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Abstract: Piezoelectric materials are a class of compounds that is gaining increasing interest in various
applications such as energy harvesting. During the last decade, lead-free ZnSnO3 perovskite ceramic
has gained attention among the scientific community thanks to its unique symmetry-dependent and
spontaneous polarization properties such as piezoelectricity and ferroelectricity. Nevertheless, only
a few studies successfully prepared pure ZnSnO3, while most seem to mislead the product for its
hydroxide precursor (ZnSn(OH)6) or a mixture of Zn2SnO4 and SnO2. In our work, we investigated
the conversion of ZnSn(OH)6 at different temperatures (500, 600, 700, 750 and 800 ◦C) by X-ray
powder diffraction analysis, and in-situ using synchrotron radiation up to 950 ◦C under ambient
atmosphere and in a vacuum, to reproduce conventional reaction conditions. SEM and TEM have
been used to understand the evolution of the particle shape and surface structure before and after the
thermal treatments. Our results show the instability of the ZnSn(OH)6 phase, which converts into an
amorphous structure at low temperature. Above 750 ◦C, the material segregates into Zn2SnO4 and
SnO2, supporting the hypothesis that the thermal treatment of the hydroxide phase under typical
conditions results in the formation of an oxide mixture rather than the phase pure ZnSnO3.

Keywords: crystal structure; materials; phase transitions; zinc stannate

1. Introduction

Piezoelectricity (also called piezoelectric effect) is the phenomenon whereby specific
materials are electrically polarized as a result of mechanical deformation of elastic nature
(direct piezoelectric effect), and vice versa are elastically deformed when subjected to the ac-
tion of an electric field (inverse piezoelectric effect) [1]. The piezoelectric effect is at the basis
of various applications especially in pressure sensors (largely employed in the automobile
industry), ultrasound scanners in medical diagnosis, microphones, etc [2–4]. In recent years,
piezoelectricity has also been exploited in emerging technologies like Kinematic Energy
Harvesting Devices, which intend to convert mechanical stimuli into electrical energy to be
stored or used to power small devices [5,6]. The growing interest in piezoelectricity has led
researchers to investigate new and more efficient materials to be used in required fields
of application [7,8]. The perovskite solid solution Pb[ZrxTi1-x]O3 (PZT), which exhibits
some of the highest polarization and piezoelectric outcomes [9–11], is the crystalline system
generally recognized as the most piezoelectrically performing. Indeed, for many years PZT
ceramics have been the pillar material for piezoelectric actuators, sensors, microphones,
etc [12–14]. Nevertheless, due to the toxicity of lead, new materials have been searched
for and studied to meet environmental and health needs [15]. Some remarkable examples
of lead-free piezoelectric materials widely considered promising candidates for potential
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application include different oxide perovskites such as BaTiO3 [16–18], NaNbO3 [19–21]
and LiNbO3 [22–24] to name a few.

