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Abstract: An unusual iridium dimer 1, [(4-cpbo)Ir(µ-Cl)(µ-O)Ir(4-cpbo)] (4-cpbo = 4-chloropheny
lbenzoxazolato-N,C2), was obtained by the oxidative addition of oxygen and reductive elimination of
chlorine from a precursor [(4-cpbo)2Ir(µ-Cl)]2. This iridium dimer 1 has a metastable structure with
an asymmetric bridge, can spontaneously release metalloradicals and coordinatively unsaturated
species in solution at room temperature, and exhibits high catalytic ability for synthetic applications.
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1. Introduction

It is well known that metal radicals and coordinatively unsaturated species play
important roles in various fields, including energy transfer in biological systems, pharma-
ceutical research, and synthetic chemistry [1–3]. Various topics have been discussed in
order to study the application of metal radicals and coordinatively unsaturated species,
most of which focused on the study of group 9 metal complexes [4–9]. Although rare,
other elements have also been explored, such as nickel [10,11], iron [12], and copper com-
plexes [13,14]. One of the most important properties of metalloradical is metalloradical
catalysis (MRC), which leads to a diversity of catalytic reactions, such as, C−H activation,
H−H activation, and C−H amination [15–17]. Complexes with vacant coordination are
also widely used to catalyze oxidative addition and reductive elimination reactions. In
most cases, metal radicals and coordinatively unsaturated species are generated by the
dissociation of some unstable molecules, for example, by chemical, photochemical, or
electrochemical reactions [18,19]. The formation of these reactive species at ambient tem-
perature without additional reaction conditions is rarely observed, but it is important. In
1988, the concept of 18+δ was reported, where the value of δ represents the fraction of
electrons that are located in the metal center [20]. Because 18+δ complexes often undergo
further reactions, such as ligand dissociation, reduction, or oxidation of metal atoms, etc.,
the synthesis and separation of such complexes are relatively difficult, and there are few
reports on 18+δ complexes [21–23]. In this report, we discovered a novel diiridium com-
pound with an 18+δ structure, a metastable structure with an asymmetric bridge, which can
spontaneously release metalloradicals and coordinatively unsaturated species in solution
at room temperature and exhibits high catalytic ability for C-N bond formation.

Organic nitrogen compounds are essential components and play a vital role in bioac-
tive compounds. The construction of nitrogen-containing organic groups is an important
technology in the fields of organic synthetic chemistry, medicine, and fine chemical in-
dustry. The C-N bond formation is traditionally carried out by the alkylation of amines
with alkyl halides, which is usually fast but has significant disadvantages [24,25]. For
example, excessive alkylation leads to lower yields of desired product, and side reactions
lead to complicated purification procedures. To date, there are many improved methods
for C-N bond formation, including hydroamination [26,27], Ullmann reactions [28,29],
and Buchwald−Hartwig coupling [30,31]. Recently, several reports have demonstrated a
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robust and sustainable approach to forming new C–N bonds using a catalytic hydrogen
autotransfer (HA) strategy by using less toxic and more readily available alcohols as alky-
lating agents [32–34]. Additionally, various amine N-alkylation catalysts using alcohols as
alkylating agents have been discovered, the most common of which are iridium [35–37]
and ruthenium [38,39] complexes, and many others have been explored [40,41]. Most of
these studies report useful catalytic systems, but most of them must use bases, solvents,
and other additives, which limits the development of these truly green process proposals.

In this report, we introduce an asymmetric iridium dimer as a catalyst for the N-
alkylation of amines to prepare nitrogen-containing derivatives and heterocyclic com-
pounds. The catalyst can directly promote the formation of C-N bonds without preacti-
vation steps and additives such as solvents and bases. In the reaction system, the only
by-product is water, which can be used in tandem reactions or specific intermolecular
cyclization reactions to construct biologically active drugs or other specific applications.

2. Results and Discussion
2.1. Synthesis and Structural Characterization

Reaction of [(4-cpbo)2Ir(µ-Cl)]2 (4-cpbo = 4-chlorophenylbenzoxazolato-N,C2) with
oxygen in anhydrous acetone and a catalytic amount of anhydrous potassium carbonate
produces the unusual iridium dimer [(4-cpbo)Ir(µ-Cl)(µ-O)Ir(4-cpbo)] (1) (Scheme 1).
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Scheme 1. Synthetic route to ligand 4-cpbo, iridium dimers [(4-cpbo)2Ir(µ-Cl)], and complexes 1.

A single-crystal X-ray structure determination confirmed the dimeric nature of 1
(Figure 1). The diffraction data of complex 1 was collected on a Bruker SMART APEX CCD
diffractometer with graphite-monochromatized Mo Kα X-ray radiation (λ = 0.71073 Å) at
150K. All calculations for the structure determination were carried out using SHELXTL
package (version 5.1). The positions of the heavy atoms, including the iridium atoms, were
located by the direct method. The remaining atoms were found in a series of alternating
difference Fourier maps and least-square refinement [6]. Crystal data for compound 1:
formula C52H28Cl5Ir2N4O5·2((CH3)2CO), M = 1466.59, Monoclinic, space group P 21/c,
a = 12.7868 (5), b = 21.2778 (8), c = 21.4635 (8) Å, V = 5676.5(4) Å3, Z = 4, ρcalc = 1.716 gcm−3,
F(000) = 2844, T = 150(2) K, 2θmax = 29.392◦, 13,327 reflections collected, 8882 unique,
GooF = 1.052, R1 = 0.0635, wR2 = 0.1376. The Ir1-Cl-Ir2, Ir1-O-Ir2, Cl-Ir1-O, and Cl-Ir2-
O angles are 87.76 (11), 105.0 (3), 83.49 (17), and 83.62 (17)◦, respectively. The dihedral
angle between Ir1-Cl-Ir2 and Ir1-O-Ir2 is 4.9o. Crystallographic information indicates that
complex 1 has an asymmetric bridge connecting the two iridium nuclei, and the selected
bond distances and bond angles are listed in Table 1.
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Figure 1. ORTEP plots of 1. Thermal ellipsoids are drawn at the 30% probability level and hydrogen
atoms are omitted for clarity.

