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Abstract: 99Mo/99mTc generators are mainly produced from 99Mo of high specific activity generated
from the fission of 235U. Such a method raises proliferation concerns. Alternative methods suggested
the use of low specific activity (LSA) 99Mo to produce 99mTc generators. However, its applicability is
limited due to the low adsorptive capacity of conventional adsorbent materials. This study attempts
to investigate the effectiveness of some commercial metal oxides nanoparticles as adsorbents for LSA
99Mo. In a batch equilibration system, we studied the influence of solution pH (from 1–8), contact
time, initial Mo concentration (from 50–500 mg·L−1), and temperature (from 298–333 K). Moreover,
equilibrium isotherms and thermodynamic parameters (changes in free energy ∆G0, enthalpy change
∆H0, and entropy ∆S0) were evaluated. The results showed that the optimum pH of adsorption ranges
between 2 and 4, and that the equilibrium was attained within the first two minutes. In addition, the
adsorption data fit well with the Freundlich isotherm model. The thermodynamic parameters prove
that the adsorption of molybdate ions is spontaneous. Furthermore, some investigated adsorbents
showed maximum adsorption capacity ranging from 40 ± 2 to 73 ± 1 mg Mo·g−1. Therefore, this
work demonstrates that the materials used exhibit rapid adsorption reactions with LSA 99Mo and
higher capacity than conventional alumina (2–20 mg Mo·g−1).

Keywords: LSA 99Mo; thermodynamic parameters; solid-phase extraction; isotherm; metal ox-
ides NPs

1. Introduction
99Mo/99mTc radioisotope generators have a growing importance in nuclear medicine

investigations. They are the primary source of supplying 99mTc radionuclide for diagnostic
purposes [1–3]. 99mTc is considered the workhorse of all nuclear medicine applications [4,5].
It is involved in more than 80% of all in vivo diagnostic procedures because of its ideal
nuclear characteristics, such as the short half-life of 6 h, absence of beta particles, and
emission of a mono-energetic photon with low energy at 140 keV [3,6]. Therefore, this
leads to less radiation exposure dose to the patients, and it produces a high-quality image
for better diagnosis aspects. Furthermore, its unique labeling chemistry allows the use of
a wide range of 99mTc-labelled compounds to visualize different body organs [7,8]. For
instance, 99mTc-DTPA and 99mTc-MAG3 are used to monitor renal functions [9]. In addition,
99mTc-tetrofosmin, 99mTc-sestamibi, and 99mTc-teboroxime are utilized for the diagnosis
of cardiac disease [10]. Moreover, 99mTc-lidofenin is applied for liver diagnostics [11].
Furthermore, 99mTc-medronate, 99mTc-propyleneamineoxime, and 99mTc-MDP (methylene
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diphosphonate) are involved in skeletal imaging, cerebral perfusion, and diagnosis of bone
metastases, respectively [12–15].

Among the developed 99Mo/99mTc generators, the chromatographic column type is
the most widely used system [3,16]. This system is based on adsorbing 99Mo on a column
filled with a suitable material from which 99mTcO4

− can be easily eluted while 99Mo remains
adsorbed [3]. The differences between these generators include the column material and
the origin of the parent, 99Mo. The main practical difficulties linked to the preparation of
99Mo/99mTc generators are the low sorption capacity of the bulk conventional inorganic
sorbents usually used. These sorbents have low sorption capacity (2–20 mg Mo/g) due
to the low availability of active sites and relatively limited surface area [3]. Consequently,
such sorbents require a parent of high specific activity to prepare a useful generator of a
proper radioactivity level. A high specific activity parent can be produced from the fission
of 235U. Fission-produced 99Mo faces some critical difficulties. For example, sophisticated
infrastructures and well-qualified personnel are needed to separate and purify 99Mo from
the irradiated 235U target and other fission products. In addition, a considerable level
of radioactive waste is generated during the manufacturing process, which increases
the cost of production [17,18]. Alternatively, research studies focused on developing
clinical-grade chromatographic 99Mo/99mTc generators based on 99Mo of low specific
activity (LSA) [3,19,20]. However, this proposal demands using high-capacity sorbents
to compensate for the LSA 99Mo and make it more reliable from the economic point of
view [17,21].