In the past decade, several efforts have been made to investigate ZnSnO3, an R3c
LiNbO3-type perovskite ceramic. This lead-free piezoelectric system has gained large
interest among the scientific community due to its unique symmetry-dependent and spon-
taneous polarization properties such as piezoelectricity, ferroelectricity, pyroelectricity, and
second-order non-linear optical behavior [25–29]. Son et al. [27] reported high ferroelec-
tric polarization of 47 µC/cm2 in an epitaxially grown ZnSnO3 thin film, which makes it
an appealing material in the ferroelectric application. Among the promising properties
observed for ZnSnO3 crystals, other characteristics of this material, such as the supposed
facile production by earth-abundant minerals, have stimulated several works and several
methods to prepare ZnSnO3 perovskite phase, also in an easy way, through solid-state
reaction method [30], sol-gel method [31,32], precipitation method [33,34], electrospinning
method [35,36] or hydrothermal methods [37–39]. However, a detailed characterization
of the crystalline structure is usually missing. The supporting powder X-Ray Diffractions
(PXRD) data refer to ZnSn(OH)6 precursor [33,34,37,39] or to a mixture of Zn2SnO4 and
SnO2 [30–32,35,36,38] and not to phase pure ZnSnO3. This framework is further compli-
cated by the large use of misleading references for qualitative phase identification. In fact,
the XRD patterns are generally compared to the ICDD PDF No. 11-0274 or 28-1486 which
instead correspond to ZnSn(OH)6 and to the mixture of Zn2SnO4 and SnO2, respectively
(PDF No. 28-1486 has been deleted from the ICDD database) [25]. Moreover, the mor-
phological differences of the reported materials make the interpretation of this system
even more complex. Up to now, only two previous investigations describe the successful
preparation of single phase ZnSnO3: one is focused on using ion exchange reaction forming
ilmenite-ZnSnO3 [40], and the other describes a high-pressure method to form perovskite
structure of ZnSnO3 [26]. The latter paper shows excellent crystallinity and the respective
PDF is the basis of most of the subsequent works. Few other studies report the preparation
of ZnSnO3 through pulsed laser deposition [27,29] or hydrothermal method [28], however
never as a single-phase material. So far a detailed in-situ analysis of the crystalline and
morphological evolution of ZnSn(OH)6 into ZnSnO3 and Zn2SnO4/SnO2 with temperature
is still missing. This fact leads still to a great ambiguity in the interpretation of the structural
characteristics and the relative properties outcomes. In fact, it is important to point out that
ZnSn(OH)6, Zn2SnO4, and SnO2 present a centrosymmetric crystal structure which, from a
theoretical point of view, should not exhibit piezoelectric properties based on simple lattice
distortion under mechanical stress [41]. The observed piezoelectric properties reported
by several articles could be associated with the effect of symmetry breaking in a certain
portion of the material (particle or composite). Recent observations have shown that the
application of a specific stimulus such as static electric fields [42] or the potential generated
by a Schottky junction [43] can lead to a local symmetry breaking, this kind of process
has recently stimulated a large interest in the pursuit to induce piezoelectricity and other
properties in centrosymmetric structures.

In the present study, we investigated the effects of the calcination process on ZnSn(OH)6
prepared via the reflux method at different temperatures (500, 600, and 750 ◦C) by X-ray
powder diffraction (XRPD) analysis. In addition, we monitored in-situ the evolution of
ZnSn(OH)6 using synchrotron radiation up to 950 ◦C under an ambient atmosphere and
in a vacuum, to reproduce typical conditions employed. Our results reveal an instability
of the hydroxide-based phase, which undergoes the formation of an amorphous structure
under heat treatment. At high temperatures, the segregation into SnO2 and Zn2SnO4 is
observed, confirming the hypothesis that, close to ambient pressure, the thermal treatment
of the hydroxide phase leads to the formation of an oxide mixture rather than the ZnSnO3
perovskite. Thermogravimetric differential scanning calorimetry analysis (TG-DSC) was
also employed to further investigate the phase progression, showing the decomposition
of ZnSn(OH)6 into Zn2SnO4/SnO2 and never revealing the formation of ZnSnO3 as in-
termediate. Scanning electron microscopy (SEM) and transmission electron microscopy
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(TEM) has been also extensively used to elucidate novel details on the evolution of the
particle shape and surface structure after the thermal treatments, confirming the formation
of Zn2SnO4/SnO2 hierarchically structured material.