Table 1. Selected Bond Distance (Å) and Bond Angles for Compound 1.

Bond Distance (Å)

Ir(1)-N(1) 2.157 (7) Ir(1)-N(2) 2.049 (7)
Ir(1)-C(13) 2.011 (9) Ir(1)-C(26) 2.035 (9)
Ir(1)-Cl(5) 2.457 (3) Ir(1)-O(5) 2.093 (5)
Ir(2)-N(3) 2.069 (8) Ir(2)-N(4) 2.037 (7)
Ir(2)-C(39) 2.021 (9) Ir(2)-C(52) 2.022 (10)
Ir(2)-Cl(5) 2.402 (3) Ir(2)-O(5) 2.153 (5)

Bond Angles (o)

Ir(1)-Cl(5)-Ir(2) 87.76 (11) Ir(1)-O(5)-Ir(2) 105.0 (3)
C(13)-Ir(1)-C(26) 92.7 (3) C(39)-Ir(2)-C(52) 94.7 (4)
N(1)-Ir(1)-N(2) 95.8 (3) N(3)-Ir(2)-N(4) 170.5 (3)
C(26)-Ir(1)-N(1) 171.9 (3) C(39)-Ir(2)-N(3) 79.5 (4)
C(13)-Ir(1)-Cl(5) 170.4 (3) C(39)-Ir(2)-Cl(5) 173.5 (3)
O(5)-Ir(1)-Cl(5) 83.49 (17) O(5)-Ir(2)-Cl(5) 83.62 (17)
N(2)-Ir(1)-O(5) 171.6 (2) C(52)-Ir(2)-O(5) 167.7 (3)

Electron paramagnetic resonance (EPR) spectra of iridium complex 1 crystals were
recorded at 77 and 298 K and in dichloromethane solution at 298 K (Figure 2). The low
temperature EPR spectrum of complex 1 crystal displays rhombic symmetry with gx = 2.017,
gy = 1.994, and gz = 1.922 (Figure 2a). The unresolved hyperfine structure is significantly
broadened, indicating that the unpaired electron is localized on a mixed orbital composed of
ligand pi and metal d orbitals. At room temperature, the crystal of complex 1 shows an EPR
pattern similar to that at 77K, but the g-tensor component moves significantly (gx = 1.927,
gy = 1.907, and gz = 1.845, Figure 2b), indicating that the distribution of the unpaired
electrons remains unchanged, but as the temperature increases, the microenvironment
of the complex 1 crystal is affected. The solution of complex 1 at 298 K shows more
complicated EPR signals (Figure 2c). The g factors are 2.228, 1.934, 1.917, 1.912, and 1.901,
respectively, indicating that new free radicals are released in the solution.
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Figure 2. EPR spectra of 1: (a) crystal at 77K, (b) crystal at 298K, and (c) solution in dichloromethane at
298 K. EPR settings: microwave frequency, 9.879 GHz; microwave power, 10.080 mW; number of scans, 1.

Theoretical calculations used Becke’s three-parameter B3LYP for C, H, O, N, and Cl,
and the LANL2DZ basis set for the element Ir used the package Gaussian 03. The atomic
coordinates of the complexes were obtained directly from X-ray crystallography and used
as the initial geometry for optimization. The metric parameters obtained from the X-ray
structure and DFT calculations are in good agreement (Table 2), and the atomic coordinates
(Angstroms) of complex 1 are listed in Supplementary Materials Table S1. The calculated
single-molecular orbital (SOMO) of compound 1 is composed of 87.91% π(4cpbo) + 10.53%
d(Ir) + 1.34% (µ-O) + 0.3916% (µ-Cl) (Figure 3). This is consistent with the EPR spectrum
observation of the crystal of complex 1, where the unpaired electrons are delocalized to
iridium, µ-O, µ-Cl, and two ligands 4cpbo. This delocalization stabilizes the structure of 1
and leads to the isolation of this compound.

Table 2. Comparison of selected bond lengths (Å) and angles (◦) of 1 from crystallography and
DFT calculation.

Ir-Cl Ir-O Ir-N Ir-C

X-ray 2.457 (3) 2.153 (5) 2.157 (7) 2.035 (9)
2.402 (3) 2.093 (5) 2.069 (8) 2.022 (10)

2.049 (7) 2.021 (9)
2.037 (7) 2.011 (9)

DFT 2.454 2.150 2.154 2.031
2.309 2.090 2.065 2.017

2.045 2.016
2.033 2.008

To double check, XPS tests were performed to explore the oxidation states of iridium ions.
The Ir 4f XPS spectrum of complex 1 shows Ir 4f7/2 (59.88 eV) and Ir 4f5/2 (62.89 eV) peaks
(Figure 4a). Compared with the spectrum of [(4cpbo)2IrIII(µ-Cl)]2 Figure 4b) (Ir 4f7/2 = 59.53 eV,
Ir 4f5/2 = 62.54 eV), the XPS spectrum of complex 1 shifted by about 0.35 and 0.46 eV toward
higher binding energies. Compared with the spectrum of [(dfpbo)2IrIV(µ-O)]2 (Figure 4c) (Ir
4f7/2 = 60.04 eV, Ir 4f5/2 = 63.08 eV), the XPS spectrum of complex 1 shifted by about 0.05
and 0.19 eV toward slightly lower binding energies. The comparison of XPS spectra of
iridium complexes shows that the oxidation state of iridium ion in 1 is higher than +3 but
close to +4.
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Figure 4. Ir 4f XPS spectra of (a) compound 1, (b) (4cpbo)2IrIII(µ-Cl), and (c) [(dfpbo)2IrIV(µ-O)]2.

