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Abstract: This report investigates the elimination of hazardous Rhodamine B dye (RhB) from an
aqueous medium utilizing MgTiO3@g-C3N4 nanohybrids manufactured using a facile method.
The nanohybrid MgTiO3@g-C3N4 was generated using an ultrasonic approach in the alcoholic
solvent. Various techniques, including HRTEM, EDX, XRD, BET, and FTIR, were employed to
describe the fabricated MgTiO3@g-C3N4 nanohybrids. RhB elimination was investigated utilizing
batch mode studies, and the maximum removal was attained at pH 7.0. The RhB adsorption
process is more consistent with the Langmuir isotherm model. The highest adsorption capacity
of MgTiO3@g-C3N4 nanohybrids for RhB was determined to be 232 mg/g. The dye adsorption
followed a pseudo-second-order model, and the parameters calculated indicated that the kinetic
adsorption process was spontaneous. Using ethanol and water, the reusability of the nanomaterial
was investigated, and based on the results; it can be concluded that the MgTiO3@g-C3N4 nanohybrids
are easily regenerated for dye removal. The removal mechanism for the removal of RhB dye into
MgTiO3@g-C3N4 nanohybrids was also investigated.

Keywords: MgTiO3@g-C3N4 nanohybrid; RhB dye uptake; adsorption modeling; removal mechanism

1. Introduction

The continuous expansion of the industrial sector has resulted in a dramatic increase
in wastewater production [1,2]. Dyes are commonly found in effluent due to their extensive
usage in the packaging, woven, leather, cosmetics, and food industries [3–5]. Synthetic
dyes display substantial mutagenic and cancerous consequences [6–8]. Rhodamine B (RhB)
dye is an artificial colorant frequently utilized to decorate fabrics and food items. It is an
organic fluorescent pigment that is brilliant red and is employed as a coloring agent in
various sectors, including fabrics, paper, paint, and others. It is a widely utilized pigment
in many sectors due to its excellent water solubility and inexpensive cost [9–12]. However,
colors cannot be biodegraded because they have intricate chemical structures. RhB dye is
resistant to sunlight, fire, and oxidation like other dyes and is not biodegradable [13,14].
According to several research studies, RhB dye is mutagenic and carcinogenic to humans
and animals. It produces biological problems such as rashes on the skin, lung irritation,
hemolysis, and deteriorating liver and renal functions [15–17]. Since it is employed as
a water-monitoring system to measure the flow rates and directions, it is known as a
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luminous water tracer [18,19]. Cleaning up dyes in wastewater before dumping them into
the environment is vital in preventing potential health problems and environmental harm.
Many years of research on dye elimination from industrial wastewater have been con-
ducted. Decolorization of water can be accomplished by oxidation, adsorption, or filtration,
and different technological processes [20,21]. Removing dye from water by adsorption
methods is one of the most successful techniques. Therefore, the alienation of pigments
using adsorption onto zeolite, charcoal, sand, agricultural residues, activated carbon, and
slag has been studied, and the adsorption isotherm was appropriately examined [22,23].
These adsorption techniques extract pigments from concentrated industrial waste [24–27].
However, the regeneration of most adsorptive materials is challenging for some of these
adsorbents. In addition, the cost of adsorption procedures employing such materials is
high. Nowadays, nanotechnology is one of the most remarkable technologies for effec-
tively eliminating dye from sewage with adsorption approaches [28,29]. This technology
is useful for dealing with water containing small amounts of organic and inorganic dyes,
and it is a low cost compared to other methods. Recently, the most efficient adsorption
and photocatalytic agents for entirely removing dyes from sewage are nanoparticles and
nanocomposites [30,31]. Notably, the features of oxide nanocrystals such as MgO, TiO2,
ZnO, and CuO are widely employed in pollutant removal due to their unique physico-
chemical functions, which may also be modified by doping with other materials to meet
specific needs and usage [4,32].

Graphitic carbon nitride (g-C3N4), one of the essential double-layered materials, has
garnered global interest in multiple disciplines, such as photocatalytic degradation, energy
conversion, and ecological environment protection [32–34]. There has been much interest in
compounds derived from g-C3N4 due to their unique qualities, including physicochemical
stability, low cost, and low environmental impact [35,36]. The current work aims to develop
a low-cost, high-performance g-C3N4-based metallic nanocomposite for dye eradication in
the aquatic phase. This research contributes significantly to the g-C3N4 structural design
and property modulation via double doping by MgO and TiO2.

