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Abstract: In this paper, an improved mathematical model is proposed by taking the factors of
high-energy photons and temperature into consideration, which is verified and explained by the
experimental data in our experiments and other papers. By fitting and analyzing the experimental
data, we can quantitatively determine the relationship between the pump power Pλ and the photon
frequency ν in the fiber core, the core area A and the temperature T of the fiber core and PD loss, and
explain the mechanism of the PD phenomenon to a certain extent. We believe that the excitation of
color centers by high-energy photons is the main reason for photodarkening. Furthermore, there is a
positive correlation between the power of high-energy photons and the photodarkening rate, and the
temperature is positively correlated with the saturated photodarkening absorption.
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1. Introduction

In 1988, Millar et al. [1] first discovered the phenomenon of photodarkening (PD)
in Tm-doped quartz fiber, and the effect of PD has attracted wide attention since. PD is
an important problem in fiber lasers. The characteristic of PD is broadband absorption
centered on the wavelength of visible light. The performance of PD is also related to
the preparation method of active fiber [2–7]. The darkening is a process of continuous
competition between PD and bleaching. PD is considered to be the relaxation process of a
statistical ensemble of micro-optical centers (PD precursor). These micro-optical centers
reversibly absorb the energy of high-energy photons and convert it into color centers (CCs),
resulting in additional PD-induced loss [8]. CCs can lead to additional absorption of a wide
spectrum centered on visible light, which reduces the power conversion efficiency of the
fiber laser and generates excess heat in the fiber laser [9,10].

High-energy photons directly interact with the fiber through the photoelectric effect,
Compton scattering and electron pair effect result in the ionization of electron–hole pairs
in the fiber. When electron–hole pairs are captured by intrinsic defects, doping defects,
impurity defects, and radiation-induced defects in fiber, a special point defect with an
effective charge will be formed. This defect will combine electrons and holes, resulting in
light absorption in the fiber. Because its absorption band usually falls within the visible
light range, it is called the color center (CC) [11,12].

In 2018, Röpke et al. [13] present a stretched exponential model of PD-induced loss.
In their model, the PD effect is treated as the relaxation process of the statistical ensemble
of micro-optical centers (PD complexes). These micro-optical centers (PD complexes) are
reversibly converted into CCs by the energy of pumping photons, resulting in measurable
PD loss. The next year, S. Jetschke et al. [14] from the same institute further improved
and verified the model. The PD parameters determined by fitting the measured curves
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with the stretched exponential function are linked to the activation and deactivation rates
of micro-optic centers (PD complexes). They linked the variation of the PD rate and the
equilibrium loss with pump power and inversion, and established a mathematical model.
However, this led to problems. According to [15,16], many PD phenomena are not directly
excited by the pump power, but are caused by CCs excited by high-energy photons which
are formed by a series of upconversion processes through pump power. Even the undoped
fiber can absorb X-rays and 200–220 nm ultraviolet rays and produce CCs [11]. Therefore,
to a certain extent, the inversion is not directly related to the PD phenomenon, but related
to the high-energy photons formed in the upconversion process induced by pump power.

In this paper, an improved mathematical model is proposed by taking the factors
of high-energy photons and temperature into consideration, and a physical quantity σ is
introduced by imitating the absorption and emission cross-sectional area in the laser energy
level system. It is also verified and explained through some experimental results. In addi-
tion, fitting analysis shows that the PD rate is related to the high-energy photons generated
by pump power upconversion, and it is proved that the temperature can significantly affect
maximum additional loss. Finally, we describe the PD experiment of Tm-doped photonic
crystal fiber, and further verify the fitting relationship between the maximum additional
loss and temperature, providing the additional absorption spectrum caused by PD.

