
ΘP). All parameters Θ = {ΘD} ∪ {ΘP} are optimized by minimizing the loss function’s mean
squared error (MSE):

E(Θ) =
1
N

N

∑
i=1
‖xi(Θ)− xi

gt‖2
2 (10)

where xgt is the corresponding ground truth image and N is the number of image pairs
used to train the network.

3. Experimental Steps
3.1. Training Details

In our network, we optimized the loss function using the Adam algorithm [45]. During
the training of the network, we initialized the parameters ΘD = {filter size = 3 × 3, number
of filters = 32}, and set the initial values of the parameter set ΘP = {η = 2−5, ψ = 2−7, ϕ = 2−7,
γ = −10−5}. Compared with ΘD, the order of magnitude of ΘP is quite small, so there is
an imbalance in the process of training the network. Therefore, to fully train the network
on ΘD and ΘP, we set different learning rates for these parameter sets. In the training
process, if the validation loss remained unchanged for five epochs, the learning rate was
reduced by a factor of 2. Specifically, the initial learning rate of ΘD was set to 10−4 and
slowly decreased to 3 × 10−6. The learning rate of ΘP was set to 10−8 and slowly decreased
to 3 × 10−10. The mini-batch size was set to 5. The number of ADMM iterations (stages)
was set to 20. The initial input x(0) was set to 0. Our network was trained using TensorFlow
2.2 and an Nvidia Titan RTX graphics card.

We selected three metrics to evaluate the reconstruction quality, namely the root mean
square error (RMSE), the peak signal-to-noise ratio (PSNR), and the structural similarity
index measure (SSIM) [46].

3.2. Dataset

To evaluate the network’s performance, we used open-access datasets authorized
by the Mayo Clinic from “the 2016 NIH–AAPM–Mayo Clinic Low-Dose CT Grand Chal-
lenge” [47]. These datasets contain 5936 CT images from 10 patients with a resolution
of 512 × 512, and the pixel size is 1 mm2. The original projection data could not be di-
rectly used for the fan-beam CT image reconstruction because they were collected using
a helix trajectory. As shown in Table 1, the sparse-view projections in our experiments
were simulated from NDCT images that were downsampled to a size of 256 × 256 pixels.
We performed forward projections of fan-beam scanning from the NDCT images for 32-,
64-, and 128-degree views. The distance from the X-ray source to the detector arrays was
1320.5 mm, the distance from the X-ray source to the center of rotation was 1050.5 mm, and
we used 512 linear detectors with a bin size of 0.127 mm.

Table 1. Data acquisition parameters.

Parameters Value

1 Distance from the X-ray source to the detector arrays 1320.5 mm
2 Distance from the X-ray source to the center of rotation 1050.5 mm
3 Number of detectors 512
4 Detector pixel size 0.127 mm
5 Reconstruction size 256 × 256
6 Pixel size 1 mm2

The reference images were the 100 KV NDCT scans reconstructed with a thickness of
1 mm and downsampled to a size of 256 × 256. The images of eight patients were used for
training, and the images of the other two patients were used for verification and testing. In
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total, 3360 data pairs were used, in which 2240 data pairs were selected for training, and
the remaining 1120 data pairs were used for verification and testing.

3.3. Comparison Methods

We compared our network against six reconstruction algorithms, including FBP [48],
ART [8], ART-TV [22], TVAL3 [49], FBPConvNet [15], and LEARN [31]. The FBP algorithm is
the most widely used analytic reconstruction algorithm, while ART is the most-used classic
iterative algorithm for sparse-view reconstruction. ART-TV is an improvement on the ART
algorithm that introduces image sparsity as prior information. The TVAL3 algorithm uses the
ADMM algorithm to solve the constrained TV minimization CT model and was shown to have
a better convergence speed and reconstruction effect than the other methods. The parameter µ
was set to 210, and the parameter β was set to 27. In addition, we also chose two state-of-the-art
deep-learning-based methods. FBPConvNet is a sparse-view CT postprocessing method based
on a CNN. LEARN is a reconstruction algorithm based on a CNN, and its reconstruction effect
is the best of all the methods. To make a fair comparison, the deep-learning-based methods
were all trained the same dataset. The parameters were selected through experimentation to
produce the best performance. Specifically, for the LEARN method, the number of filters was
set to 48, the kernel size was set to 5, the number of iterations was set to 50, and the initial input
to the network was set to 0. The initial learning rate was set to 10−4 and slowly decreased to
10−6. For the FBPConvNet method, the kernel size was set to 3, the initial learning rate was
set to 10−4 and slowly decreased to 10−6, and the initial input to the network was set to the
FBP result.