2. Results and Discussion
2.1. MgTiO3@g-C3N4 Nanohybrids Structure Characteristics

The as-fabricated MgTiO3@g-C3N4 nanohybrid was analyzed by transmission elec-
tron microscopy (TEM). As shown in Figure 1a–c, the as-synthesized MgTiO3@g-C3N4
nanohybrids exhibited characteristic 2D nanosheet-like nanoparticle architectures with
a corrugated thickness of around 30 nm. The average diameter of the MgO and TiO3
nanoparticles integrated into the MgTiO3@g-C3N4 nanohybrid composite is less than
20 nm. MgTiO3 nanoparticles are disseminated well on the surface of g-C3N4 which gen-
erates an abundance of self-active sites on the surface of MgTiO3@g-C3N4 nanohybrids.
The Energy-Dispersive-X-ray Spectroscopy (EDX) image identifies the constituents of the
MgTiO3@g-C3N4 sorbent material. Therefore, it is evident from the results of Energy-
Dispersive-X-ray Spectroscopy of MgTiO3@g-C3N4 nanohybrids that the surface consists of
magnesium (Mg), titanium (Ti), oxygen (O), nitrogen (N), and carbon (C), as the spectrum
corresponds to these constituents, which are described in Figure 1d.

The presence of magnesium and titanium can determine the development of the
combination of nanohybrid and oxygen in addition to carbon and nitrogen (Figure 2a–f).
The EDS elemental mapping (Figure 2) displays the elemental maps of the composite
constituents N, C, O, Mg, and Ti along with the appropriate overlay image. In order to
ensure even distribution throughout the composite, the contrast between dark and light
colors is used.
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Figure 2. (a) EDS electronic image of MgTiO3@g-C3N4 nanohybrid; elemental mapping of
(b) carbon, (c) nitrogen, (d) magnesium, (e) titanium, and (f) oxygen in the synthesized MgTiO3@g-
C3N4 nanohybrids.
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The XRD spectra of the MgTiO3@g-C3N4 nanohybrids, which can be seen in Figure 3a,
exhibit well-defined diffraction peaks with relative broadening and intensity, demonstrating
the creation of a well-nanocrystallized phase(s). The identification of the peaks through
the use of the High Score algorithm reveals the existence of three phases, specifically
MgO, anatase TiO2, and g-C3N4. It would appear that the typical diffraction peaks for
g-C3N4 are located at 2θ = 12.7◦ and 27.38◦. These peaks appear to match the in-plane
structural stacking pattern (100) and the interlayer layering plane (002) of the hexagonal
structure (JCPDS card No. 87-1526) [37]. In comparison, the peaks that are placed at 2θ of
25.07◦, 37.59◦, 47.05◦, 53.91◦, 61.99◦, 69.09◦, and 74.53◦ indicate the characteristic reflections
(101), (004), (200), (105), (204), (116), and (220) of the anatase phase TiO2 (JCPDS card
No. 021-1272) [38]. The additional peaks that were detected at 2θ angles of 36.61◦, 42.53◦,
61.99◦, and 78.16◦ have been ascribed to the (111), (200), (220), and (222) planes of the MgO
cubic structure [39].
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MgTiO3@g-C3N4 nanohybrid.

Figure 3b displays the surface area and pore particle diameter characteristics of the
nanohybrid MgTiO3@g-C3N4 as manufactured. The adsorption-desorption graphs of
MgTiO3@g-C3N4 nanohybrid suited isotherm type IV and produced a hysteresis loop
(H2) at relative pressures between 0.0 and 1.0. (Figure 3b). This result validated the
mesoporous nature of the as-prepared MgTiO3@g-C3N4 nanohybrid [40–42], which was
further corroborated by the pore size distribution map generated using the Barret-Joyner-
Halender (BJH) method. The enhanced surface area and porosity of the MgTiO3@g-C3N4
nanohybrid, as revealed by a bigger specific surface area and a higher pore volume, will
increase the adsorption capacity due to the presence of additional active sites on the
surface [42]. In addition, the MgTiO3@g-C3N4 nanohybrid isotherm exhibits a substantial
BET surface area (SBET) of 107 m2.g−1. In addition to its high surface area, the mesoporous
structure of MgTiO3@g-C3N4 nanohybrid makes it a promising candidate for metal ion
and organic pollutant adsorption by providing a large number of active sites. The pore size
distribution plot (Figure 3c) displays a mean pore diameter of 15.75 nm and a cumulative
pore volume of 0.254 cm3 g−1 due to BJH adsorption.

