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Abstract: A concentration series of Y3Al5O12:Ce solid solutions were prepared, and the composition
demonstrating the highest X-ray luminescence intensity of cerium was identified. Based on the best
composition, a series of luminescent diamond–Y3Al5O12:Ce composite films were synthesized using
microwave plasma-assisted chemical vapor deposition (CVD) in methane–hydrogen gas mixtures.
Variations in the amounts of the embedded Y3Al5O12:Ce powders allowed for the fine-tuning of the
luminescence intensity of the composite films.

Keywords: yttrium–aluminum garnet; cerium; diamond composite; X-ray luminescence

1. Introduction

Diamond photonics based on impurity atom-vacancy optical centers is being in-
tensively studied for applications in biomedical applications [1,2], thermometry [3–5],
single-photon emitters [6–8], and X-ray optics [9–12]. Specifically, great potential lies in the
combination of the properties of pristine diamond with the rich luminescent properties of
rare earth (RE) elements. There are several approaches to reaching this goal by obtaining RE-
doped diamond materials using both chemical vapor deposition (CVD) and high-pressure
high-temperature (HPHT) processes; however, without any major breakthroughs to obtain
highly luminescent diamonds [13–18]. A new emerging path is the formation of lumi-
nescent composites based on synthetic diamonds with embedded luminescent RE-based
nanoparticles [9], which already possess the targeted luminescent properties.

In the first works on such diamond-RE composites [11,12,19–21], the following com-
pounds were tested as the materials for the luminescent particles: EuF3, β-NaGdF4:Eu,
Gd3Al5O12:Sc:Ce, and Y3Al5O12:Ce nanoparticles. Summarizing all of these works, the
highest X-ray luminescence (XRL) so far was achieved using nanopowders
of [Y2.98Ce0.02]{Al2}Al3O12 [21]. These composites are of interest for imaging intense high-
energy X-ray fluxes, such as those in various synchrotrons and free-electron lasers. The
literature presents various data on the concentrations of cerium in solid solutions based on
yttrium–aluminum garnets, but often the concentration of cerium is presented in unclear
values, percentages, or fractions, while the type of values is not indicated, e.g., molar,
weight, atomic, or formula units [22–24]. Earlier, in our preliminary study, on the basis
of a concentration series of powders of solid solutions (without integration into diamond
films), the boundaries of the existence of single-phase solid solutions were revealed, and the
compositions demonstrating the highest luminescence intensity were estimated. However,
the optimal compound for maximizing the XRL intensity of the diamond composite may
vary from the optimal compound of pristine RE powder. In addition, to achieve the lateral
uniformity of the XRL signal from the composite film, it is necessary to carry out a synthesis
with a smaller particle size. As a result, the aim of this work was to identify the composition
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that demonstrates the highest intensity of X-ray luminescence and to create an effective
luminescent composite based on it.

2. Results

The powder synthesis of the concentration series Y3−xCexAl5O12 was carried out by
spraying a solution of cerium nitrate, aluminum, and yttrium chlorides in a 25% solution
of ammonia, taken with a 6-fold excess, and ammonium sulfate (0.45 M). The cerium
concentration was varied from x = 0.0100 f.u. to 0.0250 f.u., which corresponds to the
interval from 0.33(3) to 0.83(3) at%. (Table 1). The resulting slurry was washed with
ammonium sulfate solution (0.045 M). The washed precipitate was dried in an oven at
60 ◦C for 15 h. The dried precipitate was calcined in a Nabertherm 08/18 furnace in
corundum crucibles at 1460 ◦C for 4 h.

Table 1. Compositions and characteristics of the synthesized samples.

Sample a, Å CSR Size, nm DTA, ◦C

PKS-01—Y2.9900Ce0.0100Al5O12 12.013 ± 0.002 221 968.0

PKS-02—Y2.9875Ce0.0125Al5O12 12.015 ± 0.002 178 968.0

PKS-03—Y2.9850Ce0.0150Al5O12 12.014± 0.002 193 972.8

PKS-04—Y2.9825Ce0.0175Al5O12 12.014 ± 0.002 193 971.8

PKS-05—Y2.9800Ce0.0200Al5O12 12.014 ± 0.002 180 974,4

PKS-06—Y2.9775Ce0.0225Al5O12 12.014 ± 0.002 169 974.7

PKS-07—Y2.9750Ce0.0250Al5O12 12.015 ± 0.002 >250 970.3

According to the differential thermal analysis (DTA), the garnet phase for the entire
concentration range was formed at a temperature ≈970 ◦C (see Figure 1 for the DTA of the
PKS-06 sample). The recorded temperature corresponds to the temperature of the phase
transition of a mixture of amorphous oxides into the garnet phase [25,26].
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According to the X-ray phase analysis of the samples after calcination at a temperature
of 1460 ◦C for 4 h, single-phase samples with a garnet structure were synthesized (Figure 2).
Based on the X-ray data, the lattice parameters and the sizes of the coherent scattering
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regions (CSRs) were calculated (Table 1). Due to the low concentrations of cerium, the
changes in the lattice parameters were comparable with the error of the synthesis experi-
ment of ∆a = ±0.002 Å. As follows from the data presented in Table 1, the CSR values are
in the range of 169–221 nm, while any dependence on the composition of the samples is
not traced.
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Figure 2. X-ray diffraction patterns of the YAG:Ce samples synthesized at 1460 ◦C.

