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Abstract: The Er1.5Y1.5Al5O12 (Er:YAG) and (Er1.43Y1.43Sc0.14)(Sc0.24Al1.76)Al3O12 (Er:YSAG) ceram-
ics have been characterized using the Judd-Ofelt (JO) theory. The line strengths and oscillator
strengths of several transitions from the ground state 4I15/2 to excited state manifolds have been
evaluated from transmittance spectra measured at room temperature (300 K). The JO parameters have
been calculated, and the values of the radiative decays rate and the radiative lifetimes for the 4I13/2

excited state, and the luminescence cross-section of 4I15/2→ 4I13/2 in Er-doped ceramic samples have
been established. We have traced the influence of Sc3+ inclusion on spectroscopic properties and
crystal quality and estimate prospects of application in laser systems.

Keywords: yttrium-scandate-aluminum garnet; transparent ceramics; Judd-Ofelt parameters

1. Introduction

Rare-earth-doped yttrium-aluminum garnet Y3Al5O12 materials (YAG) are well-known
as active media for solid-state lasers [1–4]. In recent years, rare-earth-doped materials have
been broadly used in solid-state lasers, colour displays [5–7], optical amplifiers [8], free-
space optical communications [9,10], sensors [11–13], 3D waveguides [14,15], and X-ray
screens [16]. Recently, Er3+:YAG has attracted considerable interest for its high-power,
high-energy eye-safe lasers operating near 1.5 µm for range finding, flash lidar, and other
remote-sensing applications [17]. Emitting at mid-infrared 2.9 µm Er:YAG has found wide
application in medicine—in gynecology [18,19], dentistry [20], and microsurgery [21].

Transparent ceramics were initially developed to replace single crystals in cases of
disk geometry and multilayer and concentration gradient architectures. Among solid-state
lasers, disk lasers offer significant advantages for both ultrafast and continuous wave
operation [22]. In a disk laser, the gain medium is shaped like a disk with a large diameter
in comparison to its thickness. This geometry allows the gain medium to be very efficiently
cooled. The large mode areas on the gain medium and the short propagation distance of the
pulses through the gain medium make it inherently advantageous for small nonlinearities
at very high pulse energies. Mode-locked thin-disk oscillators have consistently achieved
orders of magnitude higher than the average power and pulse energy of other narrow
pulse and ultranarrow pulse oscillator technology, reaching comparable levels to advanced
high-power amplifiers operating at an MHz repetition rate [23].

The doping concentration of rare-earth ions in YAG ceramics can reach 100% [24,25]. A
promising feature of YSAG ceramics is the introduction of scandium into the dodecahedral
and octahedral positions of the garnet that leads to disordering of the crystal lattice. This
is expressed in the broadening of the absorption bands that may results in achievement
of laser pulses with high power and short duration. These lasing parameters are useful
because they decrease medical laser interventions and are therefore less traumatic.
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In this paper, we report optical characterization of Er1.5Y1.5Al5O12 and (Er1.43Y1.43Sc0.14)
(Sc0.24Al1.76)Al3O12 ceramics carried out through a comparative Judd-Ofelt (JO) analysis [26,27].
The Judd-Ofelt parameters were calculated from the experimental absorption spectra of
the ceramics to trace the influence of Sc3+ inclusion on spectroscopic properties and crystal
quality and estimate the prospects for application in laser systems.

2. Results and Discussion

The normalized transmittance spectrum and absorption coefficient for Er3+:YSAG
ceramic samples (S4) are given in Figure 1. The spectra consist of eight complex Er3+ (4f 11)
lines, which are observed at 372.9, 407.8, 448.7, 513.7, 653.2, 798.5, 968.1, and 1494.1 nm and
correspond to 4I15/2→ 4G11/2 + 4G9/2 + 2K15/2 + 2G7/2, 2H9/2, 4F5/2 + 4F3/2, 4S3/2 + 2H11/2
+ 4F7/2, 4F9/2, 4I9/2, 4I11/2, and 4I13/2 electron transitions, respectively.
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The room-temperature absorption spectra of Er3+-doped YAG/YSAG ceramics in the
spectral range of 770–860 nm corresponding to 4I15/2 → 4I9/2 electron transitions in Er3+

ion are presented in Figure 2. The broadening of spectral lines is recognized as result of the
partially disordering crystal structure of the ceramics due to Sc3+ doping.
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Figure 2. Room-temperature absorption spectra of Er:YAG (S1, S2) and Er:YSAG (S3, S4) ceramics in
the range of 4I15/2 → 4I9/2 electron transitions: (a) 770–860 nm, (b) 780–900 nm, (c) 795–805 nm, and
(d) 810–820 nm.