The (FAB+) (Fast Atom Bombardment) spectrum of 1 (Figure 5) shows medium-intensity
complex patterns of [(4cpbo)2IrO]•+ [191Ir, 35Cl m/z 663 (6.36%), 193Ir, 35Cl m/z 665 (10.47%),
191Ir, 37Cl m/z 667 (7.35%), and 193Ir, 37Cl m/z 669 (2.52%)] and [[(4cpbo)2IrO]+H]•+ [191Ir,
35Cl m/z 664 (7.24%), 193Ir, 35Cl m/z 666 (10.79%), 191Ir, 37Cl m/z 668 (5.56%), and 193Ir,
37Cl m/z 670 (1.40%)]. The low-intensity complex patterns of [(4cpbo)2IrCl]•+ [191Ir, 35Cl,
35Cl l m/z 682 (1.4%), 193Ir, 35Cl, 35Cl m/z 684 (1.65%), 191Ir, 35Cl, 37Cl m/z 686 (1.39%)]
and [[(4cpbo)2IrCl]+H]•+ [191Ir, 35Cl, 37Cl m/z 687 (1.36%), 191Ir, 37Cl, 37Cl m/z 689 (2.06%),
and 193Ir, 37Cl, 37Cl m/z 691 (2.47%)] were also observed. Which indicates that complex 1
is readily dissociated to form metalloradicals [(4cpbo)2IrO]•+ and [(4cpbo)2IrCl]•+. The
molecular peak of [(4-cpbo)Ir(µ-Cl)(µ-O)Ir(4-cpbo)] is relatively weak, indicating that
complex 1 is easily dissociated. [(4-cpbo)2Ir(µ-Cl)]2 peak is observed at m/z 1372, which
reveal that two metalloradicals [(4cpbo)2IrCl]• can combine with each other to form a
binuclear species, which also explains why the intensity of [(4cpbo)2IrCl]•+ is much lower
than that of [(4cpbo)2IrO]•+.
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Figure 5. Mass spectrum of 1 with fast atom bombardment.

The above information indicates that the asymmetric bridged dimer complex 1 has an
unpaired electron delocalized throughout the molecule, which can dissociate in solution
to release various mononuclear iridium species, including an iridium radical (1a) and a
mononuclear iridium complex with a vacant coordination site (1b) (Scheme 2). Both metal-
lic radicals and coordinatively unsaturated species can activate a variety of chemical bonds,
such as carbon–hydrogen bond activation (CHA) and carbon–carbon bond activation
(CCA), which has been widely studied and used in various applications such as metathe-
sis, polymerization, C-C bond formation, and C-N bond formation. Here, complex 1 is
catalytically active for C-N bond formation. The alcohol binds to the vacant coordination
site of 1b and is then deprotonated by the extra amine, resulting in the dissociation of
ammonium chloride to give the coordinatively unsaturated Ir-alkoxide complex I (step a).
Then, β-hydride elimination occurs to give an Ir(III)-hydride complex II and an aldehyde
(step b). Dehydration condensation of aldehydes and amines yields imine intermediate,
which is attacked by Ir-hydrides to yield Ir-amide intermediates III (step c). Finally, proto-
nation by ammonium chloride furnishes the catalytic cycle to generate alkylated amines
and a recovered Ir catalyst (step d). For the left cycle, the iridium radical (1a) traps alcohol
in the first step (step e). Then, there is a proton transfer from bound alcohol to oxido
ligand, resulting in iridium complex VI with hydroxido and alkoxido ligands (step f). Then,
β-hydride elimination occurs to give an iridium complex VII with hydrido and hydroxido
ligands and released aldehyde undergoes dehydrative condensation with amine to give
imine intermediate (step g). Finally, proton and hydride transfer from iridium-hydride and -
hydroxide complex to imine yields N-alkylation product and recovered iridium complex 1a
(step h).
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Scheme 2. Spontaneous release of iridium metalloradical from 1, and the catalysis of C-N bond formation.

2.2. Initial Catalytic Studies

We carried out a series of catalytic reactions according to different catalyst loading
ratios to optimize the catalytic conditions of complex 1. The ratio of catalyst to amine is
in the range of 0.0040 to 0.030 (mmol/mmol) (Cat./aniline), and reactions were placed in
Schlenk tubes at 120 ◦C for 24 h. The composition of the reaction mixture was determined
by GC-MS summarized in Figure 6. At a high catalyst loading ratio (0.022 mmol/mmol),
the target alkylation product (N-benzylaniline) was the main product (>95%), and the
over-alkylated product (N,N-dibenzylaniline) was the minor product (~4%), and traces of
imines (<1%) were observed. At an even higher catalyst loading ratio (0.03 mmol/mmol),
the imine disappeared, but the concentration of the target alkylated product decreased
(<90%), and the concentration of the over-alkylated product increased significantly (>10%).
In contrast, at low loading ratio (0.004 mmol/mmol), the conversion of aniline was very
low (~60%), a large amount of intermediates (imines) were observed (~15%), and the
concentration of target alkylation product was also low (~45%); therefore, the ideal catalyst
loading ratio should be 0.015~0.022 mmol/mmol.
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Figure 6. Composition distribution of N-alkylation reaction of aniline and benzyl alcohol under
different ratios of catalyst and aniline.

Furthermore, the progression of the N-alkylation reaction showed that the percentage
of N-alkylated products increased sharply in the early stage, and intermediate imines
were also found (Figure 7). After 24 h of reaction, the concentration of the target product
still increased steadily, but the proportion of imine disappeared obviously, indicating that
the intermediate imine was rapidly converted into N-alkylated products. After 48 h of
reaction, the target alkylated product reached the maximum concentration (95%), and then
the over-alkylated product gradually appeared.
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Figure 7. Reaction progress of N-alkylation of aniline. Aniline (1 mmol) reacts with benzyl alcohol
(2 mmol) and catalyst (0.018 mmol). Composition distribution of nitrogen-containing products was
determined by GC-MS.

2.3. Substrate Scope

Based on the optimized conditions, complex 1 was used to investigate the substrate
scope for N-alkylation of amines with alcohols as alkylating reagents (Table 3). First,
aniline was alkylated with benzyl alcohol, 4-chlorobenzyl alcohol, and p-anisyl alcohol as
alkylating agents. The isolated yields of the secondary amine products P1, P2, and P3 were
92%, 83%, and 90%, respectively.
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Table 3. Complex 1 catalyzed N-alkylation of amines.

Amines (1 mmol), alcohols (2 mmol), catalyst (0.018 mmol), without base and solvent, and
reaction was carried out at 120 ◦C for 48 h.

