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Abstract: The conditions for achieving the maximal unquenched orbital angular momentum L = 3 and
the highest magnetic anisotropy in mononuclear 3d complexes with axial coordination symmetry are
examined in terms of the ligand field theory. It is shown that, apart from the known linear two-coordinate
3d7 complex CoII(C(SiMe2ONaph)3)2 characterized by record magnetic anisotropy and single-molecule
magnet (SMM) performance (with the largest known spin-reversal barrier Ueff = 450 cm−1), the maximal
orbital angular momentum L = 3 can also be obtained in linear two-coordinate 3d2 complexes (V3+, Cr4+)
and in trigonal-prismatic 3d3 (Cr3+, Mn4+) and 3d8 (Co+, Ni2+) complexes. A comparative assessment
of the SMM performance of the 3d2, 3d3 and 3d8 complexes indicates that they are unlikely to compete
with the record linear complex CoII(C(SiMe2ONaph)3)2, whose magnetic anisotropy is close to the
physical limit for a 3d metal.

Keywords: magnetic anisotropy; single-molecule magnet; unquenched orbital momentum; spin-
reversal barrier; mononuclear 3d complexes; spin-orbit coupling

1. Introduction

Mononuclear paramagnetic metal complexes with high magnetic anisotropy are of
great interest in recent years, largely due to the development of low-dimensional molecule-
based magnetically bistable materials featuring slow magnetic relaxation and blocking
of magnetization at low temperature—single-molecule magnets (0D, SMMs) [1–9] and
single-chain magnets (1D, SCMs) [10–12]. The overall performance of SMMs and SCMs is
quantified by two key parameters, the effective energy barrier to magnetization reversal
(Ueff) and the blocking temperature (TB), below which the magnetization persists in zero
external fields [6–12]. The Ueff and TB values depend strongly on the magnetic anisotropy of
spin carriers incorporated in the high-spin molecule. The early research was mainly focused
on polynuclear transition-metal complexes based on high-spin 3d-ions with enhanced
single-ion magnetic anisotropy arising from the zero-field splitting (ZFS) of the ground spin
state, such as Mn3+ and Ni2+ [1–3]. Then, after the discovery of slow magnetic relaxation
in mononuclear lanthanide complexes (2003) [13] and later in mononuclear transition
metal compounds (2010) [14,15], research interest has turned to SMMs involving single
paramagnetic ion with high magnetic anisotropy due to the first-order unquenched orbital
angular momentum, 4f-complexes [16–24] and special orbitally degenerate 3d-complexes
with high axial symmetry [25,26]. These mononuclear 4f- and 3d-SMMs are known as
single-ion magnets (SIMs).

At present, it is generally recognized that the unquenched orbital angular momentum
of the magnetic metal ions is the most important factor governing large magnetic anisotropy
and high SMM characteristics [8]. In this respect, lanthanide ions are especially attractive. In
fact, all Ln3+ ions with open 4fN-shell exhibit large unquenched orbital angular momentum
L (ranging from 3 to 6, except Gd3+ with L = 0) due to very weak ligand-field (LF) splitting
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energy and strong spin-orbit coupling (SOC) of 4f-electrons; the maximal orbital momentum
L = 6 occurs in Nd3+ (4f3, 4I9/2), Pm3+ (4f4, 5I4), Ho3+ (4f10, 5I8) and Er3+ (4f11, 4I15/2) ions.
Due to the strong SOC of 4f electrons, the orbital momentum L and spin S are coupled
into the total angular momentum J; the ground state of free Ln3+(4fN) ions corresponds
to the 2S+1LJ multiplet with J = L − S (N < 7) and J = L + S (N > 7). For Ln3+ ions in
a ligands coordination environment, the ground J-multiplet undergoes LF splitting into
2J + 1 sublevels (called Stark sublevels) creating a highly anisotropic ground state [8,20]. In
particular, pure Ising-type uniaxial magnetic anisotropy occurs in monometallic lanthanide
complexes with distinct axial symmetry, in which axial LF lifts the (2J + 1)-fold degeneracy
of the ground multiplet into ±MJ microstates with a definite projection of the total angular
momentum [16–24]. The energy splitting diagram of ±MJ states (E vs. MJ) depends on
both the strength and the intrinsic structure of the axial LF, which is specified by three axial
LF parameters B20, B40, B60 [27]. In the optimal case, the strong field stabilizes the doubly
degenerate ground state with maximal MJ projection (MJ = ±J) and with large energy
separation from excited LF states thereby resulting in a double-well potential with the high-
energy barrier Ueff inherent to high-performance SMMs. In particular, such LF-splitting
pattern is observed in square antiprismatic [13], pentagonal-bipyramidal [28,29] and quasi-
linear metallocene lanthanide complexes [30,31], many of which exhibit exceptionally
high Ueff and TB values, including a record-setting dysprosium metallocene SMM with
Ueff = 1541 cm−1 and TB = 80 K [31]. Recent trends in high-performance 4f SIM are reviewed
in ref. [32].