2. Photondarkening Mechanism

As we all know, high-energy photons will produce CCs in matrices such as quartz
glass, which leads to absorption bands [15,16], and ultraviolet can also be used to inscribe
fiber Bragg gratings [17]. Therefore, CCs will appear in the optical fiber by using an
ultraviolet laser [18] or even an ultraviolet lamp [19,20]. The oxygen-deficient center (ODC)
in the germanosilicate glass fiber will release free electrons when irradiated by a 240 nm
light. The released free electrons are trapped near the GeO4 tetrahydrogen, forming a Ge (I)
CC with an absorption peak at 280 nm and an absorption spectrum range extending to the
near-infrared band, showing an obvious PD phenomenon [20]. In Yb-doped aluminosilicate
glass, a charge transfer (CT) band appears near 230 nm and the conversion of Yb3+ ions from
trivalent state to low valence state Yb2+ [4,19,21–25]. When stable Yb2+ is formed, free holes
are generated and excited to a higher energy level CT state, which leads to the formation of
CCs, resulting in additional losses at ultraviolet and infrared wavelengths [21,26,27]. Even
undoped glass can absorb X-rays and 200–220 nm ultraviolet rays to produce CCs, which
will greatly reduce the transmittance of the glass [11].

To sum up, we believe that when the laser works normally in an ordinary environment,
the CC is generated by the interaction between high-energy (short-wavelength) photons
and ions, atoms, or electrons in the crystal. This means that not all wavelengths leading
to PD (especially long waves) are directly involved in the generation process of CCs, and
the conversion process from low-energy photons to high-energy photons needs to be
performed first. In addition, there are different ways of generating high-energy photons in
a laser, mainly including excited-state absorption (ESA) [28], energy transfer upconversion
(ETU) [29], avalanche upconversion [29], and cooperative luminescence [30–32].

Due to the complex energy level structure of Tm ions, Tm ions are very easy to up-convert
the infrared pump light into blue and ultraviolet light [33,34]. The blue light was observed in
Tm-doped fiber pumped by laser sources ranging from 1.06 to 1.14 µm [5,28,35–37], which is the
1G4–3H6 transition of Tm ions produced by three-photon absorption. Through avalanche
upconversion and ETU, pumping with the wavelength of 790 nm can also produce blue
light in Tm-doped fiber [29]. This conclusion is also confirmed in our experiment, which
shows the spectrum of Tm-doped fiber pumped by laser at 793 nm in Figure 1. It is known
that Tm ions with 1G4 level exhibit a strong absorption band at approximately 488 nm and
Tm ions at 1G4 level can be excited to 1I6–3P0 levels by excited-state absorption (ESA), so as
to upconvert 488 nm radiation to ultraviolet source [38].
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Figure 1. The spectrum of Tm-doped fiber pumped by laser at 793 nm.

Compared with the Tm ion, the energy level structure of the Yb ion is simple. ESA or
the upconversion process cannot be used to explain the process of generating high-energy
photons in Yb-doped fiber lasers. However, the evidence shows that there are trace Tm ions
in Yb-doped fibers, which has a great influence on the PD generation process in Yb-doped
fiber [39]. Under the condition of the high-power pump Yb-doped fiber with a wavelength
of 977 nm, the cluster composed of three or four Yb ions can emit ultraviolet radiation.
Through cooperative luminescence, 500 nm radiation is produced by the simultaneous
de-excitation of two cluster ions emits [30]. In addition, some intrinsic defects in the fiber
can also absorb the pump power and produce high-energy photons [7]. In the process of
generating PD, the above processes are not independent and need to work together [40].

3. Model

Darkening is a process of continuous competition between PD and bleaching. In
this paper, a semi-empirical formula for the PD and bleaching process is established by
imitating a two-level laser system, as shown in Figure 2.
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Figure 2. The process of photodarkening and bleaching. N0 is the density of the photodarkening
precursor, Ncc is the density of the CCs, WPD is the photodarkening rate, and WB is the bleaching rate.