Substituted anilines such as p-anisidine, 4-chloroaniline, and 2-fluoroaniline were
also well alkylated by benzyl alcohol to give the corresponding amines P4, P5, and P6 in
high yields of 88%, 78%, and 82%, respectively. Although the yields of substrates with
electron-withdrawing groups were slightly lower than those with electron-donating groups,
they were all within an acceptable range.

We also screened various substrates to assess whether our catalysts could expand the
range of N-alkylation of amines with aliphatic alcohols. Thankfully, aliphatic alcohols were
successful in alkylating amines with good selectivity and yield, for example, N-alkylation
of aniline using ethanol, propanol, butanol, and hexanol as alkylating agents. The yields of
products P7, P8, P9, and P10 reached 78%, 65%, 72%, and 70%, respectively.

Since the formation of a C-N bond between nitrogen and a secondary carbon is
an important step in the construction of some natural products or pharmaceuticals, we
constructed this bond by alkylating amines with secondary aliphatic alcohols as alkylating
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agents. Interestingly, both aliphatic and aromatic amines can be coupled with secondary
aliphatic alcohols. Most of these reactions showed high conversions and good to excellent
yields. For example, alkylation of aniline with alcohol (isopropyl alcohol) at 90% conversion
yields the corresponding product P11 at 75% yield. Alkylation of 4-methoxyaniline with
isopropanol and 1-phenethyl alcohol as alkylating reagents also gave good yields of P12
and P13, 87% and 75%, respectively. Secondary amines were also successfully alkylated;
for example, N-methylaniline and N-benzylaniline were successfully alkylated by benzyl
alcohol to give the corresponding products P14 and P15 at 70% and 82% yields, respectively.

In addition, intermolecular cyclization was also achieved through the cyclization
reaction of amines with diols. Aniline, 4-chloroaniline, and 4-methoxyaniline were reacted
with 1,4-butanediol to form five-membered cyclic amines P16, P17, and P18 at 86%, 72%,
and 75% yields, respectively. The reaction of 1,5- pentanediol with different amines gave
six-membered cyclized products in good yields, with yields of 70% and 82% for P19 and
P20, respectively. Interestingly, by using N-substituted diethanolamine, the piperazine
derivative (P21) was obtained, which is a phenylpiperazine derivative characterized in that
the phenyl group is attached to the piperazine ring. Many phenylpiperazine derivatives
are drugs, such as bifepronol, dropromazine, eloprazole, antrafenin, and ciprofloxacin.

2.4. Synthetic Application

Cyclizine is an important drug for the treatment of nausea and dizziness caused
by motion sickness or dizziness and is included in the World Health Organization List
of Essential Medicines [32,42]. Scheme 3a shows the previously reported preparation of
cyclizine, which requires at least four steps and an overall yield of about 30% [43,44]. Many
harmful and expensive chemicals must be used, and toxic and ecologically unfavorable
substances are released into the environment. In our report, cyclizine was prepared by one-
step catalysis using an intermolecular cyclization reaction (Scheme 3b). In a Schlenk tube,
N-methyldiethanolamine (MDEA) was mixed with diphenylmethanamine and complex 1
and then reacted at 140 ◦C for 48 h under nitrogen. The product cyclizine was purified by
column chromatography, and the isolated yield was 50%, which was good compared with
known methods.

Scheme 3. Synthetic route of cyclizine: (a) previous report; (b) our report.

2.5. Conclusions

In summary, we present an unusual iridium compound with an asymmetric bridge
that delocalizes unpaired electrons across the molecule and that can dissociate in solution
to release various catalytically active species. The compound exhibits diverse catalytic
capabilities and good catalytic performance for various reactions, which indicates that
it will become an important substance in the exploration of iridium chemistry, catalytic
chemistry, and material science.
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3. Experimental Section
3.1. Materials and Methods

4-chlorobenzoic acid was purchased from Matrix, and IrCl3.nH2O was from Seedchem
Co. All other chemicals were purchased from Acros and used as received. NMR spectra
were measured on a Bruker Advance-400 MHz or a Mercury 300 MHz NMR spectrom-
eter. Elemental analyses (CHN) were obtained from an Elementar vario EL III analyzer.
Mass spectrometry was performed on a Finnigan/Thermo Quest MAT 95XL instrument
using electron impact ionization for organic compounds and fast atom bombardment for
metal complexes.

3.2. Synthetic Procedures
3.2.1. Synthesis of 4-Chlorophenylbenzoxazole, (4-cpboH)

The benzoxazole derivative ligand 4-cpboH was prepared using Philips’ condensation
as follows: 1 equivalent of 4-chlorobenzoic acid and 1.05 equivalent of 2-aminophenol were
added to polyphosphoric acid (10 g/mmol of 4-chlorobenzoic acid), and then the mixture
was stirred at 200 ◦C for 5 h. After cooling to room temperature, the mixture was slowly
poured into pure water and stirred thoroughly; the precipitate was collected by filtration,
washed with pure water (3 × 100 mL), and dried to obtain a crude product. The crude
product was purified by silica gel column chromatography with n-hexane-dichloromethane
(1:1~1:5) as the eluent to obtain the pure product.

Yield: 85%. 1H NMR (300 MHz, CDCl3, 298 K; δ (ppm)): 7.74−7.80 (m, 3H), 7.56−7.59
(m, 1H), 7.36−7.41 (m, 2H), 6.96−7.00 (m, 1H). 13C NMR (75 MHz, CDCl3, 298 K; δ (ppm)):
161.4, 151.3, 138.4, 137.2, 129.2, 128.2, 128.1, 127.6, 124.3, 119.9, 110.6. Anal. Calcd for
C13H8ClNO (MW = 229.66): C, 67.98; H, 3.51; N, 6.10. Found: C, 67.50; H, 3.48; N, 5.99%.
MS (m/z): 229.6605.