2.2. Adsorption Studies
2.2.1. Effect of Initial Concentration and pH Changing

In order to determine the influence of initial dye concentration on adsorption, the
beginning concentration was varied from 5.0 to 100.0 mg/L (Figure 4a). The adsorption
capacity of RhB increases from 18.5 to 215 mg/g as the initial concentration of RhB increases.
With a higher initial dye concentration, the gradient of dye molecules increases, resulting
in a greater adsorption capacity of MgTiO3@g-C3N4 nanohybrid. As the concentration of
the dye increases, the number of dye molecules in the solution will exceed the number of
reactive sites on the composite’s surface. Due to their rising repulsion, the MgTiO3@g-C3N4
nanohybrid will become saturated with dye molecules, decreasing dye adsorption.
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Figure 4. (a) Impact of initial fed concentration, (b) Effect of solution pH on adsorption of RhB
by MgTiO3@g-C3N4 nanohybrid from 50 mg L−1 using 10 mg sorbent at 25 ◦C, and (c) the zero-
charge investigation.

Figure 4b depicts the influence of pH on the RhB sorption onto MgTiO3@g-C3N4.
Furthermore, the removal effectiveness of MgTiO3@g-C3N4 exceeded 90% of RhB at a pH
of 7.0. In addition, it can be noted that in both acidic and alkaline media (pH ≥ 5.0 and
pH ≤ 9.0), the removal efficiency decreased dramatically.

Metal oxides are recognized for their amphoteric activity in aqueous solutions; thus,
MgO and TiO2 in the nanocomposite may react with either H+ or −OH ions [43,44]. The pH
drift method was employed to determine the point of zero charge PZC of MgTiO3@g-C3N4
nanocomposite. Figure 4c demonstrates that the PZC was located at PH = 9.9 where no elec-
trostatic attraction will occur; on the other hand, below this PH the MgTiO3@g-C3N4 surface
will be positively-charged and favors the sorption of negatively-charged species [45,46].

2.2.2. The Impact of Equilibrium Contacts Time and Adsorption Kinetic Studies

Contact durations up to 120 min were investigated for their influence on RhB adsorp-
tion capacity. As shown in Figure 5a, the contact time significantly impacts RhB dye sorption
onto MgTiO3@g-C3N4. For all concentrations, adsorption capacity increases progressively
with the contact time until 40 min, when it attains equilibrium. Two well-known kinetic
models were used to explain the RhB adsorption kinetics on MgTiO3@g-C3N4. The original
nonlinearized forms of the pseudo-first-order (Equation (1)) and pseudo-second-order
(Equation (2)), and the Elovich (Equation (3)) kinetic models were utilized [47,48].

qt = qe

(
1 − exp−K1.t

)
(1)

qt =
k2.q2

e.t
1 + k2.qe.t

(2)

qt = 1 β ln(1 + αβt) (3)

where k1 (min−1) and k2 (g mg−1 min−1) are the rate constants of the pseudo-first-order and
the pseudo-second-order, accordingly; qt (mg g−1) is the adsorption capacities displayed
by the adsorbent at time t, and qe is qt at equilibrium; α (mmol g−1 s−1) is the initial
rate sorption, and β (g mmol−1) is the sorption constant. Figure 5b–d demonstrates the
pseudo-first-order, pseudo-second-order, and Elovich investigations for the RhB sorption
onto MgTiO3@g-C3N4, and the kinetic findings were gathered in Table 1. The RhB sorption
on MgTiO3@g-C3N4 fitted to the pseudo-second-order with an R2 value of 1.000, and the
computed qe was almost typical of the experimental one.
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Table 1. Kinetic model parameters for the adsorption of RhB dye by nanocomposite.