JO analysis has been applied to estimate the spectroscopic parameter changes in
Er:YSAG ceramics in comparison with Er:YAG ones. Eight complex lines of the room-
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temperature transmittance spectra were chosen to determine the JO parameters for the
corresponding Er3+ (4f 11) transitions in samples.

The mean wavelengths and integrated absorption coefficients of Er:YAG and Er:YSAG
ceramics (Table 1) were used for the determining of line strengths smeas and oscillator
strengths fmeas (Table 2). The determined line strengths are used to calculate Ω2, Ω4, and
Ω6 parameters by the Judd-Ofelt theory. The values of the measured (smeas) and calculated
(scalc) absorption line strengths are tabulated in Table 2. The values of the measured (fmeas)
and calculated (fcalc) absorption oscillator strengths are summarized in Table 3. The values
of root mean square (RMS) and relative error for the oscillator strength and absorption
oscillator strengths are listed in Tables 2 and 3, respectively. The values of JO parameters
are given in Table 4. The spectral intensity parameters are reflected in many crystal effects
such as chemical bonds between the ions in the host, the charge distribution on the ions
in the cell, and the lattice distortion. The Ω2 value is the most affected to changes in the
environment of the lanthanide ion. The Ω2 value is higher in Er:YSAG compared with
Er:YAG due to substitution of Y3+ by Sc3+ ions and local distortion in the dodecahedral
position. Meanwhile, the other two JO parameters of Er:YSAG ceramics are similar to
corresponding parameters of the Er:YAG ones and vary insignificantly. This behavior can
be explained by the fact that Ω6 and Ω4 are usually more sensitive to change in f -electron
number (changing a type of a rare-earth ion) and are less affected (or unaffected) by the
environment [28].

Table 1. The mean wavelengths (λ) and integrated absorption coefficient (Г) corresponding to
electron transitions of Er3+:YAG (Er3+:YSAG) ceramic samples at 300 K.

Transition
4I15/2→

S1 S2 S3 S4

λ (nm)
Г (nm ×

cm−1) λ (nm)
Г (nm ×

cm−1) λ (nm)
Г (nm ×

cm−1) λ (nm)
Г (nm ×

cm−1)
4I13/2 1495.0 - 1494.9 - 1494.1 - 1494.1 -
4I11/2 968.8 268.250 967.2 275.135 968.4 295.429 968.1 297.084
4I9/2 797.5 100.318 796.1 90.996 795.9 97.574 798.5 110.707
4F9/2 653.5 339.720 653.3 331.758 653.2 379.385 653.2 376.760

4S3/2+2H11/2+4F7/2 514.1 491.496 514.7 456.811 514.1 489.456 513.7 496.346
4F5/2+4F3/2 449.9 78.839 448.6 71.185 448.5 76.869 448.7 78.585

2H9/2 408.5 44.988 407.7 41.845 407.8 45.055 407.8 43.392
4G11/2+4G9/2+2K15/2+2G7/2 372.8 389.977 372.6 385.820 372.8 383.785 372.9 374.759

Table 2. Values of the measured and calculated absorption line strengths of Er3+ in the YAG (YSAG)
ceramic samples at 300 K; ed is electric dipole transition, md is magnetic dipole one.

Transition
4I15/2→

S1 S2 S3 S4

sexp ×
10−20 (cm2)

scalc ×
10−20 (cm2)

sexp ×
10−20 (cm2)

scalc ×
10−20 (cm2)

sexp ×
10−20 (cm2)

scalc ×
10−20 (cm2)

sexp ×
10−20 (cm2)

scalc ×
10−20 (cm2)

4I13/2 - 1.97(16) ed

+0.72 md - 1.94(17) ed

+0.72 md - 2.19(20) ed

+0.72 md - 2.34(11) ed

+0.72 md

4I11/2 0.38 0.26(2) 0.42 0.27(3) 0.42 0.25(2) 0.40 0.28(1)
4I9/2 0.19 0.14(5) 0.17 0.16(1) 0.17 0.15(1) 0.18 0.15(1)
4F9/2 0.71 0.72(9) 0.79 0.79(7) 0.73 0.73(7) 0.75 0.76(4)