3.2.2. Synthesis of [(4-cpbo)2Ir(µ-Cl)]2

The cyclometalated Ir(III) chloride-bridged dimer [(4-cpbo)2Ir(µ-Cl)]2 was synthesized
according to a previous paper. A mixture of 2-ethoxylethanol and water (3:1, v/v) was
added to a flask containing iridium trichloride (IrCl3·3H2O, 2 mmol) and 4-cpboH (5 mmol),
and the mixture was refluxed for 24 h under nitrogen. After cooling to room temperature,
the mixture was poured into 20 mL of pure water, and the dimer precipitate was filtered
off, washed with deionized water, and followed by drying at 60 ◦C in a vacuum oven.

Yield: 75%. 1H NMR (300 MHz, DMSO-d6, 298 K; δ (ppm)): 7.71 (d, J = 8.5, 2H), 7.59
((dd, J = 8.5, 4.3 Hz, 1H), 7.53 (d, J = 8.5 Hz, 1H), 7.50 (dd, J = 8.5, 4.3 Hz, 1H), 7.28 (dt,
J = 5.6, 4.3 Hz, 1H), 7.22 (dt, J = 5.6, 4.3 Hz, 1H). 13C NMR (75 MHz, CDCl3, 298 K; δ (ppm)):
163.7, 155.3, 139.1, 167.5, 134.6, 134.4, 131.6, 130.6, 130.1, 123.3, 123.2, 121.9, 112.6. Anal.
Calcd for C52H28Cl6Ir2N4O4: C, 45.58; H, 2.06; N, 4.09. Found: C, 45.89; H, 2.08; N, 3.98%.
MS (FAB; m/z): 1372.0320

3.2.3. Synthesis of Compound 1, [(4-cpbo)Ir(µ-Cl) (µ-O)Ir(4-cpbo)]

A flask was charged with 100 mg of [(4-cbo)2Ir(µ-Cl)]2, 50 mg of anhydrous potassium
carbonate, and 20 mL of acetone. The solution was stirred and warmed to 60 ◦C for 72 h.
The precipitate dimer was filtered off and recrystallized from acetone.

Experimental data for 1: Yield: 60% based on iridium. Anal. Calcd for C52H28Cl5Ir2N4
O5·2((CH3)2CO): C, 47.49; H, 2.74; N, 3.82. Found: C, 47.25; H, 2.70; N, 3.98%. MS (FAB;
m/z): 1352.0610.

3.2.4. General Procedure for N-alkylation Reaction

Add 1 mmol of amine, 2 mmol of alcohol, and 0.018 mmol of complex 1 to a Schlenk
tube and react at 120 ◦C for 48 h under nitrogen. Then, the reaction mixture was cooled down
and the residue was purified by column chromatography using n-hexane/dichloromethane
as eluent to allow for a pure product. The desired product has been fully characterized by
1H, 13C NMR, and MS spectroscopy.
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Spectral Data of of N-benzylaniline (P1): 1H NMR (d-chloroform, 600 MHz) = 7.38–7.33
(m, Ar, 4H), 7.28–7.25 (m, Ar, 1H), 7.19–7.16 (m, Ar, 2H), 6.73–6.68 (t, Ar, 1H), 6.65–6.63 (d,
Ar, 2H, JHH = 7.8 Hz), 4.33 (s, CH2, 2H), 4.02 (br. S, NH, 1H). 13C NMR (d-Chloroform,
150 MHz) = 148.2, 139.4, 129.3, 128.7, 127.5, 127.3, 117.6, 112.8, 48.3. MS (ESI/CI): m/z = 183.02,
Calculated for C13H13N: 183.26 g/mol. IR (FT ATR): ν = 3411 (w), 3023 (w), 1605 (m), 1508
(m), 1321 (w), 1262 (m), 732 (s) cm−1

Spectral Data of of N-(p-chlorobenzyl)aniline (P2): 1H NMR (d-chloroform,
600 MHz) = 7.29 (s, 3H, Ar), 7.17–7.11 (m, 2H, Ar), 6.73–6.68 (m, 1H, Ar), 6.58–6.59 (m,
2H, Ar), 4.28 (d, 2H, JHH = 5.4 Hz), 4.05 (br. S, NH, 1H). 13C NMR (d-Chloroform,
150 MHz) = 147.8, 137.8, 132.9, 129.3,128.8, 128.7, 117.8, 112.9, 47.506. MS (ESI/CI):
m/z = 216.98, Calculated for C13H12NCl+ [M]+: 217.68 g/mol. IR (FT ATR): ν = 3418 (w),
3045 (w), 28,434 (w), 16,045 (s), 1498 (s), 1321 (m), 1254 (m), 1090 (m), 814 (m), 745 (s) cm−1.

Spectral Data of of N-(4-methoxybenzyl)aniline (P3): 1H NMR (d-chloroform,
600 MHz) = 7.29–7.27 (d, JHH = 8.4 Hz, 2H, Ar), 7.18–7.15 (m, 2H, Ar), 6.88–6.86 (m, 2H,
Ar), 6.72–6.69 (t, 1H, Ar), 6.63–6.62 (m, 2H, Ar), 4.24 (br. S, NH, 1H), 3.91 (d, JHH = 13.2 Hz,
1H), 3.79 (s, 3H). 13C NMR (d-Chloroform, 150 MHz) = 158.9, 148.2, 131.4, 129.3, 128.8,
117.5, 113.8, 112.8, 55.3, 47.8. MS (ESI/CI): m/z = 213.21, Calculated for C14H15NO+ [M]+:
213.28 g/mol. IR (FT ATR): ν = 3411 (w), 3028 (w), 2836 (w), 16,045 (s), 1508 (s), 1239 (s),
1172 (m), 1030 (m), 821 (m), 747 (s) cm−1.

Spectral Data of of benzyl(4-methoxyphenyl)amine (P4): 1H NMR (d-chloroform,
600 MHz) = 7.37–7.32 (m, Ar, 4H), 7.27–7.25 (t, Ar, 1H), 6.77–6.76 (m, Ar, 2H), 6.59–6.60 (m,
Ar, 2H), 4.27 (s, CH2, 2H), 3.73 (s, CH3, 3H).13C NMR (CDCl3, 150 MHz) δ (ppm) = 152.2,
142.5, 139.7, 128.6, 127.6, 127.2, 114.9, 114.1, 55.8, 49.3. MS (ESI/CI): m/z = 213.05, Calculated
for C14H15NO+ [M]+: 213.28 g/mol. IR (FT ATR): ν = 3403 (w), 3030 (w), 2836 (w), 1515 (s),
1232 (s), 1179 (w), 1030 (m), 821 (m), 739 (m) cm−1.