Later on, since the report on the first mononuclear trigonal pyramidal FeII complexes
with SMM behavior (2010) [14,15], extensive efforts have been taken to the development
of 3d SIMs using diverse approaches to increase magnetic anisotropy and energy barrier;
numerous 3d SIMs were reported in the past decade [8,25,26]. However, in contrast to
f-block element complexes, in transition metal complexes the orbital angular momentum is
commonly quenched (L = 0) by a strong LF to produce the spin-only ground state with low
second-order magnetic anisotropy [33]. In the majority of high-spin 3d complexes, mag-
netic anisotropy is typically due to zero-field splitting (ZFS) of the ground spin multiplet
2S + 1, which is generally a weak effect resulting from second-order SOC [34]. Hence, the
barriers Ueff of 3d SIMs are mostly low, within a few tens of cm−1 [8,25,26,33]. The most
efficient strategy toward high-performance 3d SIMs takes advantage of unquenched orbital
angular momentum (L 6= 0) giving rise to the first-order spin-orbit splitting of the ground
spin stated with L 6= 0, which provides considerably stronger magnetic anisotropy and
high energy barriers [16–24]. Unquenched first-order orbital angular momentum can only
appear in orbitally degenerate transition metal complexes with high symmetry, such as
octahedral CoII and [FeIII(CN)6]3 complexes (Oh) [33,34], trigonal-pyramidal (C3v), [14,15]
trigonal-bipyramidal (D3h), [35] trigonal-prismatic (D3h) [36,37], pentagonal-bipyramidal
(D5h) [38] and linear (D∞h) two-coordinate complexes [39–43].

However, apart from unquenched orbital angular momentum, another important
condition for the highest SMM performance of mononuclear 3d complexes is the axial limit
of the magnetic anisotropy, which has a purely Ising-type nature, with zero transverse
components. This case occurs in the LF of axial symmetry, which is produced by tuning
the geometric axiality of the ligand environment of the 3d-ion. Depending on the specific
type of the coordination polyhedron and electronic configuration of the 3d ion, the axial
LF may stabilize the ground orbital doublet with the projection of the orbital angular
momentum ML = 0, ±1, ±2, or ±3. The latter is further split by the first-order SOC into
energy levels ±MJ with definite projection MJ of the total angular momentum J along the
magnetic axis, which ranges from L + S to |L − S|. In this regime, spin energy levels are
represented by pure |±MJ> spin wave functions, in which quantum tunneling of magneti-
zation (QTM) is suppressed both in the ground and exited spin states. In these systems the
barrier Ueff is controlled by the first-order SOC energy ζ3dLS, which is proportional to the
value of the ground-state orbital angular momentum ML; approximately, Ueff is specified
by ζ3dML/2S, which is the energy separation between the ground ±MJ and first exited
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±(MJ −1) states [42]. This leads to a pure Ising magnetic anisotropy and double-well
potential with two lowest MJ = ±J states similar to those in 4f SIMs [16–24]. Accord-
ingly, the highest barriers Ueff are observed in 3d SIMs with large orbital momentum ML,
namely, in linear 3d7 complexes [FeI(C(SiMe3)3)2]− (226 cm−1) [40] and [(sIPr)CoIINDmp]
(413 cm−1) [41] and also in trigonal-prismatic CoII complex (152 cm−1) [36] featuring
L = 2, S = 3/2 and MJ = ±7/2 in the ground state. The record barrier belongs to linear
two-coordinate cobalt complex, CoII(C(SiMe2ONaph)3)2 (Ueff = 450 cm−1) [42] and for the
monocoordinated cobalt(II) adatom on a MgO surface (Ueff = 468 cm−1) [43] which have
L = 3, S = 3/2 and MJ = ±9/2 in the ground state.

