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Abstract: The 3-halogen and 3,6-dihalogen derivatives of ortho-carborane 3-X-1,2-C2B10H11 and
3,6-X2-1,2-C2B10H10 (X = Cl, Br, I) were prepared by Cu-assisted halodeboronation of the correspond-
ing pinacolborate derivatives 3-Bpin-1,2-C2B10H11 and 3,6-(Bpin)2-1,2-C2B10H10. It was shown that
decapitation of 3-Cl-1,2-C2B10H11, similarly to the corresponding bromo and iodo derivatives, pro-
ceeds regioselectively with the retention of the B-Cl bond. Crystal structures of 3,6-Cl2-1,2-C2B10H10

and Cs [3-Cl-7,8-C2B9H11] were determined by single crystal X-ray diffraction.

Keywords: ortho-carborane; halogen derivatives; synthesis; NMR spectra; single crystal X-ray diffraction

1. Introduction

The discovery of the decapitation of ortho-carborane under the action of strong nucle-
ophiles with the formation of nido-carborane in the 1960s [1,2] initiated the development of
at least two main directions in the development of carborane chemistry. The first one was
the use of dicarbollide ligands, which are formed upon the deprotonation of nido-carboranes
with strong bases, for the synthesis of π-complexes of transition metals analogous to com-
plexes with cyclopentadiene ligands, the so-called metallacarboranes [3–11]. Another
direction was the transformation of closo-carborane derivatives into the corresponding
nido-carboranes in order to increase their water solubility for use in boron neutron capture
therapy for cancer [12–19], radio-immunodiagnostics and radio-immunotherapy [20–22],
as well as some other medical applications [23–27]. Later, the use of nido-carboranes in
the design of carborane-containing luminescent materials was reported [28–34]. However,
the transformation of the closo-carborane cage into the nido-carborane one leads to the
appearance of an anionic charge, which implies the presence of a counterion, and also
results in a significant decrease in the thermal and chemical stability of the carborane cage.
In addition, during decapitation, the strong electron-withdrawing effect of the C-carboranyl
group changes to an electron-donating one [30,31,35–38]. Therefore, for many important
applications of carboranes in material chemistry [39–52], their decapitation is highly unde-
sirable. Therefore, the protection of the ortho-carborane cage from decapitation is one of the
urgent problems in the design of new carborane-based materials.

It was earlier demonstrated that the substitution of hydrogen atoms in positions 3 and
6 of ortho-carborane with phenyl groups successfully protects the carborane cage from
decapitation [53]. However, the rather large size of the phenyl groups precludes substitution
at adjacent carborane carbons and obstructs the rational design of ortho-carborane-based
materials. Therefore, the goal of this study was to develop convenient methods for the
synthesis of 3,6-dihalogen-substituted derivatives of ortho-carborane 3,6-X2-1,2-C2B10H10,
the substituents in which have the smallest size that do not prevent further modification.
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2. Results and Discussion

The introduction of substituents into positions 3 and 6 of the ortho-carborane cage
by a direct route is impossible and usually involves several steps. The simplest approach
involves two consecutive decapitations of ortho-carborane to nido-carborane followed by
the insertion of the “missing” boron vertex with the corresponding substituent BX. It is this
approach that was first used for the synthesis of 3,6-diiodo-ortho-carborane [54,55].

An important issue here is the retention of the substituent during the decapitation
of 3-substituted ortho-carboranes, which in general can go through both the free posi-
tion 6 and the substituted position 3. Earlier, it was shown that the decapitation of
3-bromo- and 3-iodo-ortho-carboranes proceeds with the retention of the substituent [56].
The retention of a substituent is also characteristic of 3-alkyl-, 3-aryl-, and 3-alkynyl-ortho-
carboranes [53,57–60], as well as of 3-amino-ortho-carborane and other derivatives with
a B-N bond [61–65]. At the same time, decapitation of 3-fluoro [66] and 3-hydroxy [67]
derivatives of ortho-carborane leads to mixtures of the parent nido-carborane and the corre-
sponding substituted nido-carboranes, i.e., is not selective. Thus, both the fluorine and the
hydroxy group cannot be used to protect ortho-carborane from decapitation.