Spectral Data of of N-(4-chlorophenyl)benzylamine (P5): 1H NMR (d-chloroform,
600 MHz) = 7.34–7.20 (m, Ar, 4H), 7.11–7.07 (m, Ar, 2H), 6.55–6.5102 (m, Ar, 2H), 4.62 (s,
1H), 4.30, 4.29 (d, CH2, 2H, JHH = 6.0 Hz), 4.05 (br. S, NH, 1H). 13C NMR (d-Chloroform,
150 MHz) = 146.7, 138.8, 128.9, 128.7, 127.5, 127.4, 127.1, 126.6, 122.1, 113.9, 54.5, 48.4. MS
(ESI/CI): m/z = 217.14, Calculated for C13H12NCl+ [M]+: 217.70 g/mol. IR (FT ATR):
ν = 3411 (w), 3030 (w), 2851 (w), 1597(s), 1498 (s), 1314 (m) 1179 (w), 1090 (w), 8134 (m),
7312 (m) cm−1.

Spectral Data of of N-benzyl-(2-fluorophenyl)amine (P6): 1H NMR (d-chloroform,
600 MHz) = 7.38–7.33 (m, Ar, 4H), 7.29–7.240 (m, Ar, 1H), 6.99–6.93 (m, Ar, 2H), 6.6718–6.65
(m, Ar, 1H), 6.64–6.59 (m, Ar, 1H), 4.37–4.36 (d, 2H, JHH = 5.4 Hz), 4.31 (br. S, NH, 1H). 13C
NMR (d-Chloroform, 150 MHz) = 152.3, 150.7, 138.9, 136.6, 128.7, 127.4, 124.6, 116.8, 114.5,
114.3, 112.3, 47.8. MS (ESI/CI): m/z = 202.08, Calculated for C13H12NF+ [M]+: 201.25 g/mol.
IR (FT ATR): ν = 3433 (w), 3030 (w), 2926 (w), 1620 (m), 15,145 (s), 13,356 (m), 1247 (m),
1187 (m), 747 (s) cm−1.

Spectral Data of of N-ethyl-N-phenylamine (P7): 1H NMR (d-chloroform,
600 MHz) = 7.25–7.15 (m, Ar, 2H), 6.69–6.67 (t, Ar, 1H), 6.59–6.59 (d, Ar, 2H, JHH = 7.8 Hz),
3.521 (br. S, NH, 1H), 3.10–3.09 (q, 2H), 0.93–0.82 (t, 3H). 13C NMR (d-Chloroform,
150 MHz) = 148.11, 129.9, 116.6, 112.2, 45.1, 15.7. MS (ESI/CI): m/z = 121.08, Calculated
for C8H11N+ [M]+: 121.19 g/mol. IR (FT ATR): ν = 3411 (w), 3050 (w), 2925 (m), 2858 (m),
1605 (s), 1508 (s), 1463 (s), 1321 (m), 12,612 (m), 1148 (m), 1028 (s), 747 (s) cm−1.

Spectral Data of of N-propylaniline (P8): 1H NMR (d-chloroform, 600 MHz) = 7.171–7.15
(m, Ar, 2H), 6.69–6.66 (t, Ar, 1H), 6.61–6.59 (t, Ar, 2H,), 3.62 (br. S, NH, 1H), 3.08–3.06 (t,
2H), 1.65–1.61 (m, CH2, 2H), 0.99–0.98 (t, 3H). 13C NMR (d-Chloroform, 150 MHz) = 148.5,
129.3, 117.1, 112.7, 45.8, 22.8, 11.7. MS (ESI/CI): m/z = 135.13, Calculated for C9H13N+

[M]+: 135.21 g/mol. IR (FT ATR): ν = 3411 (w), 3022.3 (w), 2963 (w), 2933 (w), 1605 (m),
1508 (m), 1321 (m), 1254 (m), 1148 (w), 866 (w), 747 (m) cm−1.

Spectral Data of of N-(n-butyl)aniline (P9): 1H NMR (d-chloroform,
600 MHz) = 7.17–7.14 (m, Ar, 2H), 6.62–6.66 (m, Ar, 1H), 6.59–6.58 (m, Ar, 2H), 3.57 (br. S,
NH, 1H), 3.11–3.080(t, 2H), 1.62–1.55 (m, 2H), 1.45–1.39 (m, 2H), 0.96–0.93 (t, 3H). 13C NMR
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(d-Chloroform, 150 MHz) = 148.6, 129.2, 117.1, 112.7, 43.7, 31.7, 20.3, 13.4. MS (ESI/CI):
m/z = 149.09, Calculated for C10H15N+ [M]+: 149.24 g/mol. IR (FT ATR): ν = 3418 (w),
3052 (w), 2933 (m), 2866 (m), 1605 (s), 1508 (s), 1321 (m), 1262 (m), 739 (s) cm−1.

Spectral Data of of N-hexylaniline (P10): 1H NMR (d-chloroform, 600 MHz) = 7.17–7.14
(m, Ar, 2H), 6.68–6.66 (m, Ar, 1H), 6.59–6.58 (m, Ar, 2H), 3.57 (br. S, NH, 1H), 3.11–3.0718
(t, 2H), 1.62–1.55 (m, 2H), 1.45–1.39 (m, 2H), 0.96–0.93 (t, 3H). 13C NMR (d-Chloroform,
150 MHz) = 148.6, 129.2, 117.7, 112.7, 43.7, 31.7, 28.8, 27.4, 23.3, 134.0. MS (ESI/CI): m/z = 177.17,
Calculated for C12H19N+ [M]+: 177.29 g/mol. IR (FT ATR): ν = 3401 (w), 3058 (w), 2926 (m),
2856 (w), 1605 (s), 1508 (s), 1321(m), 1254 (m), 1179 (w), 8656 (w), 7470(s) cm−1.