Considering that a large unquenched orbital angular momentum is extremely im-
portant for attaining the highest SMM performance in 3d-SIMs, the relevant question is
in which mononuclear 3d complexes, besides the already known record-breaking linear
two-coordinate 3d7 complexes [42,43], the maximum orbital angular momentum L = 3
(represented by the ground orbital doublet ML = ±3) is feasible. In this paper, general
conditions for the appearance of the maximum orbital angular momentum L = 3 in mononu-
clear 3d complexes are analyzed in terms of the LF theory. We show that, apart from the
linear two-coordinate 3d7 complex CoII(C(SiMe2ONaph)3)2 [42], the ground-state orbital
doublet ML = ±3 can occur in linear 3d2 complexes and in trigonal-prismatic 3d3 and 3d8

complexes. Specific conditions for the LF splitting pattern of 3d orbitals leading to L = 3
are established.

2. Results

Below, the basic conditions for the realization of the maximal orbital angular momen-
tum ML = ±3 in mononuclear 3d complexes with the axial LF are analyzed. First of all, it
is clear that the ground orbital doublet ML = ±3 can only occur in 3d ions, which in the
free-ion state have a 2S+1F ground atomic term featuring the maximum orbital angular
momentum L = 3 for 3d ions, i.e., 3d2, 3d3, 3d7 and 3d8 ions. In transition–metal complexes
with the LF of axial symmetry, the lowest 2S+1F term splits into four orbital components
2S+1F(ML) with a projection of orbital momentum ML = 0, ±1, ±2, ±3 (Figure 1). The
objective of the present study is to establish conditions for the ML = ±3 orbital doublet to
be the ground state.
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In an axial LF, five 3d orbitals are split into three groups of orbitals with a definite 
projection of the one-electron orbital angular momentum ml on the anisotropy axis z, 3dz2 
(ml = 0), (3dxz, 3dyz) (ml = ±1) and 3dxy, 3dx2 − y2 (ml = ±2) (Figure 1). A necessary (but not 
sufficient) condition for the ML = ±3 ground state is the presence of one unpaired electron 
in each of the two doubly degenerate 3d orbitals with magnetic numbers ml = ±1, and ml = 
±2, i.e., (xz, yz)1(xy, x2 − y2)1 or (xz, yz)3(xy, x2 − y2)3. For each of the 3d ions selected above, 
the LF splitting pattern of 3d-orbitals leading to the 2S+1F(ML = ±3) ground state is examined 

Figure 1. Energy splitting of the ground-state atomic term 2S+1F(L = 3) and 3d orbitals in a ligand
field of axial symmetry. The orbital composition of the 2S+1F(ML = ±3) states is shown below in the
insets to the corresponding figures.