The use of advanced nanomaterials has generated a growing interest in developing
diagnostic 99mTc generators [3]. Nawar and Türler [3] highlighted several nanomaterial
adsorbents that have been developed for 99Mo/99mTc generator application. This class of
sorbents possesses appreciable adsorption capacity and unique performance [20]. In this
regard, the utilization of advanced commercial metal-oxide nanoparticles is an exciting idea
due to their improved properties. In contrast to traditional sorbents, these nano-adsorbents
have large surface-to-volume ratios, enhanced porosity, improved surface reactivity, and
significant radiation resistance and chemical stability [21,22]. Therefore, they show high
adsorption efficiency and selectivity [23].

In this study, we intend to evaluate the sorption efficiency of some commercially
available nano-metal oxides towards LSA 99Mo. To achieve this goal, we investigated the
adsorption behavior of the selected materials for LSA 99Mo under different experimental
conditions. These conditions include the pH, initial concentration of molybdate ions,
contact time, and temperature. In addition, to better understand their sorption behavior,
the sorption kinetics, equilibrium isotherms, and thermodynamic behavior were evaluated.

2. Results and Discussion
2.1. Effect of Solution pH

The solution pH has a profound impact on the efficiency of the adsorption process.
The influence of pH can be clarified by understanding its role in varying the ionic state of
the functional groups on the adsorbent surface. Moreover, it affects the ionization and/or
the dissociation of the studied ions [24]. In this context, a batch equilibration experiment
was conducted at a pH range from 1 to 8 to determine the optimum pH value that shows the
maximum 99Mo retention on each adsorbent. Figure 1a depicts the distribution coefficients
(Kd) of CA-99Mo at different pH values. The data presented in this figure show that higher
Kd values are observed at pH values (2–4). Beyond this region, the Kd values decrease with
increasing the solution pH, which agrees with previously published studies [25].
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Figure 1. Effect of initial pH on (a) the distribution coefficients (Kd) of CA-99Mo on different metal 

oxides NPs (C0 = 50 mg∙L–1, V/m = 100 mL∙g–1, and temperature = 298 ± 1 K), (b) Speciation of mo-

lybdenum [22], and (c) variation of the final pH values. 
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Figure 1. Effect of initial pH on (a) the distribution coefficients (Kd) of CA-99Mo on different metal
oxides NPs (C0 = 50 mg·L−1, V/m = 100 mL·g−1, and temperature = 298 ± 1 K), (b) Speciation of
molybdenum [22], and (c) variation of the final pH values.

Since the adsorbents are metal oxides, they might have similar surface chemistry.
Moreover, since the adsorption process depends mainly on the aqueous phase’s pH values
and the adsorbent material’s surface characteristics, we investigated the isoelectric point
(pHIEP) of each adsorbent (Table 1). The pHIEP measurements help to clarify the sorption
mechanism. The sorbent surface carries a positive charge at pH < pHIEP, zero charge at
pH~pHIEP, and is negatively charged at pH > pHIEP. Consequently, there is a change in
the pHIEP of the sorbent with the pH of an aqueous solution. Nawar et al. [22] reported
that this behavior might occur because amphoteric hydroxyl groups cover the adsorbent
surface. Hence, based on the pH of the medium, these groups develop different reactions
in different pH media, resulting in positive or negative charges appearing on the adsorbent
surface. Herein, at pH < pHIEP, they are protonated, and the surface develops a positive
charge as follows:

Adsorbent−OHSurface + H+
solution 
 Adsorbent−OH+

2 (1)

The data presented in Figure 1a can be interpreted by considering the speciation
diagram of molybdenum shown in Figure 1b [22]. The speciation data are generated using
the PHREEQC software (version 3) to determine the predominant Mo species at different
pHs for the following conditions: C0 = 50 mg·L−1 at 298 1 K and using the built-in database
of stability constants [22]. At acidic medium, the molybdate anionic species exist and
polymerize, increasing the molybdenum content per unit charge as follows:

7 99MoO2−
4 + 8 H+ 
 99Mo7O6−

24 + 4 H2O (2)

Consequently, this results in favorable interactions between negatively charged molyb-
denum polyanions and positively charged adsorbents surfaces [26]. At higher pH values,
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the speciation shifts to less negatively charged Mo species, and the density of hydroxyl
groups (OH−) increases in solution. These hydroxyl anions compete with less negatively
charged molybdenum anions to retain the available active sites on adsorbents surfaces,
explaining the low Kd distribution values at higher pH values [22,27].