Alternatively, the first decapitation-insertion sequence can be replaced by diazotization
of the 3-amino derivative formed by the reduction of ortho-carborane with sodium metal
in liquid ammonia, followed by oxidation of the resulting product with KMnO4 or CuCl2,
followed by replacement of the diazo group with various nucleophiles [68–71]. Recently,
the direct way to the synthesis of the 3-amino derivative by the Ir-catalysed reaction of the
parent ortho-carborane with ammonia in tetrahydrofuran has been proposed [72]. This ap-
proach is also applicable to various derivatives of ortho-carborane, including 3-substituted
derivatives, which makes it possible to avoid the use of highly aggressive boron trihalides
and liquid ammonia.

Recently, the simultaneous introduction of substituents at positions 3 and 6 of the ortho-
carborane cage was reported using the Ir-catalysed reaction of the parent ortho-carborane
with bis(pinacolato)diboron B2pin2 followed by the replacement of the pinacolborane
groups in 3,6-(Bpin)2-1,2-C2B10H10. In particular, the authors used this approach to ob-
tain 3,6-dibromo- and 3,6-diiodo-derivatives of ortho-carborane [73]. Wishing to use this
approach, we prepared 3-pinacolborane (1) and 3,6-di(pinacolborane) (2) derivatives by
reaction of the parent ortho-carborane with B2pin2 in the presence of a [(cod)Ir(µ-Cl)]2
iridium catalyst according to the previously described procedure modified by us at the
product separation stage (Scheme 1). However, in our hands, the further Pd-catalysed
substitution reactions described by them did not give the desired result.
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Scheme 1. Synthesis of 3-Bpin-1,2-C2B10H11 (1) and 3,6-(Bpin)2-1,2-C2B10H10 (2). Scheme 1. Synthesis of 3-Bpin-1,2-C2B10H11 (1) and 3,6-(Bpin)2-1,2-C2B10H10 (2).

To solve the problem, we have developed a method for the Cu-catalysed halode-
boronation of pinacolborane derivatives of ortho-carborane, similar to that used in organic
chemistry for halodeboronation of aryl boronic acids [74–79].

The reactions of 3-Bpin-1,2-C2B10H11 (1) with three equivalents of N-chloro- and
N-bromosuccinimides in the presence of three equivalents of CuX2·2H2O in boiling ace-
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tonitrile for 24 h gave the corresponding 3-chloro (3) and 3-bromo (4) derivatives of
ortho-carborane in high yields (Scheme 2). The 3-iodo derivative 3-I-1,2-C2B10H11 (5) was
prepared using I2 and Cu(OAc)2·H2O instead of the corresponding N-halogen-succinimide
and copper(II) halogenide (Scheme 2). It should be noted that in the absence of an iodine
source, the latter reaction leads to the formation of the corresponding acetoxy derivative
3-AcO-1,2-C2B10H11 (6).
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Similarly, the reactions of 3,6-(Bpin)2-1,2-C2B10H10 (2) with six equivalents of N-chloro-
and N-bromosuccinimides in the presence of six equivalents of CuX2·2H2O in boiling ace-
tonitrile for 24 h result in the corresponding 3,6-dichloro (7) and 3,6-dibromo (8) derivatives
of ortho-carborane. The 3,6-diiodo derivative 3,6-I2-1,2-C2B10H10 (9) was prepared by the
treatment of the 3,6-di(pinacolborate) derivative 2 with six equivalents of sodium iodide NaI
and copper acetate Cu(OAc)2·H2O or iodine I2 and copper fluoride CuF2·H2O in refluxing
acetonitrile (Scheme 3). The reaction with copper acetate in the absence of NaI results in the
known 3,6-di(acetoxy) derivative 3,6-(AcO)2-1,2-C2B10H10 (10). It should be noted that the
reaction of the 3,6-di(pinacolborate) derivative 2 with copper acetate in the presence of NaBr
also led to the 3,6-di(acetoxy) derivative 10, while the reactions with N-bromosuccinimide
or (Bu4N)Br and Br2 gave mixtures of 3,6-dibromo 8 and 3,6-(diacetoxy) 10 derivatives. The
reactions of the 3,6-di(pinacolborate) derivative 2 with CuF2·2H2O in the presence of CsF,
KHF2, or MeI were found to result in the parent ortho-carborane 1,2-C2B10H12 in 7 h.