In Figure 2, N0(t) is the density of PD precursor that can produce CCs by photoionization.
Take E′- centers (≡ Si·), for example. E′- centers are generated in the following way [41,42]

≡ Si−O− Si ≡⇒≡ Si·+ ·O− Si ≡ . (1)
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The ≡ Si−O− Si ≡ is the PD precursor that can form CC. The generation rate of the
density of the CCs can be expressed as

dNcc

dt
= WPD N0(t)−WBNcc(t) (2)

N0(t) + Ncc(t) = N0(0), (3)

where Ncc(t) is the density of CCs varying with time t, and WPD and WB are the rate of PD
and bleaching; therefore, we assume

WPD =
Pλ(z)ϕ(r, φ)

Ahν
σN0 (4)

WB =
Pλ(z)ϕ(r, φ)

Ahν
σNcc + Q(T), (5)

where Pλ is the launched high-energy photon power in the core of the fiber. A is the
core area. h is the Planck constant. ν is the photon frequency. ϕ(r, φ) is the normalized
signal profile σN0 is the probability that the PD precursor of unit density is excited by one
photon. σNcc is the probability that CC of unit density is excited by one photon. Q(T) is the
temperature-dependent thermal bleaching rate. Then, the density of CCs can be obtained
by Formula (2)

Ncc(z, r, φ, T, t) =
∫ t

0

dNcc

dt
dt =

∫ t

0
[WPD N0(t)−WBNcc(t)]dt (6)

It is assumed that the extra absorption caused by the CC is directly proportional to the
density of the CCs, therefore we assume

αPD(t) = αλNcc(t), (7)

where aλ is the additional absorption coefficient at wavelength λ generated by the CC of
unit density. αPD(t) can be obtained from the measurement of the PD loss experiment. αλ is
measured by preparing a CC sample of known density. Q(T) can be obtained by a thermal
bleaching experiment. σNcc and σN0 can be obtained by bringing in Formulas (6) and (7)
with the above parameters.

By using a stretched exponential formalism with time-dependent rate coefficients,
Formula (1) describing the change in the density of the CC will be rewritten as [43,44]

dNcc

dt
= βtβ−1WPD

βN0(t)− κtκ−1WB
κ Ncc(t) (8)

where β and κ are the stretching parameters for photodarkening and photobleaching. The
stretching parameter β and κ was found to depend on the fiber type. When the pump
wavelength is far away from the wavelength where photobleaching can occur and the core
temperature is not enough to produce thermal bleaching, bleaching can be ignored, and
the formula can be rewritten as

dNcc

dt
= βtβ−1WPD

β[Ncc,max(T)− Ncc(t)], (9)

where Ncc,max(T) is the final equilibrium state of the density of the CCs related to the core
temperature [7,45]. Temperature is used to describe the degree of thermal movement of
microparticles, which has an important impact on the stability of PD precursors and CCs.
Integrate Formula (9) to obtain the stretched exponential function,

Ncc(t) = Ncc,max(T)
{

1− exp
[
−(WPDt)β

]}
(10)
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Therefore, we can obtain the formula of additional absorption of PD through
Formulas (7) and (10)

αPD(t) = αλNcc,max(T)
{

1− exp
[
−(WPDt)β

]}
= αPD,max(T)

{
1− exp

[
−(WPDt)β

]}
,

(11)

where αPD,max(T) is the maximum additional loss, WPD is the PD rate. It can be seen from
the formula that the additional loss αPD(t) is the stretched exponential function of the
maximum additional loss αPD,max(T) and the PD rate WPD.

If the specific value of Ncc,max(T) and the curve of additional loss caused by photo-
darkening under a certain power with time can be provided, σN0 can be obtained through
Equations (4) and (11). When σN0 is obtained, the time-dependent curve of additional loss
caused by photodarkening at different power levels can be predicted by Formulas (4) and (11).

4. Data Simulation

We digitize the experimental data in other research papers about PD under different
pump powers and use the above mathematical model for verification and interpretation.

In 2007, Koponen et al. [7] conducted PD rate measurement experiments using two
different Yb-doped fibers. The length of the sample fiber is 0.1 m, the probe light wavelength
is 633 nm, the pump light wavelength is 920 nm, and the maximum power is 10 W.