Table 1. Description of the analyzed commercial metal oxides NPs *.

No. Name Description Particle Size,
(nm)

Surface Area,
(m2·g−1)

Isoelectric Point
(pHIEP)

CeO2-544841 Cerium
oxide-SA-544841

Molecular formula: CeO2
Molecular weight: 172.11

Density: 7.13 g·mL−1 at 298 K
<25 N.A 5

ZrO2-544760 Zirconium
oxide-SA-544760

Molecular formula: ZrO2
Molecular weight: 123.22

Density: 5.89 g·mL−1 at 298 K
<100 ≥25 6.1

TiO2-637254 Titanium
oxide-SA-637254

Molecular formula: TiO2
Molecular weight: 79.87

Density: 3.9 g·mL−1 at 298 K
<25 45–55 6.6

SnO2-549657 Tin
oxide-SA-549657

Molecular formula: SnO2
Molecular weight: 150.71

Density: 6.95 g·mL−1 at 298 K
≤100 20.1 3.8

SiO2-637246 Silicon
oxide-SA-637246

Molecular formula: SiO2
Molecular weight: 60.08

Density: 2.2–2.6 g·mL−1 at
298 K

5–20 590–690 2.5

AlCeO3-637866 Cerium aluminium
oxide-SA-637866

Molecular formula: AlCeO3
Molecular weight: 215.1 ≤80 N.A 4.8

Al2TiO5-634143
Aluminium

titanium
oxide-SA-634143

Molecular formula: Al2TiO5
Molecular weight: 181.83 <25 N.A 6.4

Al2TiO5-14484
Aluminium

titanium
oxide-AA-14484

Molecular formula: Al2TiO5
Molecular weight: 181.86 100 mesh N.A 6.5

CeO2/ZrO2-
634174

Cerium zirconium
oxide-SA-634174

Molecular formula:
(CeO2)·(ZrO2)

Molecular weight: 295.34
Density: 6.61 g·mL−1 at 298 K

<50 N.A 6.7

SiO2/Al2O3-
643653

Aluminosilicate-
SA-643653

Molecular formula:
(SiO2)x(Al2O3)y

pore volume:
0.8–1.1 cm3·g−1

mesostructured, pore size:
2–4 nm

4.5–4.8 900–1100 6

CeO2-700290 Cerium
oxide-SA-700290

Molecular formula: CeO2
Molecular weight: 172.11

Density: 7.13 g·mL−1 at 298 K
<50 30 4.5

* The information was provided by the supplier. Only the isoelectric point data were determined experimentally.
Abbreviations: AA: Alfa Aesar (Kandel, Germany); N.A: Not Available; SA: Sigma-Aldrich (Buchs, Switzerland).

Moreover, based on the isoelectric point (pHIEP) of each sorbent material (Table 1)
and the measured final solution pH (Figure 1c), it can be observed that Kd values start to
decrease when the final solution pH exceeds the sorbent’s pHIEP, which can be attributed
to the expected change in the surface charge of the sorbent material. As previousely men-
tioned, at solution pH values above the pHIEP, the sorbent surface becomes predominately
negatively charged. As a result, repulsion between the negatively charged sorbent surface
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and the negatively charged molybdenum polyanions takes place, leading to the observed
decrease in Kd values [22,28].

It can also be observed that both silicon oxide and aluminosilicate nanoparticles
possess small particle sizes (5–20 and 4.5–4.8 nm) and high surface area (590–690 and
900–1100 m2·g−1), respectively (Table 1). However, both adsorbents show a weak affinity
for Mo species. This behavior may be attributed to their poor stability with increasing pH
values. At high pH values, the dissolution of silica occurs, resulting in the formation of
monomeric ortho-silicic acid (H4SiO4), which can be explained due to the presence of more
hydroxyl groups. These hydroxyl groups are chemisorbed on the adsorbent surface, which
increases the number of coordination bonds around the silicon atom to more than four
bonds. Consequently, it may lead to Si-O bond rupture, and the silicon atom dissolves as
Si(OH)4 and ortho-silicic acid [29].