The structure of 3,6-dichloro derivative 3,6-Cl2-1,2-C2B10H10 (7) was determined by
single crystal X-ray diffraction. The general view of 7 is presented in Figure 1. In the
crystal, the molecule occupies special positions located at the two-fold symmetry axis.
The B3-Cl1 bond (1.757(5) Å) is noticeable shorter than the B-Cl bonds in the 9,12-isomer
9,12-Cl2-1,2-C2B10H10 (1.798(2) Å) [80]. In contrast to the crystal structure of the 3,6-diiodo
derivative, which is characterized by the presence of the I···I dihalogen bonds of type II
(I···I distance 4.067 Å, B-I···I angle is 91.19◦) [81], there was not any strong intermolecular
interactions in the crystal structure of the titled compound. Weak Cl···Cl dihalogen bonds
of type I with a distance of 3.768(3) Å (that is longer than the sum of Van der Waals radii
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(3.65 Å) [82]) linked molecules into chains along the (101) direction while all the other
interactions were Van der Waals (Figure 2).
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Since the decapitations of 3-bromo and 3-iodo derivatives of ortho-carborane occur
selectively with the retention of the substituent, and in the case of the 3-fluoro derivative
non-selectively, it was important to understand how the decapitation of the 3-chloro
derivative 3 occurs. We found that heating 3 with CsF in ethanol led to selective decapitation
of the unsubstituted vertex to form nido-carborane Cs [3-Cl-7,8-C2B9H11] (11) (Scheme 4).
Thus, unlike fluorine, the chlorine atom protects the boron atom bound to two carbon
atoms from nucleophilic attack.



Inorganics 2022, 10, 207 5 of 14Inorganics 2022, 10, 207 5 of 15 
 

 

 

Figure 2. Crystal packing fragment of 3,6-Cl2-1,2-C2B10H10. The Cl…Cl contacts are shown by 

dashed lines. 

Since the decapitations of 3-bromo and 3-iodo derivatives of ortho-carborane occur 

selectively with the retention of the substituent, and in the case of the 3-fluoro derivative 

non-selectively, it was important to understand how the decapitation of the 3-chloro de-

rivative 3 occurs. We found that heating 3 with CsF in ethanol led to selective decapitation 

of the unsubstituted vertex to form nido-carborane Cs [3-Cl-7,8-C2B9H11] (11) (Scheme 4). 

Thus, unlike fluorine, the chlorine atom protects the boron atom bound to two carbon 

atoms from nucleophilic attack. 

CsF

EtOH
60 

o
C, 15 h

1
2

3
4

5

6

7

8

9

10 11

12

Cl

3

H

7
8

3
2

11

-

4

1

6

10 9

5

Cl

Cs
+

11

88 %  

Scheme 4. Decapitation of 3,6-Cl2-1,2-C2B10H10 (7). 

Figure 2. Crystal packing fragment of 3,6-Cl2-1,2-C2B10H10. The Cl···Cl contacts are shown by
dashed lines.

Inorganics 2022, 10, 207 5 of 15 
 

 

 

Figure 2. Crystal packing fragment of 3,6-Cl2-1,2-C2B10H10. The Cl…Cl contacts are shown by 

dashed lines. 

Since the decapitations of 3-bromo and 3-iodo derivatives of ortho-carborane occur 

selectively with the retention of the substituent, and in the case of the 3-fluoro derivative 

non-selectively, it was important to understand how the decapitation of the 3-chloro de-

rivative 3 occurs. We found that heating 3 with CsF in ethanol led to selective decapitation 

of the unsubstituted vertex to form nido-carborane Cs [3-Cl-7,8-C2B9H11] (11) (Scheme 4). 

Thus, unlike fluorine, the chlorine atom protects the boron atom bound to two carbon 

atoms from nucleophilic attack. 

CsF

EtOH
60 

o
C, 15 h

1
2

3
4

5

6

7

8

9

10 11

12

Cl

3

H

7
8

3
2

11

-

4

1

6

10 9

5

Cl

Cs
+

11

88 %  

Scheme 4. Decapitation of 3,6-Cl2-1,2-C2B10H10 (7). Scheme 4. Decapitation of 3,6-Cl2-1,2-C2B10H10 (7).