We digitize their experimental data, and convert the original transmission into addi-
tional loss (dB/m) at different pump powers, and fit it with Formula (11). As shown in
Figure 3, the colorful lines are plotted with experimental data, while the black lines are
plotted with fitting data.
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Since a water-cooling device is used in the experimental device to control the core
temperature and the data after loss saturation is not provided in the original paper, the
maximum additional loss is set to a constant value. For optical Fiber #1, when the maximum
additional loss αPD,max(T) is equal to 500 dB/m and stretching parameters β is equal
to 0.512, the calculated PD rates WPD under different pump powers and coefficient of
determination R2 are shown in Table 1.

Table 1. Calculated PD rates under different pump powers of Fiber #1.

Fiber #1 2 W 2.5 W 2.9 W 3.5 W 4.2 W 5.4 W 6.7 W

WPD (s−1) 1.75 × 10−5 3.01 × 10−5 6.23 × 10−5 2.71 × 10−4 6.25 × 10−4 1.58 × 10−3 3.25 × 10−3

R2 (%) 99.18 99.09 99.75 97.22 98.84 99.26 99.82
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For optical Fiber #2, when the maximum additional loss αPD,max(T) is equal to
350 dB/m and stretching parameters β is equal to 0.66, and the calculated PD rates and
coefficient of determination R2 under different pump powers are shown in Table 2.

Table 2. Calculated PD rates of different pump powers of Fiber #2.

Fiber #2 2 W 2.5 W 3.2 W 4 W 5 W 6.3 W 7.9 W 10 W

WPD (s−1) 1.46 × 10−5 5.22 × 10−5 2.32 × 10−4 4.74 × 10−4 8.33 × 10−4 1.42 × 10−3 1.93 × 10−3 3.56 × 10−3

R2 (%) 99.15 99.72 99.72 99.57 99.56 99.68 99.12 99.26

According to Formula (4), the WPD is positively proportional to the high-energy photon
power Pλ in the core. The logarithmic coordinate curve between the WPD and the pump
power (920 nm) is shown in Figure 4, in which the discrete points are the experimental data
and the straight lines are the fitting curve.
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Figure 4. Logarithmic relationship between WPD and Ppump.

When the pump power is low, the linearity of the logarithmic relationship between
WPD and Ppump is poor, and the deviation between the experimental data and the fitting
curve is large. When the pump power is high, the logarithmic relationship between them
tends to be stable, and the linearity gradually appears. The analysis shows that when
the power is low, the particle number distribution in the fiber is complex and various
multiphoton processes will occur. When the power is high, the particle number distribution
is gradually stable, and the energy transition channel is also stable. Therefore, we only
fit the data obtained under the condition of the high-power pump (>3.2 W). The slope of
the logarithm curve of WPD of Fiber #1 and Fiber #2 under higher Ppump is 3.822 and 2.297.
Since the WPD is directly proportional to the Pλ participating in PD according to Formula (4),
the Pλ is directly proportional to the 3.822 and 2.297 powers of the Ppump in Fiber #1 and
#2, respectively. Therefore, the PD of Fiber #1 can be interpreted as a four-photon process.
Figure 5 is a simplified diagram of Yb3+ and Tm3+ energy levels in fiber.
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Because the concentration of Tm3+ in TDF is minimal and the absorption cross-
sectional area of Yb3+ is large, almost all the energy of the pump is absorbed by Yb3+,
and then the energy will be transferred to Tm3+ energy level, to form an upconversion
transition channel. Under the pump laser with the wavelength of 920 nm, Yb3+ in the
ground state is excited to the 2F5/2 level, and the energy is transferred to a nearby Tm3+ in
the ground state through energy transfer to excite it to the 3H5 level. Because the lifetime
of 3H5 level is very short, it will be transited to 3F4 level without radiation soon. Another
Yb3+ in the excited state excites Tm3+ from 3F4 to 3F2 and 3F3 levels through energy transfer.
Through repeating the above steps, Tm3+ is excited to a higher energy level [46].