Pseudo-First-Order Model Elovich Model

qe(Cal)b

(mg g−1)
K1 × 103

(min−1) r2 β × 102

(g mg−1)
α r2

RhB 16.96 4.63 0.5701 0.241 3.79 × 106 0.7310

Pseudo-Second-Order Model

RhB
qe (Exp)

a

(mg g−1)
t1/2

(min)

h0
(mg

g−1.min−1)

qe(Cal)
b

(mg g−1)
K2 × 103

(g mg−1 min−1) r2

85 2.99 27.48 82.24 4.06 1.000

2.2.3. Intra-Particle Diffusion Study for Nanohybrid

The intraparticle diffusion model (IPDM) was utilized to investigate the RB sorption
mechanism onto the MgTiO3@g-C3N4 nanohybrid. According to Equation (6), the obtained
qt plot against the t1/2 is monitored in Figure 4.

qt = Kip ∗ t
1
2 + Ci (4)

Kip (mg g−1 min−0.5) represents the rate constant of the IPDM, and C (arbitrary) is a
constant proportional to the boundary-layer thickness [49]. Obtaining a C value of zero
(i.e., the line pass through the origin point) indicated that IPDM controlled the RB sorption,
which is not the case here (Table 2). Thus, Figure 6 revealed three linear regressions,
illustrating that the IPDM was participating but not the only mechanism controlling the
RhB sorption on the MgTiO3@g-C3N4 nanohybrid [50].
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Table 2. Adsorption rate control mechanism parameters for removing RhB by MgTiO3@g-C3N4 nanohybrid.

Intra-Particle Diffusion/Transport Model

kdif
(mg.g−1

min−1/2)
C1 r2

kdif
(mg g−1

min−1/2)
C2 r2

kdif
(mg g−1

min−1/2)
C3 r2

17.5340 5.06 0.9603 0.4543 74.82 0.9940 0.0093 81.66 0.9838
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2.2.4. MgTiO3@g-C3N4 Nanohybrids Adsorption Isotherm

In order to provide insight into sorbent-sorbate interactions, the equilibrium data of
RhB sorption onto MgTiO3@g-C3N4 at 25 ◦C was treated via isotherm models. Specifi-
cally, the Langmuir (LIM, Equation (5)), Fredulich (FIM, Equation (6)), and Temkin (TIM,
Equation (7)) isotherm models were selected to investigate sorption possibilities [34,51,52].

1
qe

=
1

Kl qm
.

1
Ce

+
1
Kl

(5)

ln qe = ln K f +
1
n

ln Ce (6)

qe =
RT
bT

ln AT +
RT
bT

ln Ce (7)

where qm (mg g−1) is the computed maximum qt, KL (L mg−1) and Kf (L mg−1) are Langmuir
and Freundlich constants, respectively, and relate to sorption energy change and sorbent’s
capacity, respectively; while n is the Freundlich constant related to sorption’s favorability.
AT (L mg−1) and bT (J mol−1) are the TIM constant and Temkin constant associated with the
heat of sorption. Figure 7 illustrates the linear and nonlinear plots of LIM, FIM, and TIM.
The isotherms result (Table 3) indicated that the RhB sorption by MgTiO3@g-C3N4 fitted
LIM with an R2 of 0.999. In addition, the 1/n value of less than one implied the favorability
of RhB sorption on MgTiO3@g-C3N4 [52]. Temkin’s correlation coefficient suggested an
essential role for electrostatic interaction in the sorption mechanism [53].



Inorganics 2022, 10, 210 8 of 14Inorganics 2022, 10, x FOR PEER REVIEW 9 of 16 
 

 

 
Figure 7. Isotherm investigation for RhB sorption on MgTiO3@g-C3N4 using (a) Nonlinear LIM, FIM, 
and TIM; (b) Linearized LIM; (c) Linearized FIM; (d) Linearized TIM. 

Table 3. Different equilibrium Isotherms’ constants for RhB dye adsorption by MgTiO3-g-C3N4 na-
nomaterial. 