4S3/2+2H11/2 + 4F7/2 1.19 1.26(1) 1.29 1.36(1) 1.27 1.36(1) 1.14 1.43(7)
4F5/2 + 4F3/2 0.25 0.22(3) 0.23 0.23(2) 0.22 0.21(2) 0.25 0.23(1)

2H9/2 0.13 0.16(1) 0.15 0.17(2) 0.14 0.15(1) 0.15 0.16(1)
4G11/2+4G9/2 +
2K15/2 + 2G7/2

1.24 1.19(4) 1.35 1.292(1) 1.43 1.35(1) 1.44 1.39(8)

RMS ∆s 5.97× 10−2 7.13× 10−2 7.32× 10−2 8.25× 10−2

RMS error (%) 8.17 9.02 9.19 5.05
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Table 3. Values of the measured and calculated absorption oscillator strengths of Er3+ in the YAG
(YSAG) ceramic samples at 300 K; ed is electric dipole transition, md is magnetic dipole one.

Transition
4I15/2→

S1 S2 S3 S4

f exp × 10−6 f calc × 10−6 f exp × 10−6 f calc × 10−6 f exp × 10−6 f calc × 10−6 f exp × 10−6 f calc × 10−6

4I13/2 - 1.54(20) ed

+0.59 md - 1.51(5) ed

+0.59 md - 1.71(7) ed

+0.59 md - 1.84(11) ed

+0.59 md

4I11/2 0.46 0.31(4) 0.52 0.34(1) 0.50 0.30(1) 0.49 0.33(7)
4I9/2 0.26 0.17(2) 0.25 0.24(1) 0.25 0.22(1) 0.27 0.22(5)
4F9/2 1.28 1.32(2) 1.46 1.45(5) 1.33 1.33(6) 1.36 1.37(4)

4S3/2 + 2H11/2 +
4F7/2

3.00 2.97(4) 3.03 3.20(2) 2.95 3.18(2) 3.18 3.35(2)
4F5/2 + 4F3/2 0.63 0.61(8) 0.63 0.65(1) 0.61 0.57(3) 0.67 0.63(2)

2H9/2 0.44 0.48(7) 0.44 0.51(2) 0.43 0.46(2) 0.46 0.50(2)
4G11/2 + 4G9/2 +
2K15/2 + 2G7/2

4.53 3.96(7) 4.52 4.34(2) 4.76 4.51(2) 4.80 4.63(2)

RMS ∆ f 2.920× 10−1 0.785× 10−1 1.004× 10−1 0.769× 10−1

RMS error (%) 13.6 3.64 4.54 3.39

Table 4. Judd–Ofelt parameters of the Er3+-doped YAG (YSAG) ceramics at 300 K.

Ceramic Samples
Judd-Ofelt Parameters

Ω2 × 10−20, cm2 Ω4 × 10−20, cm2 Ω6 × 10−20, cm2

S1 0.2955 0.8037 0.6410
S2 0.3064 0.8984 0.6818
S3 0.4446 0.8521 0.6080
S4 0.4681 0.8378 0.6741

Room-temperature luminescence spectra of all ceramic samples in comparison with
the Er3+:YAG single crystal are shown in Figure 3. The line widths of the YAG samples S1
and S2 are comparable with the single crystal one. Line widths of the ceramics containing
Sc3+ (S3, S4) look broader due to the higher degree of disorder in the crystal structure. We
observe a shift of the line maxima in Er:YSAG ceramic samples relative to Er:YAG ceramics
and the single crystal.

The radiative decay rate (Arad) and the radiative decay time (τrad) for the 4I13/2 →
4I15/2 electron transition has been evaluated using the JO parameters (Table 5). To obtain
more reliable information about the perspective of application of our materials, we have
calculated the values of an emission cross-section of the 4I13/2 → 4I15/2 electron transition.

Table 5. Radiative decay rates (AJ→J’), radiative decay time τcalc
rad , fluorescence lifetime (τexp

lum), the
intrinsic quantum yield (η), non-radiative multiphonon decay rates (WNR) of the 4I13/2 multiplet,
and the values of emission cross section (σ) of the 4I13/2 → 4I15/2 electron transition in Er3+-doped
YAG (YSAG) ceramics at 300 K.