The crystal structure of Cs [3-Cl-7,8-C2B9H11] (11) was determined by single crystal
X-ray diffraction. The general view of 3-chloro-nido-carborane with Cs counterion is given
in Figure 3. The B3-Cl1 bond length was somewhat longer than that in 7 (1.790 (10) Å). In the
crystal there was not even any weak Cl···Cl and Cl···H contacts that was probably due to
the presence of the Cs cation which governs crystal packing motifs by the formation of nu-
merous Cs···H and Cs···Cl contacts. Through those contacts, each Cs cation simultaneously
binds six carborane cages (Figure 4).
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Figure 4. Crystal packing fragment of Cs [3-Cl-7,8-C2B9H11]. The closest environment of the Cs
cation is shown by solid dashed lines. The Cs1···Cl1 distances are 3.762 (2) Å and 3.776 (2) Å, the
Cs-H distances are in the range of 3.15–3.35 Å.

The 3,6-dihalogen derivatives 3,6-X2-1,2-C2B10H10 (X = Cl, Br, I) were found to re-
sist decapitation under the conditions which were used for decapitation of the 3-chloro
derivative of ortho-carborane (refluxing with CsF in ethanol).

3. Materials and Methods
3.1. General Methods

Acetonitrile and tetrahydrofuran were dried using standard procedures [83]. All other
chemical reagents were purchased from Sigma Aldrich (Burlington, MA, USA), Acros
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Organics (Geel, Belgium), and ABCR (Karlsruhe, Germany) and used without purification.
The reaction progress was monitored by thin-layer chromatography (Merck F254 silica gel
on aluminium plates and Macherey-Nagel ALUGRAM Xtra SIL G UV254) and visualized
using 0.5 % PdCl2 in 1% HCl in aq. MeOH (1:10). Acros Organics (0.060–0.200 mm) silica
gel was used for column chromatography. The NMR spectra at 400 MHz (1H), 128 MHz
(11B) and 100 MHz (13C) (See Supplementary Materials) were recorded with a Varian
Inova 400 spectrometer (Palo Alto, CA, USA). The residual signal of the NMR solvent
relative to Me4Si was taken as the internal reference for the 1H and 13C NMR spectra.
The 11B NMR spectra were referenced using BF3·Et2O as external standard. Mass spectra
(MS) were measured using the Shimadzu LCMS-2020 instrument (Kyoto, Japan) with
DUIS ionization (ESI—electrospray ionization and APCI—atmospheric pressure chemical
ionization). The measurements were performed in a negative ion mode with a mass range
from m/z 50 to m/z 2000.

3.2. Synthesis of 3-Bpin-1,2-C2B10H11 (1) and 3,6-(Bpin)2-1,2-C2B10H10 (2)

Under an argon atmosphere, ortho-carborane (1.440 g, 10.00 mmol), bis(pinacolato)-
diboron B2pin2 (1.016 g, 40.00 mmol), and bis(1,5-cyclooctadiene)diiridium (I) dichloride
[(cod)Ir(µ-Cl)]2 (235 mg, 0.35 mmol) were placed in a 50 mL two-neck flask and dry THF
(10 mL) was added. Then, 2-methylpyridine (196 mg, 207 µL, 2.10 mmol) was added
and heated under reflux for 12 h, monitoring the progress of the reaction by thin-layer
chromatography (dichloromethane) and 11B NMR spectroscopy. After cooling the reaction
mixture to ambient temperature, silica gel was added, and all volatiles were removed on a
rotary evaporator. The resulting solid residue was subjected to column chromatography
using dichloromethane as the eluent. The first and second fractions were collected and
concentrated on a rotary evaporator to obtain white compounds 1 (648 mg, 24%) and
2 (2574 mg, 65%), respectively.