According to the obtained results, we selected six adsorbents that showed high distri-
bution coefficient values towards CA-99Mo for the subsequent investigations. These adsor-
bents are CeO2-544841, ZrO2-544760, TiO2-637254, Al2TiO5-634143, CeO2/ZrO2-634174,
and CeO2-700290.

2.2. Adsorption Isotherm

Equilibrium isotherms are essential in describing the adsorption mechanisms for
the interaction of Mo(VI) ions with the surfaces of the investigated metal oxides NPs.
These mechanisms describe the adsorption process successfully. Here, we investigated
equilibrium data obtained for adsorption of CA-99Mo on CeO2-544841, ZrO2-544760, TiO2-
637254, Al2TiO5-634143, CeO2/ZrO2-634174, and CeO2-700290 with various isotherm
models to find out which one is the most suitable for describing the obtained adsorption
equilibrium data.

2.2.1. Freundlich Isotherm

Many studies have utilized the Freundlich adsorption isotherm model proposed as a
general power equation used to describe the adsorption of radionuclides in a large number
of studies [30–32]. The Freundlich isotherm has the form shown as follows:

qe = Kf(Ce)
1
nf (3)

where qe (mg·g−1) is the concentration of CA-99Mo adsorbed and Ce (mg·L−1) is the
concentration of Mo remaining in the solution. Kf (mg1−nLn·g−1) and nf (dimensionless)
are constants unique to each combination of adsorbent and adsorbate.

2.2.2. Langmuir Isotherm

Langmuir (1918) developed an equation to describe the adsorption of gases on a solid
surface that was subsequently adapted to describe the adsorption of solutes onto solids in
aqueous solutions [31,33,34], as shown in Equation (4):

qe =
nLKLCe

1 + KLCe
(4)

where qe (mg·g−1) is the total concentration of solute adsorbed, KL (L·mg−1) is an equilib-
rium constant, and nL (mg·g−1) is the adsorption capacity.

Figure 2 presents the experimental adsorption equilibrium data obtained for Mo ions
on the investigated metal oxide adsorbents as a plot of adsorption equilibrium capacity (qe)
against initial concentration (C0). It is observed that there is an increase in the amount of
Mo ions taken up with the increase in the initial metal ion concentration. This increase in
the adsorbate uptake can be explained by the driving force for mass transfer [34].
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Figure 2. The influence of initial molybdate concentration on the equilibrium sorption capacity (qe)
of CA-99Mo on different metal oxides NPs (pH = 3, V/m =100 mL·g−1, t = 24 h, and temperature =
298 ± 1 K).

The non-linear forms of both isotherm models were applied to the measured adsorp-
tion data (Ce versus qe), and the data were displayed in Figure 3. Adsorption parameters
were optimized using the add-ins “Solver” function in Microsoft Excel. Table 2 gives the
Freundlich parameters (Kf and nf), Langmuir parameters (KL and nL), and the goodness
of fit of the model lines to the experimental data (R2). Based on the regression coefficient
values reported in Table 2, it is observed that good to excellent correlations between the
experimental results and the fitted data of the Freundlich isotherm model were obtained for
all the investigated sorbents. In contrast, the Langmuir model failed to fit any equilibrium
sorption isotherm of the CA-99Mo on all tested adsorbents; lower R2 values were obtained.

These findings suggest that CA-99Mo adsorption on metal oxide nanomaterials un-
der investigation mainly occurred through multilayer adsorption at heterogeneous sur-
faces [31,35]. The Freundlich adsorption constant (nf) is usually used as a measure of
adsorption intensity as follows; (i) nf < 1 indicates that adsorption takes place via a chemi-
cal process, (ii) nf = 1 shows linear adsorption, (iii) while nf > 1 indicates physisorption [35].
The nf values displayed in Table 2 were higher than 1, indicating that CA-99Mo adsorption
on the materials used in this study was physisorption and favorable under the investigated
conditions. Furthermore, the closer the 1/n value to 0 than unity (ranging from 0.10 to
0.25), the more heterogeneous the surface is, implying a broad distribution of adsorption
sites on the adsorbent surface [32,33].
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Table 2. Isotherm parameters calculations for the adsorption of CA-99Mo on different metal ox-
ides NPs.