2. Results

ZnSn(OH)6 microcrystals are prepared by refluxing an alkaline solution of zinc acetate
and tin tetrachloride for 1.0 h. The chemical reaction is represented in Scheme 1. As shown
in Figure 1 the process forms particles with well-defined cubic morphology and an average
size of around 1.6 µm (Figure S1). The XRD pattern confirms the expected structure of the
hydroxide phase ZnSn(OH)6 (space group Pn-3) Figure S2.
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After the synthesis, the hydroxide particles were converted to oxides by a post-
synthetic calcination step. For this purpose, the ZnSn(OH)6 phase was heat treated at
500, 600, 700, 750, and 800 ◦C respectively and for 2.0 h under ambient atmosphere, fol-
lowed by a thermal quenching at room temperature. The XRD analyses of the samples
(shown in Figure 2) reveal significant structural modifications. The diffraction data show
the presence of SnO2 phase for samples treated at 500 and 600 ◦C, evidenced by broad
diffraction peaks around 26.4, 33.8, and 51.8 degrees that can be assigned to the 110, 101,
and 002 planes respectively. Moreover, the contribution to the background can be ascribed
to a large content of an amorphous phase. Instead, the samples treated at 700, 750, and
800 ◦C show two distinct crystalline phases that can be related to SnO2 rutile and Zn2SnO4
spinel crystal structures respectively (Figure S3).
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The reference diffraction patterns correspond respectively to: blue ZnSn(OH)6 (ICSD 27767), green
ZnSnO3 (ICSD 245943), red SnO2 (ICSD 9163) and black Zn2SnO4 (ICSD 11269).

These observations agree with the conclusions reported by others groups that investi-
gated the thermal evolution of the ZnSn(OH)6 structure [44–46].

In order to study in detail the thermal crystallographic evolution of the ZnSn(OH)6
phase, some in-situ XRD analyses were performed at variable temperatures up to 950
◦C and at different time intervals at 600 ◦C. The aims of these experiments are: (i) to
collect in-situ evidence on the evolution of the crystallographic structure with high res-
olution, in conditions that are conventionally employed in laboratory furnaces for the
post-synthetic calcination treatments, (ii) to support the hypothesis of the production of
the mixed oxide phase by the thermal treatment at relatively low pressure, and (iii) collect
possible information about the formation of metastable phases not directly observable after
thermal quenching.

2.1. Air Flux Condition

Figure 3i reports the XRD patterns of the sample treated from 30 to 950 ◦C under air
flux and with a heating rate of 10 ◦C/min. The analysis evidence that the ZnSn(OH)6 crystal
structure is stable up to 250 ◦C while at higher temperatures the hydroxide decomposes into
an amorphous phase. It is therefore most probably that the crystal structure of ZnSn(OH)6
undergoes a structural change due to the elimination of water molecules according to the
reaction Scheme 2 R.1, leading to the formation of a highly disordered structure. Increasing
the temperature to 700 ◦C, the formation of SnO2 nanocrystals is confirmed by the presence
of the 110 and 101 reflections, meanwhile, at higher temperatures, the formation of the
Zn2SnO4 phase is observed according to reaction Scheme 2 R.1. These results are also
confirmed by TG-DSC analysis performed on ZnSn(OH)6 microcubes from 25 to 900 ◦C
under the same air conditions and heating rate (Figure S4). In the DSC curve, it can be
observed a sharp endothermic peak at 260 ◦C corresponds to the release of water molecules
from ZnSn(OH)6. This peak correctly matches the 18% weight loss shown in the TG curve
in the same region. The exothermic peak at 730 ◦C has instead related to the decomposition
of the amorphous phase into a crystalline SnO2 and Zn2SnO4 mixture.
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Scheme 2. Decomposition of ZnSn(OH)6 under thermal treatments.

This analysis clearly shows that the formation of crystalline ZnSnO3, both as lithium
niobate or ilmenite type structure, is not observed even as metastable phases during the
thermal treatment. Raman measurements, by Ge et al. [25], showed that some contribution
of the amorphous phase at a temperature below 320 ◦C could be attributed to the ZnSnO3
ilmenite type, however, no clear evidence from the XRD patterns were obtained.

To investigate the evolution of the amorphous phase we also monitored the structural
transformation at 600 ◦C for 6 h and under air flux (Figure 3ii). The analysis shows that after
60 min the broad halo of the amorphous phase between 20 and 25 degrees starts shrinking,
and at a longer time it contributes to the formation of the 101 reflections, typical of the
SnO2 nanowires. This feature progressively shrinks and after 180 min also 211 reflections
can be observed.