The SEM studies of the samples indicated that the as-synthesized YAG:Ce powders
consisted of micrometer-sized particle agglomerates (Figure 3). The sizes of the separate
particles are ≈ 200–300 nm, which correlates well with the measured size of the CSRs.

Inorganics 2022, 10, x FOR PEER REVIEW 3 of 9 
 

 

According to the X-ray phase analysis of the samples after calcination at a tempera-

ture of 1460 °C for 4 h, single-phase samples with a garnet structure were synthesized 

(Figure 2). Based on the X-ray data, the lattice parameters and the sizes of the coherent 

scattering regions (CSRs) were calculated (Table 1). Due to the low concentrations of ce-

rium, the changes in the lattice parameters were comparable with the error of the synthesis 

experiment of Δa = ±0.002 Å . As follows from the data presented in Table 1, the CSR values 

are in the range of 169–221 nm, while any dependence on the composition of the samples 

is not traced. 

 

Figure 2. X-ray diffraction patterns of the YAG:Ce samples synthesized at 1460 °С. 

The SEM studies of the samples indicated that the as-synthesized YAG:Ce powders 

consisted of micrometer-sized particle agglomerates (Figure 3). The sizes of the separate 

particles are ≈ 200–300 nm, which correlates well with the measured size of the CSRs. 

  

(a) (b) 

Figure 3. Cont.



Inorganics 2022, 10, 240 4 of 9Inorganics 2022, 10, x FOR PEER REVIEW 4 of 9 
 

 

  

(c) (d) 

  

(e) (f) 

 

 

(g)  

Figure 3. SEM of the YAG:Ce samples synthesized at 1460 ◦C. (a) PKS-01. (b) PKS-02. (c) PKS-03.
(d) PKS-04. (e) PKS-05. (f) PKS-06. (g) PKS-07.
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Studies of the X-ray luminescence of the Y3−xCexAl5O12:Ce samples under X-ray
excitation, kα(Ag) = 22.16 keV, showed (Figure 4) that the luminescence maximum is in the
region of 530 nm. At the same time, when the cerium concentration increased from 0.0100
to 0.0225 f.u., the intensity increased, and upon reaching x = 0.0250 f.u., it decreased. In
addition, as shown in the inset to Figure 4, a slight shift in the spectra was recorded as the
cerium concentration increased. The detected effect of the shift of the X-ray luminescence
maxima is in good agreement with the data presented in [22], where the shift of the
photoluminescence (PL) maxima to higher wavelengths is shown with an increase in the
cerium concentration from 0.006 to 0.210 f.u. The shift of the luminescence band maximum
resulted from the replacement of yttrium by the heavier cerium and a smooth change in
the energy of the phonon matrix [27].
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Figure 4. X-ray luminescence spectra of the concentration series samples. Inset–XRL spectra of the
concentration series samples, which are reduced/normalized to unity to visualize the shift in the
position of the maximum of the luminescence band.

Based on the particles of the Y2.9775Ce0.0225Al5O12 composition, suspensions in DMSO
with a concentration of 10 mg/mL were prepared, which were then sequentially deposited
dropwise on a diamond substrate, according to the protocol described in [9]. The typical
SEM image of the obtained film is shown in Figure 5a. The structure of the composite
film was similar to the structure of the microcrystalline diamond films, with a grain size
of a few micrometers. As a result, four samples were obtained with one, two, three, and
four drops of powder suspension on identical samples. A registration of the PL spectra
upon excitation at a wavelength of 473 nm (LabRam HR840) was carried out using the
same 50-point pattern on the surface of each sample, followed by averaging the results
(Figure 5b). A registration of the XRL spectra on an excitation X-ray tube with a silver
anode operating was carried out (Figure 5c). As a result, an increase in the intensity of the
X-ray and photoluminescence was observed with an increase in the number of deposited
particles, which makes it possible to develop efficient luminescence materials based on
diamond-particle composites.
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3. Materials and Methods

The precursors for the powder synthesis were as follows: cerium nitrate hexahydrate
(99.0%, Vecton, St. Petersburg, Russia), aluminum chloride hexahydrate (99.9%, Lanhit
Ltd., Moscow, Russia), yttrium chloride hexahydrate (99.99%, Lanhit Ltd., Moscow, Rus-
sia), ammonia (99.999%, Stavreakhim Ltd., Stavropol, Russia), ammonium sulfate (99.0%,
Component Reactiv Ltd., Moscow, Russia), and deionized water. All of the initial reagents
were used without additional purification steps.