Isotherm
Model Parameter CeO2-

544841
ZrO2-
544760 TiO2-637254 Al2TiO5-

634143
CeO2/ZrO2-

634174
CeO2-
700290

Langmuir

nL (mg·g−1) 26.704 16.814 36.980 10.207 23.470 19.603

KL (L·mg−1) 0.407 0.993 0.311 0.0907 3.537 0.254

R2 0.911 0.957 0.930 0.836 0.870 0.954

Freundlich

KF
(mg1−nLn·g−1) 10.514 9.058 13.064 6.364 11.506 8.876

nf 5.010 8.294 4.079 10.325 6.346 6.644

R2 0.982 0.968 0.989 0.898 0.955 0.966

2.3. Thermodynamic Studies

We determined the amount of CA-99Mo adsorbed on the surface of the materials
investigated in the current study as a function of temperature (T) using adsorption ther-
modynamic parameters. These parameters include the Gibbs free energy ∆G0 (kJ·mol−1),
the standard enthalpy change ∆H0 (kJ·mol−1), and the standard entropy change ∆S0

(J·mol−1·K−1). They were investigated at different temperatures (298, 313, 323, and 333 K)
using Equations (5) and (6) [34,36,37] and are tabulated in Table 3:

∆G0 = −RTlnKd (5)

ln Kd =
∆S0

R
− ∆H0

RT
(6)

where R is the universal gas constant (8.314 J·mol−1·K−1), T is the absolute temperature
(K), and Kd (mL·g−1) is the distribution coefficient.

Table 3. Thermodynamic parameters for the sorption of CA-99Mo on different metal oxides NPs.

Adsorbent Temperature
(K)

∆G0

(kJ·mol−1)
∆H0

(kJ·mol−1)
∆S0

(J·mol−1·K−1)

CeO2-544841

298 −9.8 ± 2.9

−5.1 ± 1.5 16.0 ± 4.7
313 −10.1 ± 3.0

323 −10.2 ± 3.0

333 −10.4 ± 3.1

ZrO2-544760

298 −7.8 ± 1.4

−1.4 ± 0.7 21.3 ± 2.2
313 −8.1 ± 1.4

323 −8.3 ± 1.4

333 −8.5 ± 1.5

TiO2-637254

298 −10.9 ± 3.1

4.7 ± 1.5 52.0 ± 5.0
313 −11.7 ± 3.1

323 −12.2 ± 3.2

333 −12.7 ± 3.2

Al2TiO5-634143

298 −7.2 ± 2.0

−4.5 ± 1 9.1 ± 3.2
313 −7.4 ± 2.0

323 −7.5 ± 2.0

333 −7.6 ± 2.0
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Table 3. Cont.

Adsorbent Temperature
(K)

∆G0

(kJ·mol−1)
∆H0

(kJ·mol−1)
∆S0

(J·mol−1·K−1)

CeO2/ZrO2-634174

298 −9.0 ± 1.4

1.3 ± 0.7 34.6 ± 2.2
313 −9.5 ± 1.4

323 −9.9 ± 1.4

333 −10.2 ± 1.4

CeO2-700290

298 −8.2 ± 1.9

−0.1 ± 0.9 27.2 ± 3.0
313 −8.6 ± 1.9

323 −8.9 ± 2.0

333 −9.1 ± 2.0

Figure 4 shows linear plots of ln Kd versus (1/T). The calculated ∆G0 values at
each temperature for all nano-adsorbents are ∆G0 < 0, which implies that the Mo(VI)
adsorption process on the surfaces of all adsorbents is spontaneous and the reaction is
feasible. Likewise, ∆G0 values decrease with increasing temperature, indicating that the
degree of spontaneity can be enhanced by increasing the temperature. Furthermore, the
adsorption process is physisorption (−20 < ∆G0 < 0) [38]. The positive values of ∆S0

(∆S0 > 0) report random adsorption reactions of CA-99Mo at all adsorbents surfaces. The
values of ∆H0 are positive (∆H0 > 0) for both TiO2-637254 and CeO2/ZrO2-634174, implying
that CA-99Mo adsorption at their surfaces is endothermic [39]. While for CeO2-544841,
ZrO2-544760, Al2TiO5-634143, and CeO2-700290, the change in enthalpy (∆H0) is negative
(∆H0 < 0), indicating that the adsorption of CA-99Mo at their surfaces is exothermic [38,40].
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2.4. Determining the Maximum Sorption Capacity