In an axial LF, five 3d orbitals are split into three groups of orbitals with a definite
projection of the one-electron orbital angular momentum ml on the anisotropy axis z, 3dz2
(ml = 0), (3dxz, 3dyz) (ml = ±1) and 3dxy, 3dx2 − y2 (ml = ±2) (Figure 1). A necessary (but not
sufficient) condition for the ML = ±3 ground state is the presence of one unpaired electron
in each of the two doubly degenerate 3d orbitals with magnetic numbers ml = ±1, and ml
= ±2, i.e., (xz, yz)1(xy, x2 − y2)1 or (xz, yz)3(xy, x2 − y2)3. For each of the 3d ions selected
above, the LF splitting pattern of 3d-orbitals leading to the 2S+1F(ML = ±3) ground state is
examined in terms of the conventional LF theory, which takes into account the interelectron
repulsion (quantified in terms of the Racah parameters B and C) and SOC, ζ3dΣilisi. LF
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calculations are performed with the full basis set of 3dN configurations involving 45 (3d2,
3d8) and 120 (3d3, 3d7) |LMLSMS> microstates. Details of LF calculations are available in
the Supplementary Materials.

2.1. 3d2 Complexes (V3+, Cr4+)

The necessary condition for the 3F(ML = ±3) orbital doublet to be the ground state is
to have the LF spitting pattern E(z2) > E(xz, yz) > E(xy, x2 − y2). Such an orbital energy
scheme can occur in complexes with linear or quasi-linear two-coordinate complexes [44]
similar to the quasi-linear FeII [39] and CoII complexes [42]. For a quantitative evaluation,
LF calculations for the energy levels of the 3d2 configuration were performed using the
Racah parameters B = 600, C = 2900 cm−1 and SOC constant ζ = 150 cm−1, which are
typical for V3+ ion [45]. The calculations were performed with fixed orbital energies
E(z2) = 10,000 cm−1, E(xy, x2 − y2) = 0 and variable orbital energy E(xz, yz) = ∆ (see inset in
Figure 2a). The orbital doublet 3F(ML = ±3) (shown in the solid red line in Figure 2a) is
found to be the ground state in the energy range 0 ≤ ∆ ≤ 5400 cm−1; at larger energies, the
ground state is the orbital singlet 3F(ML = 0), whose wave function Det||xy↑, x2 − y2↑||
corresponds to two singly occupied xy and x2 − y2 orbitals with parallel electron spins
(Figure 2a). From the point of view of coordination geometry, the only suitable case for the
3F(ML = ±3) ground state is a linear two-coordination of 3d2 ion. Numerous 3d complexes
of this type were reported in the literature, as outlined in a review article [44].
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Figure 2. (a) Variation of the energies of the 3F(ML) LF states of V3+(3d2) ion in linear coordination
with increasing energy separation ∆ = E(xz, yz) − E(xy, x2 − y2) between the lowest and first excited
sets of 3d orbitals. The range of the stabilization of the 3F(ML = ±3) ground state (0 ≤ ∆ ≤ 5400 cm−1)
is marked with light pink. Inset: the LF splitting pattern of 3d orbitals in a linear two-coordination,
E(xy, x2 − y2) = 0, E(z2) = 10,000 cm−1 (fixed) and E(xz, yz) = ∆ (variable); (b) E vs. MJ diagram
calculated at ∆ = 3000 cm−1. The spin-reversal barrier Ueff ≈ 200 cm−1 is approximately estimated
by the energy separation between the ground MJ = ±2 and the first excited MJ = ±3 states.

The calculated E vs. MJ diagram indicates that such a 3d2 complex may be a SMM
with a barrier Ueff of about 200 cm−1, as estimated from the energy gap between ground
MJ = ±2 and first excited MJ = ±3 states (Figure 2b). Remarkably, the E vs. MJ diagram has
an inverse order of ±MJ levels compared to the usual double-well spin energy profile (with
the maximum MJ at the bottom and the minimum MJ at the top) due to the antiparallel
coupling of the orbital momentum L = 3 and spin S = 1 of V3+(3d2) ion. However, the
actual SMM performance of the linear two-coordinate complex of V3+ is expected to be
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much lower due to the non-Kramers nature of the ground doublet MJ = ±2, which is
subject to splitting due to possible deviations from the axiality of the molecular structure,
leading to fast under-barrier quantum tunneling of magnetization (QTM) that shortcuts
the energy barrier. Hence, in terms of SMM performance, the situation with the linear
two-coordinate 3d2 complex is much less favorable compared to the record cobalt 3d7

complex CoII(C(SiMe2ONaph)3)2 [42].