Equilibrium Model Parameters RhB 

Langmuir 

qm (mg.g−1) 232.02 
KL (mg.g−1) 0.0047 
RL (L.mg−1) 0.4788 

R2 0.9991 

Freundlich 
n 2.06 

KF (L.mg−1) 88.64 
R2 96488 

Temkin 
B (J.mol−1) 60.18 
KT (L.mg−1) 17.65 

R2 0.9816 

2.2.5. RhB Dye Adsorption Mechanism 
To comprehend the adsorption process, FTIR spectra (Figure 8a,b) of MgTiO3@g-

C3N4 nanohybrid before and after the adsorption of RhB dye were recorded in the region 
of 400–3600 cm−1. The FTIR spectrum of the nanohybrid MgTiO3@g-C3N4 is broad between 
3000 and 3400 cm−1 due to the stretching modes of the O–H and terminal amino groups. 
The bands at 1232, 1315, and 1454 cm−1 correspond to aromatic C–N stretching, whereas 
the peaks at 1574 and 1632 cm−1 correspond to C≡N stretching. The band at 892 cm−1 cor-
responds to the triazine ring mode peak, which is a typical mode in carbon nitride. As 
demonstrated in Figure 8a, the FTIR spectrum of MgTiO3@g-C3N4 nanohybrid shifted 
slightly after RhB dye adsorption. Furthermore, the central peak in the broadband at 3165 
cm−1 changed to 3157, revealing that the OH and amino groups of MgTiO3@g-C3N4 nano-
hybrid were entangled throughout the adsorption process. This observed result could be 

Figure 7. Isotherm investigation for RhB sorption on MgTiO3@g-C3N4 using (a) Nonlinear LIM, FIM,
and TIM; (b) Linearized LIM; (c) Linearized FIM; (d) Linearized TIM.

Table 3. Different equilibrium Isotherms’ constants for RhB dye adsorption by MgTiO3-g-C3N4 nanomaterial.

Equilibrium Model Parameters RhB

Langmuir

qm (mg.g−1) 232.02
KL (mg.g−1) 0.0047
RL (L.mg−1) 0.4788

R2 0.9991

Freundlich
n 2.06

KF (L.mg−1) 88.64
R2 96488

Temkin
B (J.mol−1) 60.18

KT (L.mg−1) 17.65
R2 0.9816

2.2.5. RhB Dye Adsorption Mechanism

To comprehend the adsorption process, FTIR spectra (Figure 8a,b) of MgTiO3@g-C3N4
nanohybrid before and after the adsorption of RhB dye were recorded in the region of
400–3600 cm−1. The FTIR spectrum of the nanohybrid MgTiO3@g-C3N4 is broad between
3000 and 3400 cm−1 due to the stretching modes of the O–H and terminal amino groups. The
bands at 1232, 1315, and 1454 cm−1 correspond to aromatic C–N stretching, whereas the peaks
at 1574 and 1632 cm−1 correspond to C≡N stretching. The band at 892 cm−1 corresponds to
the triazine ring mode peak, which is a typical mode in carbon nitride. As demonstrated in
Figure 8a, the FTIR spectrum of MgTiO3@g-C3N4 nanohybrid shifted slightly after RhB dye
adsorption. Furthermore, the central peak in the broadband at 3165 cm−1 changed to 3157,
revealing that the OH and amino groups of MgTiO3@g-C3N4 nanohybrid were entangled
throughout the adsorption process. This observed result could be caused by the interaction
between RhB molecules and MgTiO3@g-C3N4 nanohybrid hydrogen bonds. In addition, a
vibrational triazine ring mode at 888 cm−1 nearly shifted with the adsorption of RhB dye,
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which was attributed to the π-π interaction between the electron clouds in the g-C3N4 skeleton
of MgTiO3@g-C3N4 nanohybrid and the aromatic rings of RhB molecules. Consequently, as
depicted in Figure 8b, RhB dye molecules are adsorbed onto the MgTiO3@g-C3N4 nanohybrid.
On the nanohybrid, the hydrogen bonds and π-π interactions enhance the adsorption of RhB
dyes. The contact time trend (Figure 5a) may be deduced from the surface area reducing after
the pores have filled. Furthermore, the agreement of sorption to the FIM may explain the
slowdown in the sorption rate after the first hour.
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2.3. MgTiO3@g-C3N4 Nanohybrid Regeneration