Spectral Data of of N-Isopropylaniline (P11): 1H NMR (d-chloroform,
600 MHz) = 7.16–7.14 (m, Ar, 2H), 6.70–6.68 (m, Ar, 1H), 6.61–6.59 (m, Ar, 2H), 3.40–3.37
(m, 1H), 1.10–1.09 (d, 6H). 13C NMR (d-Chloroform, 150 MHz) = 148.5, 129.3, 117.1, 112.7,
51.9, 21.9. MS (ESI/CI): m/z = 135.23, Calculated for C9H13N+ [M]+: 135.21 g/mol. IR (FT
ATR): ν = 3396 (w), 3058 (w), 1635 (m), 1582 (s), 1463 (m), 1269 (m), 739 (s) cm−1.

Spectral Data of of N-Isopropyl-p-anisidine (P12): 1H NMR (d-chloroform,
600 MHz) = 7.51–7.49 (m, Ar, 2H), 6.97–6.94 (m, Ar, 2H), 4.50–4.44 (m, 1H), 1.10–1.09
(d, 6H). 13C NMR (CDCl3, 150 MHz) δ (ppm) = 154.2, 147.5, 142.6, 130.7, 55.9, 52.9, 49.6,
22.1. MS (ESI/CI): m/z = 165.23, Calculated for 10H15ON+ [M]+: 165.24 g/mol. IR (FT
ATR): ν = 3366 (w), 2963 (w), 1618 (w), 1508 (s), 1232 (s), 1172 (m), 10,378 (m), 821 (m) cm−1.

Spectral Data of of 4-Methoxy-N-(1-phenylethyl)aniline (P13): 1H NMR (d-chloroform,
600 MHz) = 7.51–7.49 (m, Ar, 2H), 7.19–7.17 (m, Ar, 2H), 6.90–6.66 (m, Ar, 3H), 6.62–6.59 (m,
Ar, 2H), 4.21–4.18 (q, 1H). 13C NMR (d-Chloroform, 150 MHz) = 154.2, 148.6, 147.5, 142.6,
130.7, 129.2, 117.2, 112.617, 50.4, 30.9. MS (ESI/CI): m/z = 227.17, Calculated for C15H17NO+

[M]+: 227.31 g/mol. IR (FT ATR): ν = 3388 (m), 3217 (w), 2918 (m), 2844 (w), 1635 (m),
1508 (s), 1463 (s), 1299 (w), 1232 (s), 1127 (w), 1028 (s), 821 (s) cm−1.

Spectral Data of of N-methyl-N-phenyl-benzenemethanamine (P14): 1H NMR (d-
chloroform, 600 MHz) = 7.36–7.31 (m, Ar, 4H), 7.26–7.23 (m, Ar, 1H), 7.16–7.14 (m, Ar, 2H),
6.71–6.68 (t, Ar, 1H), 6.67–6.64 (d, Ar, 2H, JHH = 7.8Hz), 4.36 (s, CH2, 2H), 3.11 (s, 3H). 13C
NMR (d-Chloroform, 150 MHz) = 148.8, 139.9, 129.7, 128.9, 127.9, 127.6, 117.3, 112.6, 48.1,
45.8. MS (ESI/CI): m/z = 197.07, Calculated for C14H15N + [M]+: 197.22 g/mol. IR (FT
ATR): ν = 30,298 (w), 2925 (w), 2858 (w), 1597 (s), 1498 (s), 1456 (m), 13510 (m), 1112 (m),
1028 (m), 9401 (m), 747 (s), 724 (s) cm−1.

Spectral Data of of N,N-dibenzylaniline (P15): 1H NMR (d-chloroform,
600 MHz) = 7.32–7.30 (m, Ar, 4H), 7.25–7.23 (m, Ar, 6H), 7.17–7.14 (m, Ar, 2H), 6.73–6.66 (m,
Ar, 2H), 4.64–4.61 (d, Ar, 2H, JHH = 23.4 Hz). 13C NMR (d-Chloroform, 150 MHz) = 149.2,
138.6, 129.2, 128.7, 126.9, 126.7, 116.7, 112.4, 54.2. MS (ESI/CI): m/z = 273.21, Calculated
for C20H19N+ [M]+: 273.38 g/mol. IR (FT ATR): ν = 3038 (w), 2918 (m), 1597 (s), 1499 8 (s),
1456 (m), 1359 (m) 12,312 (m), 1028 (w), 956 (m), 732 (s) cm−1.

Spectral Data of of N-phenylpyrrolidine (P16): 1H NMR (d-chloroform,
600 MHz) = 7.26 (m, 2H), 7.12 (m, 1H), 6.84 (m, 1H), 3.19–3.18 (m, 4H), 2.33 (s, 3H),
1.94–1.92 (m,4H). 13C NMR (d-Chloroform, 150 MHz) = 148.6, 129.7, 115.8, 111.97, 47.9,
26.0. MS (ESI/CI): m/z = 147.13, Calculated for C13H13N: 147.23 g/mol. IR (FT ATR):
ν = 3058 (w), 3028 (w), 2963 (m), 2926 (s), 2836 (m), 1605 (m), 15,967 (s), 1508 (s), 1463 (m),
1366 (s), 1357 (w), 1239 (w), 11,867 (m), 1157 (m), 993 (m), 7467 (s), 6869 (s) cm–1.

Spectral Data of of N-(4-chlorophenyl) pyrrolidine (P17): 1H NMR (d-chloroform,
600 MHz) = 7.26–7.64 (m, 2H), 6.58–6.95 (m, 2H), 3.86–3.76 (m, 4H), 2.54–2.51 (m, 4H).
13C NMR (d-Chloroform, 150 MHz) = 147.5, 130.01, 121.3, 113.6, 48.7, 26.3. MS (ESI/CI):
m/z = 181.22, Calculated for C11H12NCl+ [M]+: 181.67 g/mol. FTIR (ATR): ν = 2963 (w),
2926 (s), 2858 (m), 1739 (s), 1605 (m), 1471 (m), 1463 (m), 1374 (s), 276 (w), 1232 (s), 1157 (w),
1075 (w), 1015 (w), 799 (m) cm−1.