2.2. 3d3 Complexes (Cr3+, Mn4+)

The ground state of a free 3d3 ion is a 4F atomic term, which is split by the axial LF
into four orbital components, 4F(ML = ±3), 4F(ML = ±2), 4F(ML = ±1) and 4F(ML = 0). The
4F(ML = ±3) state originates from the (xy, x2 − y2)1(xz, yz)1(z2)1 electronic configuration. LF
analysis indicates that this configuration can only occur at the E(xy, x2− y2) > E(xz, yz) > E(z2)
LF splitting pattern of 3d orbitals. Comparative LF calculations with atomic parameters B = 650,
C = 3000 cm−1 and ζ = 250 cm−1 for Cr3+ ion reveal that the orbital doublet 4F(ML =±3) is the
ground state when the energy difference ∆ = E(xy, x2− y2)− E(xz, yz) between the energy levels
of the (xy, x2 − y2) and (xz, yz) orbitals is within the range 0 ≤ ∆ ≤ 5850 cm−1. Beyond this
range, the ground state turns to the 4F(ML = 0) orbital singlet, which is represented by a mixture
of the (xy)1(x2 − y2)1(z2)1 and (xz)1(yz)1(z2)1 electronic configurations (Figure 3).
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Figure 3. Dependence of the energies of the 4F(ML) LF states of Cr3+(3d3) ion on the energy separation
∆ = E(xy, x2 − y2) − E(xz, yz) between the (xy, x2 − y2) and (xz, yz) sets of 3d orbitals. The range
of the stabilization of the 4F(ML = ±3) ground state (0 ≤ ∆ ≤ 5850 cm−1) is marked with light pink.
Inset: the LF splitting pattern of 3d orbitals, E(z2) = 0, E(xz, yz) = 5000 cm−1 (fixed) and E(xy, x2 − y2)
= 5000 cm−1 + ∆ (variable). LF calculations were done with atomic parameters B = 650, C = 3000 and
ζ = 250 cm−1.

Evidently, the linear two-coordinate geometry of 3d3 complexes cannot provide the
required orbital pattern E(xy, x2 − y2) > E(xz, yz) > E(z2) since linear coordination is
characterized by another order of orbital energies, E(z2) > E(xz, yz) > E(xy, x2 − y2), which
can result in ML = ±1 or ML = ±2 ground state. Therefore, unlike the record linear two-
coordinate Co2+(3d7) complexes with the ML = ±3 ground state, linear 3d3 complexes have
a maximum achievable orbital angular momentum of only ML = ±2.

Among a variety of axial symmetry coordination geometries, the necessary orbital
splitting pattern E(xy, x2 − y2) > E(xz, yz) > E(z2) can be obtained in the trigonal-prismatic
coordination of the 3d3 ion. However, in trigonal-prismatic complexes, the energy order of
3d orbital strongly depends on the polar angle θ of the trigonal prism. In order to evaluate
the conditions for stabilization of the ML = ±3 ground state, LF calculations are performed
in combination with the angular overlap model (AOM) [46–51] using the AOM parameters
eσ = 9000 cm−1 and eσ/eπ = 4 for Cr3+ ions. These calculations show that the ground state
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4F(ML = ±3) with the maximal orbital momentum ML = ±3 stabilizes in a compressed
trigonal prism with a polar angle θ ranging between 61◦ and 66.5◦ (Figure 4a).
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SOC splits the ground orbital doublet ML = ±3 into four Kramer doublets with the
projection of the total angular momentum MJ = ±3/2, ±5/2, ±7/2 and ±9/2, listed
in order of increasing energy; their energy diagram with the total splitting energy of
762 cm−1 is shown in Figure 4b. These results indicate that such a complex should have a
SMM behavior with a barrier of about 250 cm−1, corresponding to the energy separation
between the ground MJ = ±3/2 and first excited MJ = ±5/2 states. However, as opposed to
linear two-coordinate CoII complexes [42,43], the trigonal-prismatic 3d3 complexes with
doubly degenerate ground state ML = ±3 is Jahn–Teller active, subject to distortions that
remove orbital degeneracy and thereby reduce the magnetic anisotropy of the complex.
Nevertheless, LF/AOM calculations indicate that with moderate departures from the
regular D3h geometry, the overall energy pattern of the JM states (Figure 4b) does not
change much, so the trigonal-prismatic 3d3 complex behaves as an SMM with an estimated
barrier of about 150–200 cm−1.