3.4. Robustness Validation

To verify the robustness of the proposed network to noise, we added different levels
of Poisson noise to the test set for the 32-degree data. The noise was added according to the
following formula [50]:

bi = Poisson
{

I0e−yi
}

(11)

where bi is the detector measurement along the ith ray, I0 is the blank scan factor, and yi
is the line integral of the attenuation coefficients along the ith ray. In our experiment, the
blank scan factor I0 was set from 1 × 107 to 1 × 105.

3.5. Low-Dose Reconstruction

To further verify the universality of the algorithm, we extended the sparse-view CT
reconstruction task to a low-dose reconstruction task. We simulated low-dose projection
data from their normal-dose counterparts as performed in 3pADMM [37]. Noise was
added to the normal-dose sinogram as follows (I0 = 5 × 104, σe

2 = 10, approximately
corresponding to the noise level acquired with a 20 mAs tube current):

noisei = Poisson
{

I0e−yi
}
+ Normal(0, σe

2) (12)

where σe
2 is the variance in the electronic background noise. To evaluate the performance

of our network under a low-dose CT projection, we chose 3pADMM for comparison. For
a fair comparison, we trained our network on the same training dataset as that used by
3pADMM. The total number of training samples was 2378 data pairs, which is consistent
with [37].

4. Results
4.1. Visualization-Based Evaluation

To verify the performance of our network, we evaluated the network on the test
dataset. Figure 3 shows the images that were reconstructed from 32 views using different
methods. Since the projection is extremely sparse, the traditional reconstruction algorithms
have difficulty obtaining detailed information as shown in Figure 3b–e. The result of
the FBP algorithm has very serious streak artifacts. The results of the ART and ART-TV
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algorithms also have streak artifacts, and the reconstructed images are very blurry. The
TVAL3 method suppresses the artifacts but the result is too vague to show details. The
deep learning methods all achieve better results as shown in Figure 3f–h. The FBPConvNet
method suppresses the streak artifacts, and the edges of most organs can be seen but they
are blurry. However, many important details are smoothed out. In Figure 3g, the structure
in the reconstruction results of the LEARN algorithm is complete and clear, and most of the
details have been preserved. Although the LEARN algorithm reconstructed the structure,
the details remain very blurry. The boundary of the image reconstructed by our method
is clearer than that reconstructed by the LEARN algorithm. In addition, the black dots
marked by the blue arrows were only reconstructed by our method. Figure 3h shows that
our network obtained the best results as it presents the most details and the least difference
from the reference image. To further demonstrate the ability of our method to preserve the
structure, the horizontal profiles are shown in Figure 4. It is clear that our method is the
most consistent with the reference image. The differences between our network and the
LEARN method are marked by black arrows.
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Figure 3. Images reconstructed (from 32 views) using various reconstruction methods. (a) The
reference image versus the images reconstructed using (b) FBP, (c) ART, (d) ART-TV, (e) TVAL3,
(f) FBPConvNet, (g) LEARN, and (h) our network. The profiles along the blue line are shown in
Figure 4. The red box indicates the ROI, which is magnified. The display window is [−150, 250] HUs
in size.

Figures 5 and 6 show the reconstruction results and the horizontal profiles from 64
views, respectively. The reconstruction results significantly improve as the viewing angle
increases. The reconstruction results obtained by the FBP, ART, and ART-TV algorithms
still have noticeable streak artifacts. The result of the FBP algorithm has severe streak
artifacts, while the results of the ART and ART-TV algorithms have relatively few streak
artifacts. The TVAL3 algorithm eliminates most of the artifacts and provides more detailed
information. The FBPConvNet algorithm still fails to reconstruct the small details with
a lower contrast. The images obtained by the LEARN network and our algorithm have
been well reconstructed, most of the details can be seen, and the regions with low contrast
have been reconstructed very well. To better compare the differences between the two
algorithms, the gray curve shown in Figure 6 shows that the image reconstructed by our
network is closer to the ground truth image and more comprehensively displays the details.
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Figure 4. Horizontal profiles along the blue line shown in Figure 3a of the reference image versus the
images reconstructed (from 32 views) using (a) FBP, (b) ART, (c) ART-TV, (d) TVAL3, (e) FBPConvNet,
(f) LEARN, and (g) our network. The differences between our network and the LEARN method are
marked by black arrows.
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Figure 5. Images reconstructed (from 64 views) using various methods. (a) The reference image
versus the images reconstructed using (b) FBP, (c) ART, (d) ART-TV, (e) TVAL3, (f) FBPConvNet,
(g) LEARN, and (h) our network. The profiles along the blue line are shown in Figure 6. The red box
indicates the ROI, which is magnified. The display window is [0, 1100] HUs in size.