Parameters S1 S2 S3 S4

AJ→J’ (s−1) 137.74 143.98 133.08 140.26
τcalc

rad (ms) 3.2 3.1 3.2 3.1
τ

exp
lum (ms) 0.146 (3) 0.180 (2) 0.264 (4) 0.266 (3)
η (%) 4.56 5.81 8.25 8.58

WNR (s−1) 6536 5233 3475 3437
σ·10−19 (cm2) 0.105 0.110 0.097 0.082

Another important parameter is the intrinsic quantum yield (η) being evaluated from
the ratio of the fluorescence to radiative decay time (Formula (S13), Supporting Information).
Figure 4 shows decay curves being measured for the 4I13/2 → 4I15/2 electron transition in
Er:YAG and Er:YSAG ceramics. The fluorescence lifetimes and the intrinsic quantum yield
being obtained for the 4I13/2 → 4I15/2 electron transition are given in Table 5.
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Figure 4. Decay curves being obtained experimentally for 4I13/2 → 4I15/2 electron transition in
Er:YAG (S1, S2) ((a,b), respectively) and Er:YSAG (S3, S4) ((c,d), respectively) ceramics at 300 K.

The non-radiative multiphonon decay rates may be given by Expression (S14)
(Supporting Information). The main contribution to non-radiative decay for the ceramic
samples with high dopant comes from multiphonon relaxation from the host and energy
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transfer interaction between nearby ions. Moreover, numerous grain boundaries can act
as quenchers.

3. Materials and Methods

The ceramic samples have been synthesized by co-precipitation from an aqueous
solution following annealing at a high temperature according to earlier published proto-
col [29–31]. We investigated four ceramic samples of the following chemical composition:
Er1.5Y1.5Al5O12 (S1 and S2 samples) and Er1.43Y1.43Sc0.38Al4.76O12 (S3 and S4 samples). Val-
ues of uniaxial pressing vary in the range of 50–100 MPa, and temperature of vacuum
sintering—in the range of 1760–1780 ◦C [32]. The Er:YAG and Er:YSAG ceramics looked
like disks with a diameter of 10 mm and thickness of about 1 mm.

The room-temperature transmittance spectra of the Er3+:YAG ceramics were recorded
using the Shimadzu UW-3101PC spectrophotometer controlled by a desktop computer in
the range of 250–1700 nm with resolution of 1 nm. The high-resolved (0.1 nm) transmittance
spectra have been measured in the range of 770 to 860 nm (4I15/2→ 4F9/2 electron transitions
in Er3+ ion).

Transmittance spectra of the ceramics have been analyzed using JO theory. The
analysis is described in detail in Supporting Information. The absorption coefficients of the
samples are calculated by Equation (1) using experimental transition spectra:

α(λ) = (I/I0) (1)

where α(λ) is the absorption coefficient; I and I0 are spectral intensities of the light trans-
mitted through the sample and directed into the sample, respectively; l is the thickness of
the sample.

The room-temperature fluorescence spectra have been recorded in the range of 1400 to
1700 nm corresponding to 4I13/2 → 4I15/2 electron transitions in Er3+:YAG/YSAG ceramics.
The Er3+:YAG single crystal has been grown at the Research Institute of Materials Science
and Technology (Zelenograd, Russia) and used as a standard. The spectra have been
measured using the ARC SpectraPro-300i monochromator at diode laser excitation at a
wavelength of 965 nm and irradiation of up to 3 mW. The signals were detected with a
thermoelectrically cooled InGaAs detector.

4. Conclusions

A spectroscopic analysis of Er3+ in YAG (S1, S2) and YSAG (S3, S4) ceramics has been
performed by the Judd-Ofelt theory. The Judd-Ofelt parameters such as Ω2, Ω4, and Ω6 are
determined for Er:YAG (S1, S2) and Er:YSAG (S3, S4) ceramics. The Ω2 value is increased
in S1 to S4 samples due to asymmetry of the crystal field around Er3+ and increases with a
disorder degree in the crystal structure. The predicted radiative decay time of the 4I13/2
electron level varies insignificantly. Disordering in YSAG ceramics results in the broadening
the emission lines and smoothing of the luminescence/gain spectrum in the 1.5-µm range
in comparison with the YAG crystal or ceramic host. This factor makes it a promising active
media for the amplifiers in this spectral range. The shorter experimental lifetimes and
relatively low intrinsic quantum yield in the heavily doped Er3+:YSAG ceramics can be
attributed to the concentration effect, where the energy up-conversion and cross-relaxation
mechanisms become increasingly important. However, the heavily doped Er3+:YSAG
ceramics can therefore be considered as an excellent active media for a 3-µm laser system.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics10100170/s1, Supporting Information include basic expressions
being used for the Judd-Ofelt analysis of the transition spectra. References [26–28,33–36] are cited in
the Supplementary Materials.
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