The thermal behavior of the powders was determined using a synchronous thermal
analysis instrument (STA, 449 F1 Jupiter, Netzsch, Karlsruhe, Germany) in the temperature
range between 27 and 1150 ◦C and with a heating rate of 25 ◦C/min. The powder diffraction
patterns were recorded using an X-ray diffractometer (XRD, Empyrean, Panalytical, Almelo,
The Netherlands) equipped with an X-ray tube with a copper anode (CuKα1, λ = 1.5406 Å)
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over a 2θ angle range between 10 and 90◦, a step of 0.01◦, and a scanning speed of 0.7◦/min.
Phase identification and full-profile analysis of the X-ray diffraction patterns by the Rietveld
method were carried out using the Highscore Plus software with the ICDD PDF-2 database.
Micrographs of the ceramic powders and composite films were taken with a scanning
electron microscope (SEM, microscope LM Mira 3, Tescan, Brno, Czech Republic). Raman
and photoluminescence spectra of the diamond composites were taken at room temperature
with a LabRam HR840 (Horiba Jobin-Yvon, Stow, MA, USA) spectrometer in a confocal
configuration. The laser beam with a wavelength of 473 nm was focused in an ≈1 µm
spot on the sample surface. The XRL spectra of the powders were recorded at room
temperature on an Ocean Insight Ocean HDX VIS-NIR fiber-optic spectrometer in the range
of 350–1100 nm with a resolution of 0.7 nm under excitation by an X-ray tube with a silver
anode operating at a voltage of 40 kV and a current of 35 mA with an X-ray photon energy
of about 22 keV.

The diamond composites were formed in two steps by microwave plasma chemi-
cal vapor deposition (ARDIS-100, 2.45 GHz, Optosystems LLC, Moscow, Russia) [28] in
hydrogen–methane gas mixtures. First, 3 µm-thick polycrystalline diamond films were
grown on (100) silicon 10 × 10 × 1 mm3 plates. These layers were used as substrates
for applying the Y3Al5O12:Ce suspensions. A required number of drops (1–4, 0.02 mL
each) of the suspensions of Y3Al5O12:Ce in dimethyl sulfoxide (DMSO, 10 mg/mL) were
applied one-by-one on the first diamond layer. Each droplet was dried separately using
an SPS SPIN 150 spin coater (3000 rpm, 5 min). Additionally, the Ce-contained powders
were covered with a non-coalesced layer of nanodiamond particles (the particle sizes were
3–7 nm, Zeta potential > +50mV, Cardiff University [29,30]), which became additional
nucleation centers for the second CVD diamond layer and, at the same time, provided
protection for the RE powders from being etched by atomic hydrogen in the CVD process.
The 2 µm-thick diamond layer grown in the second CVD step encapsulated the applied
nanoparticles to form a “Diamond–Y3Al5O12:Ce” composite. The growth conditions for
all of the polycrystalline diamond films were as follows: the total gas flow was 500 sccm;
the methane content was 4% CH4/H2; the pressure was 75 torr; the microwave power was
4.5 kW; the standard deposition rate was 1 µm/hour. The substrate temperature was main-
tained at 840 ± 20 ◦C, as measured by a two-color pyrometer METIS M322 (SensorTherm
GmbH, Moscow, Russia).

4. Conclusions

A concentration series of Y3−xCexAl5O12 solid solutions with a cerium concentration
of x = 0.0100 f.u. were synthesized to 0.0250 f.u. The crystallization of the garnet phase for
the synthesized solid solutions occurs at a temperature of about 970 ◦C. The subsequent
high-temperature treatment at a temperature of 1460 ◦C for 4 h led to the synthesis of
particles with a size of about 200–300 nm, which were combined into agglomerates with
a size of about one micron. Based on the X-ray luminescence spectra, the composition of
Y2.9775Ce0.0225Al5O12 was revealed, which demonstrates the highest luminescence intensity.
An increase in the intensity of the photoluminescence and an increase in the number of the
deposited nanoparticles were revealed. As a result, the composites based on the diamond–
Y2.9775Ce0.0225Al5O12 with a four-stage particle deposition procedure demonstrated the
highest photoluminescence. The developed composites are promising for the visualization
of high-power X-ray and synchrotron beams.
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