For the reconstruction results from 128 views, the results of each algorithm have
been significantly improved as shown in Figure 7. Only the result of the FBP method
contains some obvious artifacts. The results of the ART and ART-TV algorithms still
contain a small number of streak artifacts. The TVAL3 method eliminates most of the
artifacts, and only some of the details have been smoothed out. The FBPConvNet algorithm
overly smoothened the region in the middle of the image, and subtle details cannot be
reliably obtained. The differences between the LEARN network and our network are barely
discernible to the naked eye, and both networks have well reproduced the details in the
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image. The gray curve in Figure 8 shows that our algorithm is the most consistent with the
gray curve of the reference image and that the reconstruction results are better than those of
the other algorithms, demonstrating the capacity of our network to preserve the structure.
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Figure 6. Horizontal profiles along the blue line shown in Figure 5a of the reference image versus the
images reconstructed (from 64 views) using (a) FBP, (b) ART, (c) ART-TV, (d) TVAL3, (e) FBPConvNet,
(f) LEARN, and (g) our network. The differences between our network and the LEARN network are
marked by black arrows.
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Figure 7. Images reconstructed (from 128 views) using various methods. (a) The reference image
versus the images reconstructed using (b) FBP, (c) ART, (d) ART-TV, (e) TVAL3, (f) FBPConvNet,
(g) LEARN, and (h) our network. The profiles along the blue line are shown in Figure 8. The red box
indicates the ROI, which is magnified. The display window is [200, 1000] HUs in size.
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Figure 8. Horizontal profiles along the blue line shown in Figure 7a of the reference image versus the
images reconstructed (from 128 views) using (a) FBP, (b) ART, (c) ART-TV, (d) TVAL3, (e) FBPConvNet,
(f) LEARN, and (g) our network. The differences between our network and the LEARN network are
marked by black arrows.

4.2. Quantitative and Qualitative Evaluation

Table 2 presents the average quantitative results from 32, 64, and 128 views. In general,
a smaller RMSE value represents a better reconstruction result, and the larger the PSNR and
SSIM values, the more similar the reconstruction result is to the reference image. Compared
with the LEARN algorithm, at 32, 64, and 128 views, our network achieves improvements
in the RMSE of 0.009, 0.002, and 0.001, respectively. In addition, the PSNR index increases
by 1.630, 2.351, and 0.954 and the SSIM increases by 0.055, 0.018, and 0.018, respectively.
It can be seen that the values of the three metrics used to evaluate our network are better
than those of the other algorithms. This result is consistent with the results of the visual
assessment.

Table 2. Quantitative results obtained for different methods.

Views Index FBP ART ART-TV TVAL3 FBPConvNet LEARN Our Network

32
RMSE 0.11 5 0.04 9 0.046 0.033 0.03 4 0.01 8 0.009
PSNR 19.013 26.267 26.685 29.547 29.479 39.209 40.839
SSIM 0.57 8 0.789 0.817 0.90 8 0.90 3 0.91 2 0.96 7

64
RMSE 0.07 5 0.034 0.03 2 0.01 6 0.020 0.0 10 0.00 8
PSNR 22.553 29.323 30.032 36.141 33.891 42.170 44.521
SSIM 0.630 0.87 5 0.89 8 0.959 0.935 0.9 70 0.98 8

128
RMSE 0.049 0.01 7 0.01 4 0.008 0.010 0.00 7 0.006
PSNR 26.141 35.675 37.098 41.670 39.824 45.131 46.085
SSIM 0.826 0.955 0.96 9 0.970 0.951 0.977 0.99 5

4.3. Model Structure Selection

Furthermore, we evaluated the impacts of several parameters of the network, including
the number of filters, the filter size, and the number of ADMM iterations (stages), on the
RMSE and PSNR. In this study, in all of the experiments, after optimizing the model on the
corresponding 32-view training dataset, the performance was evaluated on the 32-view
test set. The corresponding results are shown in Figure 9.
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Figure 9. Model structure selection based on quantitative measures of the RMSE and PSNR as
evaluated on the test dataset during training: (a) filter size; (b) number of filters; (c) number of stages.

(1) Impact of the Filter Size

We set the filter sizes to 3 × 3, 5 × 5, and 7 × 7, respectively, for testing. It can be seen
that the performance did not obviously improve as the filter size increased, but when the
filter size increased to 7, the values of the metrics began to decline, especially for PSNR.
Based on these results, we set the filter size of the network to 3 × 3.

(2) Number of Filters

We tested the cases where the number of filters was 64, 32, and 12, respectively. It
can be seen that the performance improved as the number of filters increased, but the
performance declined when the number of filters increased to 64. Based on these results, to
balance the reconstruction performance and the computing cost, the number of filters was
finally set to 32 in our network.