In order to evaluate the maximum sorption capacity of each adsorbent, the equilibra-
tions of CA-99Mo with each adsorbent were performed separately. Batch equilibrations
were repeated until no further 99Mo(IV) uptake was observed, and the adsorbents became
fully saturated with 99Mo. After each equilibration, 1 mL aliquot was decanted, centrifuged,
and counted. Ultimately, the maximum sorption capacity (qmax) for each material was
calculated by applying the following equation:

qmax =
∑ U%

100
×Co ×

V
m

(mg·g−1) (7)
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where U% is the uptake percent of CA-99Mo, C0(mg·L−1) is the starting Mo(IV) concentra-
tion, V (L) is the liquid phase volume, and m (g) is the adsorbent weight. Figure 5 shows
CA-99Mo maximum sorption capacity on different studied metal oxides NPs. It can be con-
cluded that the studied metal oxide NPs show better sorption capacity than conventional
alumina currently used in 99Mo/99mTc generators. Nonetheless, the obtained capacities are
insufficient for developing a clinical-grade 99mTc generator based on LSA 99Mo.
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2.5. Effect of Contact Time

The effect of contact time on the uptake percent of CA-99Mo was monitored for an
initial Mo(IV) concentration of 50 mg·L−1 (pH~3), using an adsorbent dose of 200 mg.
The reaction temperature was adjusted to 298 ± 1 K. The results are shown in Figure 6.
The results show that the Mo uptake sharply increased at the beginning of the adsorption
process and reached a constant value (a plateau value) in the first two minutes. This
behavior indicates a rapid and almost instantaneous removal of CA-99Mo from the solution,
and a dynamic equilibrium is established under the given experimental conditions. In order
to design an effective adsorption process, determining the kinetic parameters is crucial.
The kinetic data shown in Figure 6 revealed that the equilibrium for adsorption of Mo on
metal oxide nano-adsorbents is already reached at the very beginning of the adsorption
process. Consequently, using the current methodology, such data cannot be modeled with
adsorption kinetic models.
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Figure 6. Effect of contact time on CA-99Mo uptake on different metal oxide NPs (C0 = 50 mg·L−1,
pH = 3, V/m = 100 mL·g−1, and temperature = 298 ± 1 K).
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3. Materials and Methods
3.1. Materials

All chemicals are of analytical grade purity (A. R. grade) and were used without
further purification. Milli-Q water was used for the preparation of solutions and washings.
Sodium hydroxide and nitric acid were purchased from Merck, Darmstadt, Germany. The
metal oxide nanomaterials were purchased from different suppliers (Table 1).

99Mo radiotracer solution was obtained by eluting a 40 GBq fission 99Mo alumina-
based 99Mo/99mTc generator (Pertector, manufactured by National Centre for Nuclear
Research, POLATOM, Otwock, Poland) with 5 mL of 1 M NaOH solution after ~7 d
from the calibration date. The total 99Mo radioactivity was measured with a Capintec
Radioisotopes Calibrator (model CRC-55tR Capintec, Inc., Florham Park, NJ, USA). The
99Mo eluate solution was passed through a 0.45 micro-Millipore filter to retain alumina
particles. Then, the 99Mo solution was treated with nitric acid to attain the desired pH value.

3.2. Batch Equilibrium Studies

A batch equilibration experiment was conducted to investigate the adsorption behavior
of carrier-added (CA) 99Mo (Mo(IV) treated with 99Mo) on several commercial metal oxide
nanoparticles (NPs) under different conditions. These conditions included the influence
of pH, contact time, reaction temperature, and initial adsorbate concentration. In a series
of clean glass bottles, we added 200 mg of each adsorbent to 20 mL of 99Mo(IV) solution
of a given concentration and pH value. Subsequently, the mixtures were shaken in a
thermostatic shaker water bath (Julabo GmbH, Seelbach, Germany) at 298 ± 1 K for 24 h.
Eventually, the supernatant solution was collected, centrifuged, and 1 mL was separated
for radiometric measurements. For all radiometric identifications and γ-spectrometry, we
used a multichannel analyzer (MCA) of Inspector 2000 model, Canberra Series, Mirion
Technologies, Inc., Meriden, CT, USA, coupled with a high-purity germanium coaxial
detector (HPGe). All samples have fixed geometry and were counted at a low dead time
(<2%). The measurements were done by using an appropriate gamma-ray peak of 740 keV.