2.2. Vacuum Condition

The evolution of the heat-treated material was also investigated under vacuum, and
the results are shown in Figure 3iii,iv. The analysis of the diffraction data, from 30 to 950 ◦C
(Figure 3iii), shows similar patterns to the ones obtained under air: it can be deduced
that the hydroxide structure is stable until 250–300 ◦C, and then it decomposes forming
an amorphous phase (reaction Scheme 2). As observed for the treatment under air, the
formation of the SnO2 and Zn2SnO4 phases can be recognized at temperatures higher than
750 ◦C, as products of the reaction shown in Scheme 2 (R.2). However, in contrast with
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the previous observation, during the thermal treatment under vacuum, the presence of
the 440 reflections of the Zn2SnO4 phase can be observed immediately after the hydroxide
decomposition. To confirm that the vacuum condition favors the formation of the Zn2SnO4
phase, the evolution of the structure was investigated at 600 ◦C for 6 h (see Figure 3iv). As
expected, the amorphous phase is rapidly converted to the Zn2SnO4 phase, which can be
observed already after 30 min due to the presence of the 311, 400, and 440 reflections. For
longer times, all the expected reflections of the Zn2SnO4 phase can be clearly observed
along with the SnO2 phase.

2.3. Morphology

The SEM and TEM images of the particles treated at different temperatures, shown in
Figure 4, evidence that the morphology is strongly affected by the heat treatment, leading
to the formation of complex hierarchical structures. Although all the particles retain
the original cubic morphology on a micrometric scale, significative modification on the
surface scale is observed. Figure 4i (SEM micrograph) shows a detail of the surface of
the hydroxide microcrystals before the calcination step. Even though the surface presents
some structural defects such as voids, steps, and terraces, most of the particles show the
presence of a large flat surface (Figure S5), which can be further clarified by the TEM image
in Figure 4v. The morphology and the nucleation conditions suggest that the formation of
the ZnSn(OH)6 microcrystals follows a classical crystallization mechanism [47,48]. Indeed,
after the nucleation process, hydroxide crystals grow through a layer-by-layer mechanism
giving the formation to cubic microcrystals whose crystal habit reflects the crystallographic
structure of ZnSn(OH)6 [47].
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Figure 4. SEM i-iv and TEM v-viii micrographs of the surfaces of particles after different thermal
treatments. (i,v) non treated particles, (ii,vi) particles treated at 500 ◦C, (iii,vii) particles treated at
600 ◦C and (iv,viii) particles treated at 750 ◦C. The scale bars correspond to (i–iv) = 200 nm and
(v–viii) = 20 nm respectively.

Both the samples calcinated at 500 and 600 ◦C (Figure 4ii,iii) show the presence of
cubic microparticles that are covered by a dense layer of nanorods with an average length
and thickness of about 50 and 20 nm, respectively (Figure 4vi,vii).

The phase contrast TEM images of the sample calcined at 500 ◦C (Figure 5i) show that
the nanowires are formed by single crystals. The analysis of the lattice fringes allows the
identification of the 110 (d spacing = 0.35 nm) and 101 (d spacing = 0.26 nm) planes, typical
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of the SnO2 rutile phase. The identification of the crystalline phase is further supported by
SAED analysis (Figure 5ii), which shows a ring pattern that can be related to SnO2 crystals.
These findings suggest that the SnO2 nanorods do grow from the surface of the amorphous
cubic particles along the 101 directions. This behavior also explains the higher intensity of
the 101-reflection feature observed in the XRD analysis. Therefore, the heat-treated particles
at 500 ◦C and 600 ◦C show a peculiar hierarchical morphology composed of amorphous
cubes whose surfaces are covered by SnO2 nanowires.
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Finally, in contrast with the sample treated at a lower temperature, the morphology of
ZnSn(OH)6 microcubes treated at 750 ◦C does not show the presence of SnO2 nanowires
on the surface (Figure 4iv). Instead, the surface of the cubic microparticles is covered by
sintered nanoparticles. This structural feature is further highlighted in the TEM image
(Figure 4viii) along with the observation of the diffraction fringes from the nanoparticles
confirming their crystallinity (Figure S6). It can be deduced that the nanoparticles corre-
spond to the nanocrystal domine of both the Zn2SnO4 and SnO2 phases. For these samples,
a different hierarchical structure compared to low-temperature treated ZnSn(OH)6 can be
observed. Indeed, the cubes are formed by a dense arrangement of SnO2 and Zn2SnO4
crystalline nanoparticles which preserves the cubic micrometrical morphology of the origi-
nal ZnSn(OH)6.