Spectral Data of of N-(4-methoxyphenyl) pyrrolidine (P18): 1H NMR (d-chloroform,
600 MHz) = 6.87 (d, J = 9.0 Hz, 2H), 6.55 (d, J = 9.0 Hz, 2H), 3.767 (s, 3H), 3.23 (t, J = 6.5 Hz,
4H), 2.02–1.99 (m, 4H). 13C NMR (d-Chloroform, 150 MHz) = 116.3, 113.2, 57.1, 49.3, 26.21.
MS (ESI/CI): m/z = 177.256, Calculated for C11H15NO+ [M]+: 177.25 g/mol. FTIR (ATR):
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ν = 3045 (w), 2948 (m), 2926(s), 2856(m), 1620 (w), 1515 (m), 1485 (w), 1463 (m), 1366 (m),
1276 (w), 1239 (m), 1179 (w), 1157 (w), 1045 (m), 971 (w), 806 (s), 732 (w)cm−1.

Spectral Data of of N-phenylpiperidine (P19): 1H NMR (d-chloroform, 600 MHz) = 7.45
(t, 2H, J = 7.4 Hz), 6.99 (d, 2H, J = 7.8 Hz), 6.73 (t, 1H, J = 7.3 Hz), 3.36 (t, 4H, J = 6.7 Hz),
1.81 (m, 4H), 1.62 (t, 2H, J = 4.8 Hz). 13C NMR (CDCl3, 150 MHz) δ (ppm) = 152.6, 129.9,
119.7, 117.3, 60.12, 26.6, 24.9. MS (ESI/CI): m/z = 161.12, Calculated for C11H15N+ [M]+:
161.25 g/mol. IR (FT ATR): v = 2933 (m), 2854 (m), 2806 (m), 1598 (s), 1495 (s), 1451 (m),
1385 (m), 1236 (s), 1221 (s), 1132 (m), 918 (m), 754 (s) cm–1.

Spectral Data of of 1-(piperidine-1-yl) pyridine (P20): 1H NMR (d-chloroform,
600 MHz) = 8.28 (ddd, 1H), 7.62 (ddd, 1H), 6.85 (dd, 1H), 6.76 (ddd, 4H), 1.86 (td, 6H).
13C NMR (d-Chloroform, 150 MHz) = 156.0, 148.2, 137.5, 112.6, 107.3, 46.6, 25.8, 25.0.
MS (ESI/CI): m/z = 162.21, Calculated for C10H14N2

+ [M]+: 162.24 g/mol. FTIR (ATR):
ν = 3008 (w), 2926 (m), 2851 (m), 1597 (s), 1485 (s), 1433 (s), 1381 (w), 1314 (m), 1247 (s),1157
(w), 1127 (m), 1023 (w), 8501 (w), 769 (s),733 (w) cm−1.

Spectral Data of of 1-methyl-4-(pyridin-2-yl) piperazine (P21): 1H NMR (d-chloroform,
600 MHz) = 8.21 (dd, 1H),7.66 (ddd, 1H), 6.88–6.78 (m, 2H), 3.74 –3.66 (m, 4H), 3.22–3.13
(m, 4H). 13C NMR (d-Chloroform, 150 MHz) = 160.4, 147.9, 137.6, 110.1, 107.2, 46.1, 45.8.
MS (ESI/CI): m/z = 177.23, Calculated for C10H15N3

+ [M]+: 177.245 g/mol. IR(ATR):
ν = 3329 (s), 2933 (m), 2866 (m), 1627 (m), 1605 (s), 1530 (w), 1515 (s), 1448 (m), 1157 (w),
1053 (m), 1030 (w), 888 (w), 859 (w), 769 (s), 702 (w) cm−1.

3.2.5. Intermolecular Cyclyzation to Synthesize Cyclizine

In a Schlenk tube, 1mmol of N-methyldiethanolamine (MDEA) was mixed with 2mmol
of diphenylmethanamine and complex 1, and the reaction was carried at 140°C for 48 h
under nitrogen. The product cyclizine was purified by column chromatography with an
isolated yield of 60%. It was fully characterized by 1H, 13C NMR, and MS spectroscopy.

1H NMR (d-chloroform, 600 MHz) = 7.45–7.18 (m, 10H, Ph), 4.27 (s, 1H, N-CH), 3.32
(s, 8H, N-CH), 2.31 (s, 3H, N-CH3). 13C NMR (d-Chloroform, 150 MHz) = 144.0, 129.7,
129.0, 128.5, 77.5, 56.1, 52.4, 45.7. MS (ESI/CI): m/z = 266.12, Calculated for C18H22N2
[M]+: 266.38 g/mol. FTIR (ATR): ν = 3060 (w), 3030 (w), 2926 (m), 2858 (w), 1620 (s),
1493 (m), 1448 (m), 1276 (m), 1150 (w), 1075 (w), 1030 (w), 985 (w), 926 (w), 859 (w), 747 (s),
702 (s) cm−1.

3.3. Electron Paramagnetic Resonance (EPR)

EPR was measured with a Bruker EMX-10/12 spectrometer. The samples were dis-
solved in toluene. EPR settings: field, center field 3520.000 G, sweep width 100.000 G,
resolution 2048 points; microwave frequency, 9.879 GHz; microwave power, 10.080 mW;
number of scans, 1.

3.4. Single-Crystal X-ray Diffraction

All the crystals were obtained from a mixed solution of dichloromethane and n-
hexane. The diffraction data for complex 1 was collected on a Bruker SMART APEX CCD
diffractometer with a graphite-monochromatized MoKα X-ray radiation (λ = 0.71073 Å)
at 110 K. All the calculations for the structural determination were carried out using a
SHELXS-97 package. The positions of the heavy atoms, including the iridium atoms,
were located using the direct method. The remaining atoms were found in a series of
alternating difference Fourier maps and least-square refinement. The crystallographic data
for all the structures reported here have been deposited in the Cambridge Data Centre as
supplementary publication number CCDC 2100518.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/inorganics10120237/s1. Table S1: The Atomic Coordinates (angstroms) of
Complex 1.
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