3-Bpin-1,2-C2B10H11 (1): 1H NMR (CDCl3, ppm): 3.56 (2H, br.s, CHcarb), 1.25 (12H,
s, CH3). 11B NMR (CDCl3), δ: 33.3 (1B, s, Bpin), −1.6 (2B, d, J = 145 Hz), −7.7 (1B, d,
J = 155 Hz), −8.3 (1B, d, J = 146 Hz), −12.8 (5B, d + s, J = 163 Hz), −14.3 (1B, d, J = 177 Hz).

3,6-(Bpin)2-1,2-C2B10H10 (2): 1H NMR (CDCl3, ppm): 3.55 (2H, br.s, CHcarb), 1.26 (24H,
s, CH3). 11B NMR (CDCl3), δ: 33.7 (2B, s, Bpin), −0.7 (2B, d, J = 145 Hz), −6.4 (2B, d,
J = 155 Hz), −11.7 (6B, d + s, J = 146 Hz).

3.3. General Procedure for the Synthesis of 3-Halogen-ortho-carboranes 3-X-1,2-C2B10H11
(X = Cl (3), Br(4))

3-Bpin-1,2-C2B10H11 (1) (50.0 mg, 0.185 mmol), N-X-succinimide (0.555 mmol) and
CuX2 (0.555 mmol) were placed in a 25 mL round bottom flask and acetonitrile (5 mL) was
added. The reaction mixture was heated under reflux for ~ 24 h until complete conversion
according to 11B NMR and allowed to cool to room temperature. The solvent was removed
in vacuo and the resulting solid residue was subjected to column chromatography on silica
using a mixture of chloroform and petroleum ether (2:1, v/v) as the eluent.

3-Cl-1,2-C2B10H11 (3): According to the general procedure using N-chlorosuccinimide
(74.0 mg) and CuCl2·2H2O (75.0 mg), 25.8 mg (76% yield) of a white crystalline compound
3 was obtained. 1H NMR (CDCl3, ppm): 3.81 (2H, br.s, CHcarb). 11B NMR (CDCl3, ppm):
−2.7 (2B, d, J = 151 Hz), −5.5 (1B, s), −8.9 (1B, d, J = 152 Hz), −12.4 (2B, d, J = 184 Hz),
−13.9 (3B, d, J = 174 Hz), −14.8 (1B, d, J = 115 Hz).

3-Br-1,2-C2B10H11 (4): According to the general procedure using N-bromosuccinimide
(98.8 mg) and CuBr2·2H2O (144.0 mg), 30.1 mg (73% yield) of a white crystalline compound
4 was obtained. 1H NMR (CDCl3, ppm): 3.84 (2H, br.s, CHcarb). 11B NMR (CDCl3, ppm):
−2.2 (2B, d, J = 151 Hz), −8.3 (1B, d, J = 155 Hz), −11.9 (2B, d, J = 175 Hz), −12.4 (1B, s),
−13.4 (4B, d, J = 174 Hz).
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3.4. Synthesis of 3-Iodo-ortho-Carborane 3-I-1,2-C2B10H11 (5)

3-Bpin-1,2-C2B10H11 (1) (50.0 mg, 0.185 mmol), NaI (83.2 mg, 0.555 mmol) and
Cu(OAc)2·H2O (110.8 mg, 0.555 mmol) were placed in a 25 mL round bottom flask and
acetonitrile (5 mL) was added. The reaction mixture was heated under reflux for 15 h until
complete conversion according to 11B NMR and allowed to cool to room temperature. The
solvent was removed in vacuo and the resulting solid residue was subjected to column
chromatography on silica using a mixture of chloroform and petroleum ether (2:1, v/v) as
the eluent. The first boron-containing fraction was collected and concentrated on a rotary
evaporator under reduced pressure to obtain a white crystalline compound 5 (43.4 mg,
87% yield). 1H NMR (CDCl3, ppm): 3.84 (2H, br.s, CHcarb). 11B NMR (CDCl3, ppm):
−1.3 (2B, d, J = 151 Hz), −7.1 (1B, d, J = 156 Hz), −11.0 (3B, d, J = 174 Hz), −12.4 (2B, d,
J = 174 Hz), −13.1 (1B, d, J = 188 Hz), −29.3 (1B, s).