Comparing our morphological results with the literature it emerges that a cubic
structure of the ZnSnO3 phase is never obtained [28,29,40]. Indeed, a preferential growth
along the 003 or 110 planes for ZnSnO3 has been reported by Datta et al. [29] which led
to the formation of a tightly welded nanowire, as also shown by Wang and Wu [28]. The
cubic morphology is generally presented for the ZnSn(OH)6 phase before and after thermal
treatments [44,45], supporting the hypothesis that the formation of the ZnSnO3 phase
cannot be achieved through commonly employed methods.

Figure 6 summarizes the process that affects the structure and morphology of ZnSn(OH)6
microcubes under thermal treatments. In all the investigated conditions, the thermal decom-
position of ZnSn(OH)6 microcubes never revealed the formation of crystalline ZnSnO3,
but only an amorphous phase. DFT calculations reported by Lee et al. [49] have shown
that ZnSnO3 is the less stable phase at ambient pressure and can be synthesized only at a
minimum pressure of 5.1 GPa. On the other hand, the mixture of Zn2SnO4 and SnO2 can
be obtained at ambient pressure at temperatures above 767 ◦C. These results agree with our
experimental data, supporting the idea that the synthesis of ZnSnO3 needs peculiar require-
ments (high pressure [26], ion exchange [40], or epitaxial growth from substrates [27,29]) to
be achieved.
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Additional investigations about ZnSnO3 and the properties of the Zn-Sn-O amorphous
phase are still required. Understanding their formation and the chemistry of the defects in
the amorphous phase might help identify useful dopants that could promote the formation
of the ZnSnO3 metastable phase by low-pressure synthesis. Ion doping may be a potential
strategy to expand the range of conditions for the stabilization of the perovskite phase.
A large number of observations on the variation of structure and electronical properties
in ternary systems, such as ZnO-In2O3-SnO2, are available [50]. Promising results have
been indeed obtained by Hoel et al. [51] which showed that the high-pressure synthesis of
Zn and Sn co-doped In2O3 gives the formation of a polar lithium niobate type structure
as suggested by the observation of second harmonic generation. This evidence supports
future investigations on the role of ion doping to expand the thermodynamic range for the
stabilization of the ZnSnO3 phase.

3. Materials and Methods
3.1. Materials

Zinc acetate (99%), Tin(IV) chloride pentahydrate (99%), and NaOH were purchased
from Sigma Aldrich (St. Louis, MO, USA). All the chemicals were employed without
further purification.

3.2. ZnSn(OH)6 Preparation and Thermal Treatments

In a typical synthesis, 0.183 g of Zinc acetate (1.0 mmol) and 0.351 g of Tin(IV) chloride
pentahydrate (1.0 mmol) are dissolved in 50 mL of distilled water each in two separate
beakers. When the solutions become clear, they are poured together in a round bottom
flask equipped with a bubble condenser and stirred for 10 min. Then, 50.0 mL of a NaOH
solution (0.2 M) is slowly dropped into the round bottom flask; after a few minutes, the
solution becomes slightly opaque. The reaction mixture is refluxed at 100 ◦C in a water
bath for 1.0 h under constant stirring, while a white precipitate is formed. The resulting
white suspension is centrifuged at 7000 rpm for 5.0 min and the solid is washed first with
distilled water, then with an EtOH/H2O solution, and finally with ethanol. The ZnSn(OH)6
powder is then dried in air at 60 ◦C overnight. Thermal treatments of the ZnSn(OH)6
phase are performed by firing the powder at 500, 600, 700, 750, and 800 ◦C for 2 h under
an ambient atmosphere (heating rate 5 ◦C/min). The in-situ phase conversion has been
followed through the use of synchrotron radiation, heat treating ZnSn(OH)6 at different
temperatures between 30 and 950 ◦C with a heating rate of 10 ◦C/min, under air flux or
vacuum conditions.