For Fiber #2, the Pλ in the core is approximately the square of Ppump. Therefore, we
assume that high-energy photons are generated by the frequency doubling of the pump laser.

In 1995, Laperle et al. [5] reported the photoinduced absorption of four different Tm-
doped ZBLAN fibers under a 1.12 µm laser. They used a 1.12 µm Nd: YAG laser as the
pump and a 488 nm argon-ion laser as the probe to monitor the evolution of PD. The small
probe light (2 µW) mixed with noise such as pump and ASE is amplified and extracted by
a lock-in amplifier. The parameters of four different ZBLAN fibers are shown in Table 3.

Table 3. The parameters of four different ZBLAN fibers.

Fiber Thulium Concentration (Parts in 106) Core Diameter (µm) Numerical Aperture

A 500 3 0.21
B 1000 3 0.21
C 1000 1.7 0.39
D 11,700 3 0.21

We also digitized their experimental data, and converted the original transmission
into additional loss (dB/m) at different pump powers, and fitted it with Formula (11). As
shown in Figure 6. The colorful lines are the plotted experimental data while the black lines
are plotted by fitting data.
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Because the fitting results of Fibers A–C show that no matter how the pump power
varies, WPD is almost unchanged. Therefore, we speculate that the low doping concentra-
tion of thulium in Fibers A–C makes the upconversion of the 1.12 µm pump laser impossible
to produce high-energy photons, leading to photodarkening. However, according to [4,47],
a 488 nm laser can lead to photodarkening. Therefore, we speculate that the photodark-
ening is caused by the 488 nm probe laser, and the very low power (2 µW) of the 488 nm
probe laser just explains the very small and constant photodarkening rate WPD of Fibers
A–C. For Fibers B and C, their Tm3+ concentrations are the same but their core diameters are
different. It can be seen from Formula (4) that the WPD is inversely proportional to the core
area A. In addition, the smaller the A, the higher the energy density of the pump, and then
more launched power is prone to upconversion, which explains that the WPD of Fiber C is
greater than that of Fiber B. The average value of the WPD of Fibers A–C is shown in Table 4.

Table 4. The average value of WPD of optical Fibers A–C.

Fiber A B C

WPD 4.939 × 10−3 7.431 × 10−3 7.021 × 10−2

Since the Tm3+ concentration of Fiber D is one order of magnitude higher than that
of other sample fibers, a great upconversion phenomenon occurs in the fiber, and the
slope of the logarithmic curve of WPD versus Ppump of Fiber D is 3.068. Therefore, the PD
phenomenon of Fiber D can be explained as a three-photon process. Figure 7 is a logarithmic
diagram of optical Fiber D. The WPD of Fiber D at the power of 46, 60, and 79 mW is 0.02544,
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0.04277, and 0.1328 s−1, respectively. In addition, since almost no photodarkening occurs
below the pump power of 17 mW, this set of data are abandoned in plotting. According to
the above data, when the pump power of the Fiber D experiment is much lower than that
of other fiber experiments, WPD is also much higher than that of other fiber experiments.
Therefore, we speculate that because the Tm3+ concentration of Fibers A–C is too low, it is
difficult for high-energy photons to be generated by upconversion of pump happening in
Tm ion, and the light involved in PD is 488 nm probe laser rather than 1.12 µm pump laser.
Furthermore, the probe power is very low (2 µW), which just explains the WPD of Fiber D
is much higher than that of Fibers A–C.
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According to Formula (11), the αPD,max(T) is related to the core temperature T. Since
there is no temperature control device in the experiment, the main heat source is from
the pump. From Figure 8, T is found to have a positive correlation with αPD,max(T). T is
calculated by the finite element method.
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Similar results are also obtained from [48]. In 2005, Koponen et al. measured the
variation of additional loss with time under different pump powers in a Yb-doped fiber.