3.5. Synthesis of 3-Acetoxy-ortho-Carborane 3-AcO-1,2-C2B10H11 (6)

3-Bpin-1,2-C2B10H11 (1) (50.0 mg, 0.185 mmol) and Cu(OAc)2·H2O (110.8 mg,
0.555 mmol) were placed in a 25 mL round bottom flask and acetonitrile (5 mL) was
added. The reaction mixture was heated under reflux for 30 h until complete conversion
according to 11B NMR and allowed to cool to room temperature. The solvent was removed
in vacuo and the resulting solid residue was subjected to column chromatography on
silica using a mixture of chloroform and petroleum ether (2:1, v/v) as the eluent. The first
boron-containing fraction was collected and concentrated on a rotary evaporator under
reduced pressure to obtain a white crystalline compound 6 (33.2 mg, 89% yield). 1H NMR
(acetone-d6, ppm): 4.86 (2H, br.s, CHcarb), 2.12 (3H, s, CH3). 11B NMR (acetone-d6, ppm):
−4.0 (1B, s), −5.5 (2B, d, J = 153 Hz), −11.2 (1B, d, J = 178 Hz), −13.9 (2B, d, J = 174 Hz),
−14.8 (1B, d), −15.6 (2B, d, J = 188 Hz), −17.0 (1B, d, J = 162 Hz).

3.6. General Procedure for the Synthesis of 3,6-Dihalogen-ortho-carboranes 3,6-X2-1,2-C2B10H10
(X = Cl (7), Br(8))

3,6-(Bpin)2-1,2-C2B10H10 (2) (1 equiv.), N-X-succinimide (6 equiv.) and CuX2 (6 equiv.)
were placed in a 25 mL round bottom flask and acetonitrile (5 mL) was added. The reaction
mixture was heated under reflux for ~24 h until complete conversion according to 11B
NMR and allowed to cool to room temperature. The solvent was removed in vacuo and the
resulting solid residue was subjected to column chromatography on silica using a mixture
of chloroform and petroleum ether (2:1, v/v) as the eluent.

3,6-Cl2-1,2-C2B10H10 (7): According to the general procedure using 3,6-(Bpin)2-1,2-
C2B10H10 (396.0 mg, 1.000 mmol), N-chlorosuccinimide (801.0 mg, 6.000 mmol) and
CuCl2·2H2O (1022.7 mg, 6.000 mmol), 168.3 mg (79% yield) of a white crystalline compound
7 was obtained. 1H NMR (CDCl3, ppm): 4.07 (2H, br.s, CHcarb). 1H NMR (acetone-d6, ppm):
5.40 (2H, br.s, CHcarb). 11B NMR (CDCl3, ppm): −3.2 (2B, d, J = 153 Hz, B(9) + B(12)),
−4.4 (2B, s, B(3) + B(6)), −12.6 (4B, d, J = 169 Hz, B(4) + B(5) + B(7) + B(11)), −14.6 (2B,
d, J = 159 Hz, B(8) + B(10)). 11B NMR (acetone-d6, ppm): −4.2 (4B, d + s, J = 147 Hz,
B(3) + B(6)+ B(9) + B(12)), −12.6 (4B, d, J = 167 Hz, B(4) + B(5) + B(7) + B(11)), −14.7 (2B,
d, J = 150 Hz, B(8) + B(10)). 13C NMR (acetone-d6, ppm): 63.5 (CHcarb). MS (DUIS), m/z:
found: 212.2 (M–H)−; calculated for C2H9B10Cl2 (M–H)−: 212.1.

3,6-Br2-1,2-C2B10H10 (8): According to the general procedure using 3,6-(Bpin)2-1,2-
C2B10H10 (50.0 mg, 0.126 mmol), N-bromosuccinimide (133.50 mg, 0.756 mmol) and
CuBr2·2H2O (194.5 mg, 0.756 mmol), 27.0 mg (71% yield) of a white crystalline compound
8 was obtained. 1H NMR (CDCl3, ppm): 4.14 (2H, br.s, CHcarb). 1H NMR (acetone-d6, ppm):
5.47 (2H, br.s, CHcarb). 11B NMR (CDCl3, ppm): −1.9 (2B, d, J = 151 Hz), −11.6 (8B, m). 11B
NMR (acetone-d6, ppm), δ: −2.8 (4B, d, J = 151 Hz), −10.9 (2B, d + s, J = 156 Hz), −11.5 (4B,
d, J = 156 Hz), −12.5 (2B, d, J = 127 Hz).
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3.7. Synthesis of 3,6-Diiodo-ortho-Carborane 3,6-I2-1,2-C2B10H11 (9)

