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Abstract: The present study reports the use of the dynamic light scattering (DLS) method to analyze
metal nanoparticle sizes in supported catalysts (as a model system for different metal-oxide nanocom-
posites, ceramics, etc.). The selective dissolution of matrices has been used to transform solids to sols
for DLS analysis. DLS/STS (from solid to sol) technique was tested on a wide number of different sets
of supported metal catalysts (Pt, Pd, Ru metals and Al2O3, SiO2, TiO2, C3N4, carbon and polymers
as supports). The transmission electron microscopy and X-ray diffraction (TEM/XRD) results for
the initial supported catalysts and the DLS results for the sols prepared from them showed good
agreement with each other. Moreover, it has been shown that this approach can identify the minor
contamination of catalysts by large particles or aggregates which are difficult to detect by TEM/XRD.

Keywords: DLS; STS; particle sizes; supported metal catalysts; porous oxide supports; carbon;
polymers; selective dissolution; sols

1. Introduction

The determination of heterogeneous catalysts, ceramics and other functional material
particle sizes is one of significant tasks for catalysis and material science. The properties of
nanosized materials and catalysts depend on the particle size of the active component [1–7].
Considering the importance of this problem, basic methods such as TEM (transmission
electron microscopy) and XRD (X-ray diffraction) to determine particle sizes were devel-
oped a long time ago [8,9]. Despite their popularity at the present time, these methods
require costly hardware and qualified personnel. In addition, these methods are not sensi-
tive enough in the case of the low quantity of active components or small contamination
by fraction with noticeably different particle sizes. Simpler chemisorption methods are
not always applicable in this case due to various negative reasons [8]. Therefore, the
development of new simple analytical methods for particle size determination is quite
an actual task, especially for the chemical industry. Currently, alternative methods and
techniques for the determination of particle size are developing [10–12].However, it seems
more interesting and promising for these purposes to use the method of dynamic light
scattering (DLS) [13–16].It is an inexpensive and fast method of particle size determination.
In addition, TEM and DLS results, as a rule, are in good agreement with each other [17–22].
The main problem in such a case is the applicability of DLS only for liquid systems; for
solids, this method in a conventional version does not work. At best, the standard DLS anal-
ysis of the ultrasonic dispersion of any powder in liquid media can give only approximate
particle sizes of this initial powder or even their aggregates as an output [23–25]. Obviously,
this technique in the initial state is unusable for determining the particle sizes of active
components on the porous supports. Nevertheless, our recent work demonstrated how to
avoid this problem and adapt DLS for the analysis of solid heterogeneous catalysts [26].
The main idea is to selectively dissolve the support and analyze the prepared sol with
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metal nanoparticles by DLS. Additionally, the efficiency of this STS (from solids to sols)
technique has been successfully tested for the SAXS method [27,28]. The first attempts of
dissolving simple systems such as Au/Al2O3 and their further DLS analysis were quite
successful [26,29]. However, it should be remembered that the selective dissolution of
supports for supported catalysts is generally impossible. At the same time, for noble metal
nanoparticles supported on the typical porous supports, there is much more chance of
successfully finding an acceptable condition for support dissolution due to the greater
stability of noble metal nanoparticles. In general, optimal conditions for selective support
dissolution should be sought for each system. In some cases, there is a question about
the preferable way of dissolution, for example, for carbon or polymeric or other types
of supports. Additionally, the question about the degree of support dissolution remains
unclear. Is partial support dissolution sufficient or is only total dissolution necessary? Thus,
testing a wider range of samples with different supported metal nanoparticles and support
types is needed for the subsequent application of such techniques in practice. Therefore,
in this work, we report on the extended STS technique application for the DLS study of
different sets of supported catalysts with different supported metals and supports.

2. Results and Discussion

All prepared solid samples were preliminary studied by TEM and XRD for the detailed
determination of supported metal particle sizes. For convenience, all samples were divided
into three groups: supported Ag catalysts, supported Pt catalysts and supported metal
catalysts on the polymer support. As an example, in Figure 1a, a typical TEM image of
supported silver nanoparticles on alumina oxide with the calculated particle size distri-
bution is shown. Additionally, in Figure 1b, XRD patterns for Ag/γ-Al2O3 and γ-Al2O3
are shown. Typical reflections attributed to Ag and Al2O3 are observed in these patterns.
The average particle sizes of supported Ag nanoparticles were calculated using the TEM
images (Table 1).
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Figure 1. (a) TEM photo for Ag/γ-Al2O3 sample with Ag particle size distribution. (b) XRD patterns 
for Ag/γ-Al2O3 (black line) and γ-Al2O3 (red line) samples. The vertical black lines indicate Ag re-
flexes (JCPDS 04-0783). 

Figure 1. (a) TEM photo for Ag/γ-Al2O3 sample with Ag particle size distribution. (b) XRD patterns
for Ag/γ-Al2O3 (black line) and γ-Al2O3 (red line) samples. The vertical black lines indicate Ag
reflexes (JCPDS 04-0783).