2.3. 3d7 Complexes (Fe+,Co2+)

Linear two-coordinate 3d7 cobalt complex CoII(C(SiMe2ONaph)3)2 [42] is currently
the only known individual mononuclear 3d complex featuring the maximal orbital angular
momentum L = 3. From the point of view of the LF theory, in the 3d7 configuration the
orbital LF splitting pattern E(z2) > E(xz, yz) > E(xy, x2 − y2) is a necessary condition for
the stabilization of the ML = ±3 ground state. Note that the order of the 3d orbitals in
the 3d7 configuration is opposite to that in the 3d3 configuration because of the electron–
hole symmetry. As in the case of 3d2 and 3d3 complexes, the additional condition is the
restriction on the energy separation between the ml = ±1 and ml = ±2 orbitals, ∆ = E(xz, yz)
− E(xy, x2 − y2), which is 0 ≤ ∆ ≤ 6750 cm−1 (Figure 5). Outside this range, the ground
state is the orbital singlet 4F(ML = 0). Formally, an extra condition is a limitation on the
total LF splitting energy ∆LF = E(z2) − E(xy, x2 − y2) < 22,000 cm−1, which is, however,
too large to occur in a linear two-coordinate 3d7 complex exhibiting much lower total LF
splitting energy, around 6000 cm−1 [42].
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In light of these results, it is interesting to consider the difference in the nature of the
ground state of the isoelectronic linear two-coordinate 3d7 complexes [FeI(C(SiMe3)3)2]−

(ML = ±2) [40] and CoII(C(SiMe2ONaph)3)2 (ML = ±3) [42]. The underlying reason is the
different order of the actual 3d orbitals, which is E(xz, yz) > E(xy, x2 − y2) > E(z2) (ca. 5200,
3200 and 0 cm−1, respectively) in the FeI complex [40] and E(z2) > E(xz, yz) > E(xy, x2 − y2)
((ca. 5700, 3000 and 0 cm−1) in CoII complex [42]. A significant decrease in the energy of the
3dz

2 orbital in FeI(C(SiMe3)3)2]− is caused by a very strong 4s–3dz
2 mixing [40]. The combi-

nation of the ground orbital state ML = ±3, the parallel coupling of the orbital momentum
L = 3 and spin S = 3/2 and a sufficiently strong SOC leads to the most favorable conditions for
obtaining a record spin-reversal barrier Ueff = 450 cm−1 of CoII(C(SiMe2ONaph)3)2 [42].