3.2.1. Distribution Ratio (Kd)

The distribution coefficient (Kd) values of CA-99Mo were investigated at a wide range
of pH (from 1–8). For adjusting the desired pH value of the solutions, few drops of 0.5 M
nitric acid or 0.5 M sodium hydroxide were added. The pH values of the solutions were
measured before and after reaching the equilibrium state. pH values were determined
using a pH-meter with a microprocessor (Mettler Toledo, Seven Compact S210 model,
Greifensee, Switzerland).

3.2.2. Adsorption Isotherm

In order to determine the sorption isotherms, we used different initial molybdate
ion concentrations from 50 to 500 mg·L−1 while keeping the adsorbent amount constant.
Moreover, the solution pH, equilibrium time, and reaction temperature were kept at pH~3,
24 h, and 298 ± 1 K, respectively. In addition, the equilibrium adsorption capacity (qe) was
calculated. Finally, we used the obtained results to determine the sorption isotherm model.

3.2.3. Thermodynamic Studies

The reaction temperature effect on the uptake of carrier-added 99Mo was studied at
four different reaction temperatures (298, 313, 323, and 333 K). At each temperature, we
added 20 mL of CA-99Mo solution (pH 3) in contact with 200 mg of the adsorbent material
for 24 h. From the resulting data, we calculated different thermodynamic parameters,
namely the standard enthalpy change (∆H0), standard entropy change (∆S0), and Gibbs
free energy change (∆G0).
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3.2.4. Effect of Contact Time

In order to investigate the 99Mo adsorption rate on the studied metal oxides NPs, we
monitored the progress of the uptake capacity of 99MoO4

2– ions (50 mg·L−1 and pH~3)
at different time slots. The adsorption of CA-99Mo was followed with time until the
equilibrium was established. Finally, we calculated the 99Mo capacity (qt) in mg·g−1 at
each time (t).

3.3. Calculations

The adsorption data of CA-99Mo include uptake percent (U%), distribution coefficient
(Kd), equilibrium capacity (qe), and equilibrium concentration (Ce). These data were
calculated according to the following equations:

U% =
(Ai −Af)

Ai
× 100 (8)

qe =
U%
100
×C0 ×

V
m

(mg·g−1 ) (9)

Ce = Ai −
(

Ai ×
U%
100

)
(mg·L−1) (10)

Kd =
Ai − Af

Ai
× V′

m
(mL·g−1) (11)

where Ai and Af are the initial and final 99Mo radioactivity in counts/min. C0 (mg·L−1)
is the initial concentration of CA-99Mo, V (L) and V′ (mL) represent the volume of liquid
phases, and m (g) is the weight of the solid phase.

4. Summary and Conclusions

The main objective of this study was to evaluate the adsorption affinity of different
commercial metal oxides NPs purchased from different suppliers towards LSA 99Mo. All
experiments were conducted at static equilibrium conditions. We studied the distribu-
tion ratio of CA-99Mo in a pH range of 1 to 8. The optimum adsorption pH was found
to be in the range of pH 2 to 4. In addition, the Freundlich isotherm model fitted the
experimental data of the CA-99Mo on all adsorbent materials investigated in this study.
Moreover, we determined the values of enthalpy change (∆H0), entropy change (∆S0),
and free energy change (∆G0) at the different reaction temperatures. Furthermore, the
maximum adsorption capacities were evaluated, and the best adsorbents showed a capacity
of 40 ± 2 to 73 ± 1 mg Mo·g−1. Summing up the results, it can be concluded that the
adsorption behavior of the materials investigated depends on the solution pH, contact time,
initial metal ion concentration, and temperature. Furthermore, the investigated materials
showed higher static sorption capacities than conventional alumina (2–20 mg Mo·g−1).
Nonetheless, they are not suitable to build a useful 99Mo/99mTc generator using LAS 99Mo
for radiopharmaceutical applications. Since the available specific activity of LAS 99Mo is
2.5–5 Ci/g Mo, approximately 20–25 g of each material would be required to prepare a
99mTc generator of 37 GBq (1 Ci). Using such a massive amount of sorbent material per
generator would deteriorate the elution performance and the radioactive concentration of
the produced 99mTc.
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