We digitized their experimental data, and converted them into the additional loss
of the sample fiber (1 m) at different Ppump, and fitted it with Formula (11), as shown in
Figure 9. We also found that T is directly proportional to αPD,max(T) (Figure 10).
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5. Photodarkening Experiment

The PD loss and absorption spectrum are measured using the settings shown in
Figure 11. A probe laser at 532 nm or white light is coupled to a self-made Tm-doped
photonic crystal fiber (PCF). The two ends of the sample optical fiber are spliced with the
transmission fiber. The 793 nm pump light is coupled into the sample fiber by a beam
combiner, and the probe light or white light is measured through a power meter and
spectrometer. The sample fibers are self-made Tm-doped PCF (the doping concentration
of thulium ion is 0.075 mol%) with a 28.3 µm core diameter and an octagonal inner cladding
diameter of 274.2 µm. In order to ensure the same degree of darkening in the sample fiber, the
length of the fiber sample was 10 cm long (Figure 12). With this experimental device, by turning
on/off the probe and the white light source (WLS) and switching the power meter (PM) and the
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spectrometer (OSA) mutually, it can be freely switched between the additional loss measuring
device and the absorption spectrum measuring device at a characteristic wavelength.
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Through the experimental device, we obtained the curve of additional loss with time
under different power levels (Figure 13) and fit it with Formula (11).
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When the β is equal to 0.5396, the calculated αPD,max(T), WPD and R2 of different
pump powers are shown in Table 5.

Table 5. Calculated αPD,max(T), WPD and R2 of different pump powers of DCF.

Ppump 10 W 12.5 W 15 W 17.5 W

αPD,max(T) (dB/m) 13.26 17.23 24.42 31.43
WPD (s−1) 4.953 × 10−3 4.964 × 10−3 4.81 × 10−3 4.645 × 10−3

R2 (%) 84.14 89.09 88.66 94.96

From the above data, we can see that the photodarkening rates (WPD) under different
powers in the experiment are almost the same. It is thought that because the Ppump is
too high, the Pλ obtained by upconversion has reached saturation, so the WPD is almost
unchanged. By simulating the core temperature under different power levels, we also find
the exponential relationship between T and αPD,max(T) (Figure 14).
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Figure 14. Relationship between core temperature and maximum additional loss. a and b in the
figure is the fitting parameter.

The periodic fluctuation of the curve in Figure 13 is caused by the jittering of water-
cooling temperature. When the temperature of the water cooler used in this experiment is set
to be 15 ◦C, the real temperature will fluctuate periodically between 12 and 15 ◦C in a cycle of
approximately 9 min, which is consistent with the fluctuation of additional loss. As can be
seen from Figure 15, the additional loss increases in real time with the rise in temperature.
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Figure 15. The curve of additional loss and water-cooling temperature with time.

By measuring the transmission spectrum of the white light passing through it before
and after PD, respectively, and subtracting the transmission spectrum after PD from the
transmission spectrum before PD, the absorption spectrum of the sample PCF can be
obtained. The results are shown in Figure 16. The absorption spectrum shows that the
color center produced by the sample PCF has strong absorption in the visible range, and
the highest peak is at 579.6 nm.
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6. Conclusions

An improved mathematical model for simulating and fitting the PD phenomenon is
proposed by considering the factors of high-energy photons and temperature. Through
fitting and analyzing the experimental data, we can quantitatively determine the relation-
ship between different experimental parameters and PD-induced loss, and explain the
mechanism of the PD phenomenon to a certain extent. It is considered that the maximum
additional loss is a parameter related to the core temperature in our mathematical model,
and it rises with the increase in temperature. The PD rate is directly proportional to the high-
energy photon power, and the probability of exciting the unit density PD precursor by one
photon, and inversely proportional to the core area. The PD phenomenon is an important
problem in fiber lasers. Therefore, establishing an accurate and effective PD mathematical
model is an important means to understand and suppress the PD phenomenon. However,
this model still needs more comprehensive and targeted experiments for verification.
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