(a) 3,6-(Bpin)2-1,2-C2B10H10 (2) (50.0 mg, 0.126 mmol), NaI (112.0 mg, 0.756 mmol)
and Cu(OAc)2·H2O (150.0 mg, 0.756 mmol) were placed in a 25 mL round bottom flask
and acetonitrile (5 mL) was added. The reaction mixture was heated under reflux for 15 h
until complete conversion according to 11B NMR and allowed to cool to room temperature.
The solvent was removed in vacuo and the resulting solid residue was subjected to column
chromatography on silica using a mixture of chloroform and petroleum ether (2:1, v/v) as
the eluent. The first boron-containing fraction was collected and concentrated on a rotary
evaporator under reduced pressure to obtain a white crystalline compound 9 (43.8 mg,
88% yield).

(b) 3,6-(Bpin)2-1,2-C2B10H10 (1) (50.0 mg, 0.126 mmol), I2 (192.0 mg, 0.756 mmol),
and CuF2·H2O (104.0 mg, 0.756 mmol) were placed in a 25 mL round bottom flask and
acetonitrile (5 mL) was added. The reaction mixture was heated under reflux for 20 h until
complete conversion according to 11B NMR and allowed to cool to room temperature. The
solvent was removed in vacuo and the resulting solid residue was subjected to column
chromatography on silica using a mixture of chloroform and petroleum ether (2:1, v/v) as
the eluent. The first boron-containing fraction was collected and concentrated on a rotary
evaporator under reduced pressure to obtain a white crystalline compound 9 (42.8 mg,
86% yield).

1H NMR (CDCl3, ppm): 4.13 (2H, br.s, CHcarb). 11B NMR (CDCl3, ppm): −0.2 (2B, d,
J = 144 Hz), −8.9 (2B, d, J = 182 Hz), −9.9 (4B, d, J = 151 Hz), −27.9 (2B, s).

3.8. Synthesis of 3,6-Diacetoxy-ortho-Carborane 3,6-(AcO)2-1,2-C2B10H10 (10)

3,6-(Bpin)2-1,2-C2B10H10 (2) (50.0 mg, 0.126 mmol) and Cu(OAc)2·H2O (150.0 mg,
0.756 mmol) were placed in a 25 mL round bottom flask and acetonitrile (5 mL) was
added. The reaction mixture was heated under reflux for 25 h until complete conversion
according to 11B NMR and allowed to cool to room temperature. The solvent was removed
in vacuo and the resulting solid residue was subjected to column chromatography on
silica using a mixture of chloroform and petroleum ether (2:1, v/v) as the eluent. The first
boron-containing fraction was collected and concentrated on a rotary evaporator under
reduced pressure to obtain a white crystalline compound 10 (28.2 mg, 86% yield). 1H NMR
(acetone-d6, ppm): 5.21 (2H, br.s, CHcarb), 2.12 (6H, s, CH3). 11B NMR (acetone-d6, ppm):
−4.3 (2B, s), −8.1 (2B, d, J = 150 Hz), −15.8 (4B, d, J = 164 Hz), −18.6 (2B, d, J = 152 Hz).