The regeneration capacity of the hybrid was examined by eliminating the RhB dye from
the MgTiO3@g-C3N4 nanohybrid. The ethanol solvent demonstrated the desorption of RhB
dye from the MgTiO3@g-C3N4 nanohybrid instantaneous coloring. The freshly generated
RhB dye solution’s volume and concentration were then applied to the MgTiO3@g-C3N4
nanohybrid (25 mg/L, 100 mL). Five times this entire cycle was repeated. The removal
effectiveness of the RhB dye from MgTiO3@g-C3N4 nanohybrid desorbed by ethanol and
distilled water is given in (Figure 9). With each desorption cycle, it was found that the
MgTiO3@g-C3N4 nanohybrid’s ability to remove dyes somewhat diminished.
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2.4. Adsorption Capability of MgTiO3@g-C3N4 Nanohybrids for other Color Contaminants

To test the adsorption capability of MgTiO3@g-C3N4 nanohybrid, various dye solu-
tions with fixed concentrations (50 mg/L) were studied. Extraction tests were conducted
by combining the obtained MgTiO3@g-C3N4 nanohybrid sorbent (10 mg) with dyes and an
aqueous solution (25 mL), in a 50 mL bottle for 24 h at room temperature with magnetic
stirring. After centrifuging the dye solutions for 10 min, 5.0 mL of the supernatant solutions
recovered. The capacity of MgTiO3@g-C3N4 nanohybrid to adsorb various colors from
an aqueous solution was evaluated. Figure 10 depicts the removal percentage of various
dyes by MgTiO3@g-C3N4 nanohybrid adsorbent. The obtained results confirmed that the
elimination ability percentages of malachite green (MG), methylene blue (MB), indigo
carmine (IC), crystal violet (CV), congo red (CR), and basic fuchsin (BF) were 93, 99, 87, 95,
96, and 87%, respectively. However, the uptake of MB and CR dyes was higher than that of
other colors.
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Compared to recent literature findings, MgTiO3@g-C3N4 nanohybrid performed com-
petitively under optimized operating conditions in removing RB within 40 min (Table 4).
This finding can be attributed to the high surface area of 107 m2 g−1 and the mesoporous
material nature of this sorbent. In addition to removing toxic metals and organic pollutants,
this nanomaterial is also cost-effective.

Table 4. Recent literature findings compared to the MgTiO3@g-C3N4 fabricated in this study in
removing RhB.

Nanomaterial Adsorption Capacity (mg. g−1) Reference

MgTiO3@g-C3N4 nanohybrids 223 This study
Carbon microspheres 19.9 [54]

Fe2O4-montmorillonite
nanocomposite 209 [55]

Zn–Fe layered double
hydroxide-activated carbon

nanocomposite
97.0 [56]

Activated carbon 264 [57]
Carbon–cobalt ferrite 94.1 [58]

activated carbon-supported
MgO/MnO2

16.2 [59]
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3. Experimental Section
3.1. Building Up of MgTiO3@g-C3N4 Nanomaterials

The powdered g-C3N4 was produced through the decomposition of the urea com-
pound. An amount of 7 g of urea substance was loaded in a covered pot and heated at
550 ◦C for 2.0 h. The acquired raw, yellow g-C3N4 was then allowed to cool, ground, and
packed into a bottle. Magnesium oxide (MgO) powder was produced by the thermal degra-
dation of MgCO3 in a muffle furnace (SNOL-LSF21) at 800 ◦C for 1.0 h, whereas nanosized
TiO2 was purchased from Sigma Aldrich. Using a standard ultrasonication procedure
(Ultrasonic cleaner-100W, Labtech-Co., LTD, Seol, Korea), MgTiO3@g-C3N4 nanomaterial
was fabricated. In 125 mL of methanol, 1.84 g of g-C3N4 was ultrasonically treated for
15 min. The g-C3N4 in methanol solution received 400 mg of MgO and TiO2 nanopowder,
which was then sonicated for an extra 45 min. The resultant yellowish solution was heated
at 85 ◦C for 24.0 h and 180 ◦C for 1.0 h; then the produced MgTiO3@g-C3N4 nanomaterial
was annealed.