(3) Number of Stages

Finally, we evaluated the impact of the number of ADMM iterations (stages) on the
performance of the network. We set the number of stages to 10, 20, and 30. It can be
seen that the PSNR improved and the RMSE decreased as the number of stages increased.
The RMSE became worse mainly because the larger number of iterations increased the
computational burden on the network training, resulting in a slower decline in the RMSE.
In addition, the number of stages is proportional to the reconstruction time. Based on these
results, to balance the reconstruction performance and the time cost, the number of ADMM
iterations was finally set to 20 in our network.

4.4. Robustness Results

Figure 10 presents the results of our network for different noise levels and the absolute
residuals between the reconstructed image and the reference image at different noise levels.
Table 3 shows the test results on the RMSE, PSNR, and SSIM at different noise levels. As
shown in Figure 10, the performance of our network is quite stable and it can effectively
suppress noise. When I0 is greater than 5× 105, our network can effectively eliminate noise.
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When the noise level was higher than 1 × 105, the performance of our network began to
gradually deteriorate. These experimental results show that our network can deal with a
wide range of noise levels.
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Figure 10. Reconstructed results (from 32 views) and absolute residuals at different noise levels.
(a) The reference image, (b) our network result with I0 = 1 × 107, (c) the result with I0 = 5 × 106,
(d) the result with I0 = 1 × 106, (e) the result with I0 = 5 × 105, and (f) the result with I0 = 1 × 105.
The display window is [−150, 250] HUs in size. (g) The residual error between (b,a), (h) the residual
error between (c,a), (i) the residual error between (d,a), (j) the residual error between (e,a), and (k)
the residual error between (f,a). The display window is [−0.2, 0.2].

Table 3. Robustness analysis results for different noise levels.

Photon
Number 1 × 105 5 × 105 1 × 106 5 × 106 1 × 107

RMSE 0.0111 0.0089 0.0085 0.0083 0.0081
PSNR 39.0873 41.0521 41.4174 41.6286 41.7647
SSIM 0.9787 0.9850 0.9860 0.9867 0.9869

4.5. Low-Dose Reconstruction Results

Table 4 shows the low-dose reconstruction results of the normalized mean-square
error (NMSE), PSNR, and feature similarity (FSIM) [51]. Compared with the results in [37],
our results show more advantages in the NMSE, PSNR, and FSIM. It can be seen that our
network performs well in low-dose reconstruction tasks and has better performance than
the 3pADMM algorithm.

Table 4. Low-dose reconstruction results for different algorithms.

Methods NMSE PSNR FSIM

3pADMM(40) 0.018 39.242 0.948
Our Network 0.017 40.139 0.949

5. Discussion and Conclusions

In this paper, we studied the sparse-view CT reconstruction of medical images. Focus-
ing on the difficulties with the use of traditional model-driven imaging methods, we carried
out research on data-driven CT reconstruction methods. In this study, in order to overcome
the difficulty with choosing prior information and parameters in the model-driven recon-
struction method, an efficient reconstruction network based on the ADMM for sparse-view
CT images is proposed. The ADMM algorithm was expanded into a deep learning frame-
work, and the sparse transform of the image was represented by a modified U-net. The
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model parameters and the sparse transformation were simultaneously optimized in the
iterative framework. Compared with recent state-of-the-art reconstruction algorithms, our
proposed network showed superior performance in a visualization-based evaluation and
in terms of various evaluation metrics. Experiments were carried out under the condition
of increasing Poisson noise, and the robustness to noise was verified. Both the qualitative
and quantitative results indicate the effectiveness of our method for sparse-view CT image
reconstruction. Furthermore, we extended the sparse-view CT image reconstruction task to
a low-dose reconstruction task in order to verify the universality of our algorithm.

There are three main reasons for the promising performance of our reconstruction
method. First, we used the superior performance of the ADMM algorithm to optimize
the model. In cases of extremely sparse views (such as 32 views), our algorithm has
more obvious advantages than the other algorithms, and the intricate details are almost
completely retained. Second, by decomposing the formula, we trained a modified U-net to
obtain the sparse transformation and took full advantage of the capability of the U-net for
feature extraction. Finally, during the training process, the parameters of both the ADMM
algorithm and the modified U-net were simultaneously optimized, making these methods
more adaptive to the data.

However, there are some limitations to our approach. Due to the computing costs, our
network can only reconstruct images with a size of 256 × 256 pixels. In future work, we
will continue to optimize the model so that it can be applied to higher-resolution images.
We will consider the use of parallel acceleration on multi-GPU platforms to address data
and memory issues. In addition, the research presented in this paper was aimed at the
two-dimensional situation, so future research could generalize the algorithm to the three-
dimensional situation. Future research could also extend our network to other optimization
problems of multiple separable objective functions, such as image decomposition and
image denoising.
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