3.9. Synthesis of Cesium 3-chloro-7,8-Dicarba-Nido-Undecaborate Cs [3-Cl-7,8-C2B9H11] (11)

3-Cl-1,2-C2B10H11 (3) (25.0 mg, 0.140 mmol) and CsF (64.0 mg, 0.420 mmol) were
placed in a 25 mL round bottom flask and ethanol (5 mL) was added. The reaction
mixture was heated at 60 ◦C for 15 h until complete conversion according to 11B NMR
and allowed to cool to room temperature. The solvent was removed in vacuo, to the
residue dichloromethane (15 mL) was added and resulting solution was washed with
water (3 × 15 mL). The organic fraction was collected and dried over Na2SO4, filtered and
concentrated in vacuo to obtain a white crystalline compound 11 (43.8 mg, 88% yield).
1H NMR (acetone-d6, ppm): 1.90 (2H, br.s, CHcarb), −2.68 (BHB, br.m). 11B NMR (acetone-
d6, ppm), δ: −8.5 (1B, s, B(3)),−10.7 (2B, d, J = 138 Hz, B(9) + B(11)),−16.8 (2B, d, J = 138 Hz,
B(5) + B(6)), −21.4 (2B, d, J = 152 Hz, B(2) + B(4)), −37.6 (2B, d, J = 139 Hz, B(1) + B(10)).
13C NMR (acetone-d6, ppm): 63.5 (CHcarb). MS (DUIS), m/z: found: 168.2 (M)−; calculated
for C2H11B9Cl (M)−: 168.1.

3.10. Single Crystal X-ray Diffraction Study

The single crystals of 3,6-Cl2-1,2-C2B10H10 (3) and Cs [3-Cl-7,8-C2B9H11] (11) were
grown by slow evaporation of a solution in chloroform and acetone, respectively, at room
temperature. Single crystal X-ray diffraction experiments were carried out using a SMART
APEX2 CCD diffractometer (λ(Mo-Kα) = 0.71073 Å, graphite monochromator,ω-scans) at
120 K. Collected data were processed by the SAINT and SADABS programs incorporated
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into the APEX2 program package [84]. The structures were solved by the direct methods
and refined by the full-matrix least-squares procedure against F2 in anisotropic approxi-
mation. The refinement was carried out with the SHELXTL program [85]. Details of the
refinement are provided in Table 1. The CCDC numbers (221,3255 for 3, and 221,3256 for 11)
contain the supplementary crystallographic data for this paper. These data can be obtained
free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Table 1. Crystallographic data for compounds 3,6-Cl2-1,2-C2B10H10 (3) and Cs [3-Cl-7,8-C2B9H11] (11).

3,6-Cl2-1,2-C2B10H10 (3) Cs [3-Cl-7,8-C2B9H11] (11)

Formula C2H10B10Cl2 Cs+C2B9H11Cl−

FW 213.10 300.76
Crystal system Monoclinic Orthorhombic

Space group C2/c Pbca
a, Å 14.746(7) 10.693(2)
b, Å 6.805(4) 11.149(2)
c, Å 11.485(6) 18.174(4)

β, deg 115.259(14) 90
V, Å3 1042.4(9) 2166.6(8)

Z 4 8
ρcalc, g·cm−3 1.358 1.844

F(000) 424 1120
µ, mm−1 0.557 3.599

θ range, deg 3.06–26.08 2.24–26.15
Independent reflections 1030 2141

Completeness to theta θ, % 99.0 98.8
Refined parameters 85 122

GOF (F2) 0.984 1.037
Reflections with I > 2σ(I) 587 1549

R1(F) (I > 2σ(I)) a 0.0592 0.0579
wR2(F2) (all data) b 0.1473 0.1382

Largest diff. peak/hole, e·Å−3 0.400/−0.478 0.977/−1.299
a R1 = ∑|Fo—|Fc||/∑(Fo); b wR2 = (∑[w(Fo

2—Fc
2)2]/∑[w(Fo

2)2 ]
1
2 .

4. Conclusions

A convenient two-stage method for the preparation of 3-halogen and 3,6-dihalogen
ortho-carborane derivatives 3-X-1,2-C2B10H11 and 3,6-X2-1,2-C2B10H10 (X = Cl, Br, I) through
Cu-assisted halodeboronation of the corresponding pinacolborate derivatives has been
proposed. This approach allows to avoid the use of highly aggressive boron trihalides and
liquid ammonia. It was demonstrated that a chlorine atom effectively protects the boron
atom bound to two carbon atoms from nucleophilic attack. Crystal structures of 3,6-Cl2-1,2-
C2B10H10 and Cs [3-Cl-7,8-C2B9H11] were determined by single crystal X-ray diffraction.
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27. Useini, L.; Mojić, M.; Laube, M.; Lönnecke, P.; Dahme, J.; Sárosi, M.B.; Mijatović, S.; Maksimović-Ivanić, D.; Pietzsch, J.;
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