2.4. 3d8 Complexes (Ni2+, Co1+)

As in the case of 3d2 complexes with L = 3, the necessary condition for the occurrence
of the ML = ±3 ground state in a 3d8 complex is the presence of one unpaired electron on
the doubly degenerate 3d orbitals with magnetic quantum numbers ml = ±1 and ml = ±2,
i.e., (x2 − y2, xy)3(xz, yz)3(z2)2. For this, the order of the 3d orbitals should be the same as
in 3d3 complexes, i.e., E(xy, x2 − y2) > E(xz, yz) > E(z2). Therefore, this LF splitting pattern
can occur in trigonal-prismatic complexes (see Figure 4a), but not in linear two-coordinate
complexes (Figure 5). As in the case of other above 3d complexes, there is an additional
condition that constrains the energy separation between ml = ±1 and ml = ±2 orbitals,
∆ = E(xy, x2 − y2) − E(xz, yz), which is 0 ≤ ∆ ≤ 7200 cm−1.(Figure 6). LF/AOM calcu-
lations for a trigonal-prismatic 3d8 complex with variable polar angle θ indicate that the
ML = ±3 ground state stabilizes at 61◦ ≤ θ ≤ 74.2◦, corresponding to a compressed
trigonal prism (Figure 7a). Several trigonal-prismatic cage complexes of NiII were re-
cently reported in [52]. In these complexes, the Ni2+ ion is encapsulated in a frame-type
clathrochelate cage, that forces robust trigonal-prismatic coordination. However, in these
complexes, the polar angle θ is about 52◦, which is well below the critical angle θ > 61◦

(Figure 7a). Accordingly, the ground state of these complexes was found to be orbital singlet
3F(ML = 0) with a second-order magnetic anisotropy due to ZFS [48], which agrees well
with the results of LF/AOM calculations indicating the ML = 0 ground state at θ ≈ 52◦

(Figure 7a). One more example of a trigonal-prismatic 3d8 complex is given by similar
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clathrochelate complexes CoI(GmCl2)3(BPh)2 reported in ref. [53]. Unfortunately, these
complexes also do not fall into the range of existence of the ground state ML = ±3 due to
violation of the ∆ > 0 criterion (which is actually ∆ ≈ −4500 cm−1), resulting in the ground
state being the orbital singlet 3F(ML = 0).
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Figure 7. (a) Variation of the energies of the 3F(ML) LF states of Ni2+(3d8) ion with increasing po-
lar angle θ in trigonal-prismatic coordination, as obtained from LF/AOM calculations. The range
of the stabilization of the 3F(ML = ±3) ground state (61◦ ≤ θ ≤ 74.2◦) is marked with light pink;
(b) E vs. MJ diagram calculated at θ = 64◦. The spin-reversal barrier Ueff ≈ 850 cm−1 is approx-
imately estimated by the energy separation between the ground MJ = ±3/2 and the first excited
MJ = ±5/2 states; the MJ = 0 and MJ = ±1 states (marked in blue) originate from 2S+1L atomic
terms other than 3F. LF/AOM calculations were performed with eσ = 5000 cm−1, eσ/eπ = 4 AOM
parameters and atomic parameters B = 800, C = 3200 and ζ = 600 cm−1.

The calculated E vs. MJ diagram suggests potentially high SMM characteristics of the
compressed (θ > 61◦) trigonal-prismatic Ni2+ complex with a perfect D3h symmetry. In
particular, the spin-reversal barrier Ueff, assigned to the energy separation between the
ground state JM = ±4 and the first excited state JM = ±3, is as high as 857 cm−1 (Figure 7b),
which is significantly larger than in the record cobalt complex CoII(C(SiMe2ONaph)3)2
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(450 cm−1) [42]. However, it should be considered that, similarly to the trigonal-prismatic
3d3 complex, this complex is Jahn–Teller active and is subject to significant distortions
that tend to reduce magnetic anisotropy. In fact, LF/AOM calculations for distorted
complexes show that even subtle departures from the regular trigonal-prismatic geometry
(D3h) of the complex cause noticeable splitting of the ground non-Kramers doublet JM = ±4
(tens of cm−1), which should lead to complete suppression of the SMM behavior due to
fast QTM processes in the split ground state JM = ±4 (Figure 7b).