3.3. Structural Characterization

X-ray powder diffraction (XRPD) analysis is performed by means of a Philips diffrac-
tometer with a PW 1319 goniometer with Bragg–Brentano geometry. A focusing graphite
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monochromator and a proportional counter with a pulse-height discriminator have been
used; nickel-filtered Cu Kα radiation and a step-by-step technique have been employed;
steps of 0.05◦ and a collection time of 30 s were used for the acquisition of the data em-
ployed in the Rietveld analysis. Temperature-dependent in situ synchrotron radiation
X-ray powder diffraction (SR-XRPD) measurements were performed at the MCX line of
the ELETTRA Synchrotron Light Laboratories of Trieste, using a 0.30 mm quartz glass
capillary as a sample holder and membrane pump for the in-vacuum measurements. TG-
DSC (NETZSCH STA 409C) was carried out between 25 and 900 ◦C with a heating rate of
10 ◦C/min under an air atmosphere. SEM images were acquired using a Zeiss Sigma VP
Field Emission Scanning Electron Microscope (FE-SEM) equipped with an in-lens electrons
detector working in high vacuum mode and an EHT voltage of 5 kV. TEM images and
SAED patterns were obtained using a ThermoFisher Talos equipped with a field emission
gun cathode operated at 200 kV.

4. Conclusions

Our investigation covers a critical analysis of the evolution of ZnSn(OH)6 microcubes
under commonly employed thermal treatments for the conversion of these hydroxide micro-
crystals into the derivate oxides. We studied the structural modifications that ZnSn(OH)6
cubical microcrystals prepared via reflux condition encounter during the thermal treatment,
combining the observations collected by the room temperature X-ray diffraction with an
in-situ investigation in dedicated synchrotron experiments. Moreover, we focused our
attention on the alterations of the morphological structure of the microcrystals. We noticed
that regardless of the preservation of the original cubic shape, the microparticles undergo
a complex evolution forming a variety of hierarchical 3D structures, and the final mor-
phology is strongly affected by the specific conditions employed during the post-synthesis
calcination step. Indeed, the samples treated at lower temperatures of 500 or 600 ◦C are
characterized by the presence of a dense layer of SnO2 nanorods on their surface. Instead,
the sample treated at 750 ◦C shows the presence of a packed assembly of SnO2 and Zn2SnO4
nanocrystals. In all the investigated conditions, the thermal decomposition at ambient pres-
sure of ZnSn(OH)6 microcubes never revealed the formation of crystalline ZnSnO3, these
results evidences the peculiarities of the synthesis of the zinc stannate system preventing
the formation of the perovskite phase under conventional reaction conditions. With this
work, we want to stimulate a deep investigation into the origin of piezoelectric properties
in these structures to collect fundamental information for the design of novel devices.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics10110183/s1, Figure S1: Size length distribution of
ZnSn(OH)6 microcubes; Figure S2: Rietveld refinement of ZnSn(OH)6; Figure S3: XRD pattern
comparison for product treated at 750 ◦C with SnO2 and Zn2SnO4; Figure S4: TG-DSC curves
performed on ZnSn(OH)6 microcubes; Figure S5: SEM images of ZnSn(OH)6 microcubes, scale bars:
(i) 200 nm and (ii) 100 nm; Figure S6: TEM image of the surface of the particles treated at 750 ◦C, scale
bars 10 nm.
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