3.2. Characterization

The prepared MgTiO3@g-C3N4 nanohybrid was characterized using X-ray Diffrac-
tion (XRD) (PAN-alytical X’Pert Pro Multipurpose Diffractometer), Cu-Kα X-ray radiation
(λ = 1.5418 Å) at 40 kV and a current 5.0 flow of 40 mA. The structure, surface morphol-
ogy, and elemental characterization of the MgTiO3@g-C3N4 nanohybrid were determined
by using Field emission scanning electron microscope (FESEM) and Energy-dispersive
X-ray spectroscopy (EDX) techniques, respectively (FESEM Carl Zeiss Merlin Compact,
Oberkochen, Germany). The specific surface area of MgTiO3@g-C3N4 nanohybrid was
measured using the BET (Brunauer-Emmett-Teller) analyzer (Micrometrics ASAP 2020,
Miami, FL, USA) using the N2 adsorption-desorption method, where a sample was dried
under a constant flow of N2 at 60 ◦C for 24 h. TEM images were acquired using FEI Tecnai
G2 20 TWIN microscope (Miami, FL, USA) operating at 200 kV. The salt addition method
evaluated the point of zero charges (pHpzc). The Fourier Transform Infra-Red (FTIR)
spectrum was recorded to determine the existence of functional groups present over the
surface of the adsorbent by using FTIR (Shimadzu IR AFFINITY-I, Tokyo, Japan).

3.3. RhB Dye Removal Experiments

Dye adsorption tests were conducted in Erlenmeyer flasks in batch mode; an adsorbent
dosage of 0.01 g of MgTiO3@g-C3N4 nanohybrid was used to remove RhB dye from 25 mL
solutions containing 25 to 100 mg/L of the dye. To attain the required dye concentrations,
the dye stock solutions (1000 mg/L) were diluted with three times as much distilled water
for all adsorption studies. All studies were conducted in the dark using an orbital shaker at
272 ◦C and 180 rpm shaking speed. Adjusting the pH of the dye solution with (0.1 M) HCl
and (0.1 M) NaOH solution. Utilizing a UV-VIS spectrophotometer, the concentration of
the dye solutions was measured (UV-1800 Spectrophotometer Shimadzu). A duration of
15 min was used to remove the MgTiO3@g-C3N4 nanohybrid from the dye solution using
centrifugation at 5000× g rpm. The absorbance values of the supernatant were measured
to determine the remaining RhB dye concentration at a wavelength (λ max) of 550 nm.
Employing the following expression, the adsorption capacity of the MgTiO3@g-C3N4
nanohybrid for the removal of RhB dye and the removal % was calculated:

Qe = w × (C0 − Ce)

V
(8)

RhB removal (%) = 100 × (C0 − Ce)

C0
(9)

3.4. Regeneration Experiments

Methanol and distilled water have been investigated as desorbing solutions for
MgTiO3@g-C3N4 nanohybrid regeneration investigations for RhB dye. Under ideal condi-
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tions, 25 mg/L concentrations of the RhB dye in 100 mL volumes were initially adsorbed
onto the MgTiO3@g-C3N4 nanohybrid. After that, centrifugation was used to remove the
solution from the used MgTiO3@g-C3N4 nanohybrid. Next, the separated MgTiO3@g-C3N4
nanohybrid was submerged in 50 mL of methanol and 50 mL of distilled water, each for
60 min, in an orbital shaker. The MgTiO3@g-C3N4 nanohybrid was then washed three
times with deionized water and oven dried to assess their reusability. Using ethanol and
distilled water solution, the MgTiO3@g-C3N4 nanohybrid’s efficiency for reuse in up to five
cycles was calculated.

4. Conclusions

In this study, MgTiO3@g-C3N4 nanohybrids were used as adsorbents to remove the
hazardous RhB dye. By combining MgO, TiO2, and g-C3N4 nanosheets, MgTiO3@g-C3N4
nanohybrids were fabricated. The synthesized composite possessed adsorption capabilities
of 232 mg/g and a strong correlation coefficient. RhB adsorption was well represented
by the Langmuir isotherm model and followed pseudo-second-order kinetics. The rel-
evance of electrostatic interaction, hydrogen bonding, and π-π interaction between the
dye molecules and MgTiO3@g-C3N4 nanohybrids was proposed by FTIR analyses of
the adsorption mechanism. In addition to having a broader range of applications, the
composite was successful in removing other dyes. Thus, the present work demonstrates
that MgTiO3@g-C3N4 nanohybrids, with their excellent adsorption efficiencies, are highly
important for eliminating polluted colors.
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