3. Materials and Methods
Ligand Field and Angular Overlap Model Calculations

Ligand-field calculations for many-electron 3dN ions (3d2, 3d3, 3d7 and 3d8) were
performed in terms of the conventional LF theory involving the one-electron LF operator
(specified by the set of energies of 3d orbitals in an axial LF, E(xy, x2 − y2), E(xz, yz) and
E(z2)), interelectron Coulomb repulsion (treated in terms of the Racah parameters B and
C) and the spin-orbit coupling ζ3dΣilisi. Angular-overlap model calculations [46–48] for
trigonal-prismatic complexes were carried out with the AOM parameters eσ = 5000 cm−1

(for Ni2+) and 9000 cm−1 (Cr3+) at a fixed ratio of eσ/eπ = 4. Details of LF and AOM
calculations are available in the Supplementary Materials.

4. Discussion and Conclusions

This study has established that the maximum orbital angular momentum L = 3 ob-
served in the linear two-coordinate 3d7 complex CoII(C(SiMe2ONaph)3)2 [42] (as well as
in the monocoordinated Co adatom on a MgO surface [43]) is not a unique single phe-
nomenon, but under specific conditions, it can also be obtained in some complexes of 3d2,
3d3 and 3d8 transition metal ions. The basic point is that in the free-ion state these ions
have the ground-state atomic term 2S+1F with maximal orbital angular momentum L = 3,
which, when split in the ligand field of axial symmetry, can produce the ground orbital
doublet 2S+1F(ML = ±3) with a maximum projection ML = ±3 of the orbital momentum
L = 3. For each of these electronic configurations, the LF splitting pattern of 3d orbitals
leading to the ground orbital doublet 2S+1F(ML = ±3) has been established. Then, with the
help of LF and AOM calculations, it was shown that the maximal orbital angular moment
L = 3 is realized in the linear two-coordinate geometry for the 3d2 and 3d7 ions and in
the compressed trigonal-prismatic coordination (with polar angle θ > 61◦) for the 3d3 and
3d8 ions. In this regard, it is worth noting that the linear two-coordinate geometry, which
intuitively appears to be the most preferable for obtaining maximum magnetic anisotropy,
in the case of 3d3 and 3d8 ions yields only an orbital momentum L = 2, not L = 3.

These results can be used to assess the prospects for improving the SMM performance
of single-ion 3d SMMs. The calculated E vs. MJ spin energy diagrams show that the
SMM performance of the linear 3d2 complex and the trigonal-prismatic 3d3 complex is
significantly lower than that of the linear cobalt complex due to weaker spin-orbit cou-
pling and antiparallel coupling of L and S. On the other hand, although the calculated
spin energy diagram for the trigonal-prismatic Ni2+(3d8) complex formally indicates a
higher barrier (Ueff ≈ 850 cm−1) than for the record linear cobalt complex (450 cm−1) [42],
in reality, this complex is unlikely to be a good SMM because of the Jahn–Teller distor-
tions resulting in the significant splitting of the ground non-Kramer doublet MJ = ±4
(Figure 7b), that causes fast QTM processes bypassing the barrier. Thus, despite the possi-
ble presence of maximum orbital momentum L = 3 in the aforementioned 3d2, 3d3 and 3d8

complexes, they cannot compete as SMMs with linear two-coordinate 3d7 cobalt complex
CoII(C(SiMe2ONaph)3)2 [42].

In summary, this study has shown that the maximal orbital angular momentum L = 3
can occur only in 3d2, 3d3, 3d7 and 3d8 complexes with axial symmetry of the ligand field.
However, the SMM performance of 3d2, 3d3 and 3d8 complexes appeared significantly
lower than that of the linear two-coordinate 3d7 complex CoII(C(SiMe2ONaph)3)2 with
L = 3. Thus, these results confirm the earlier conclusion [42] that linear two-coordinate
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3d7 complexes provide the maximal SMM performance of mononuclear 3d complexes
(Ueff = 450 cm−1), which is apparently near the physical limit for a single 3d metal ion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics10120227/s1, details of LF and AOM calculations.
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