In all cases, supported Ag nanoparticles have a monomodal distribution type. Differ-
ent average sizes (<dl>, <dm> and <d6/5>) are shown in particle size distribution images
(Figure 1). Due to Ag particle polydispersity, these values may be different. Small particles
affect the <dl> value, whereas large particles affect <dm> and especially <d6/5> values.
Based on XRD data, the average Ag particle sizes were calculated (Table 1).



Inorganics 2022, 10, 248 3 of 12

Table 1. TEM and XRD data for supported silver nanoparticles and DLS data for silver-contained
sols, which are prepared by the STS technique from supported silver catalysts.

Samples <dl>, nm <dm>, nm <d(XRD)>, nm <d6/5>, nm <d(DLS)>, nm

Ag/γ-Al2O3 3.2 ± 2.2 12.5 7.2 19.7 20.8 ± 3.8

Ag/cellulose 5.0 ± 3.5 18.1 13.1 28.0 32.6 ± 2.9

Ag/g-C3N4 8.3 ± 3.8 15.0 16.5 20.2 22.1 ± 2.5

For silver and gold nanoparticles, it is easy to detect the STS process visually [26]. In
Figure 2a, a typical photo of Ag-contained sol prepared from the initial Ag/γ-Al2O3 catalyst
is shown. Additionally, prepared Ag sol was studied by UV–vis spectroscopy (Figure 2b).
UV–vis spectroscopy is a convenient independent method for estimating Ag particle sizes
in sols [30,31]. The value of the wavelength of the surface plasmon resonance band is
correlated to silver particle size. According to the literature, the surface plasmon resonance
band of 405 nm corresponds approximately to silver particle sizes of 20 nm [30,31]. Based
on these data, we can conclude that the particle sizes deduced from plasmon resonance are
close to those of the initial sizes of supported nanoparticles obtained by TEM and XRD. In
Figure 3a, typical DLS autocorrelation functions from sols prepared after the dissolution
of Ag/γ-Al2O3 and γ-Al2O3 are shown. Figure 3b shows the intensity of particle size
distributions for these samples, correspondingly.

<dl> = ∑Nidi/∑Ni, <dm> = ∑Nidi
4/∑Nidi

3, <d6/5> = ∑Nidi
6/∑Nidi

5,

where ∑Ni is the total number of particles measured in the TEM images, i is the summation
index.
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Figure 2. (a) Typical photo of Ag-contained sol after dissolution Ag/γ-Al2O3 sample. (b) UV–visible 
spectra of Ag-contained sol (right). 

For Ag sol, two fractions were observed: one with small and another with large 
particles. In an experiment of dissolution by initial γ-Al2O3, only the fraction with large 
particles (2000–4000 nm) was observed. The large particle fraction with an average size of 
about 2000 nm is probably related to dust contamination particles or residual support 

Figure 2. (a) Typical photo of Ag-contained sol after dissolution Ag/γ-Al2O3 sample. (b) UV–visible
spectra of Ag-contained sol (right).

<d(DLS)> = mean value (diameter) of particle sizes from the fraction with small particles
measured by intensity distributions.

For Ag sol, two fractions were observed: one with small and another with large
particles. In an experiment of dissolution by initial γ-Al2O3, only the fraction with large
particles (2000–4000 nm) was observed. The large particle fraction with an average size
of about 2000 nm is probably related to dust contamination particles or residual support
particles. The small particle fraction corresponds to the silver nanoparticles. The DLS is
more sensitive to large particles, the average particle size determined by this method is
proportional to the <d6/5> = ∑Nidi

6/∑Nidi
5 value for particle size distribution [13].
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For cellulose dissolution, a lot of solvents could be used [32], but it is preferable to use
harder conditions (acid hydrolysis, e.g.,) to completely destroy this structure because in
soft conditions, cellulose nanocrystals in solutions could be found which could affect the
DLS signal [33].

Thus, for the correct comparison of TEM and DLS data, we need to compare the
average size from DLS <d(DLS)> with the <d6/5> value calculated from the TEM particle size
distribution. Table 1 presents such a comparison, and these values are in good agreement
with each other for all catalysts from the first group. A similar investigation by TEM and
XRD was performed for the supported Pt catalysts from the second group. Based on TEM
and XRD data, average Pt particle sizes are shown in Table 2.

Table 2. TEM and XRD data for supported Pt nanoparticles and DLS data for Pt-contained sols,
which are prepared by the STS technique from supported Pt catalysts.

Samples <dl>, nm <dm>, nm <d(XRD)>, nm <d6/5>, nm <d(DLS)>, nm

Pt/C-1 3.5 ± 2.3 14.8 8.1 21.4 26.6 ± 6.8

Pt/C-2 2.7 ± 1.1 4.4 <3.0 5.6 8.8 ± 2.7

Pt/SiO2-1 4.3 ± 1.8 7.4 5.2 10.3 11.3 ± 1.7

Pt/SiO2-2 3.4 ± 1.4 5.7 <3.0 8.7 10.8 ± 2.3

Pt/TiO2-1 10.2 ± 4.3 16.0 18.0 19.8 26.6 ± 3.4

Pt/TiO2-2 8.0 ± 3.9 13.8 15.2 17.9 24.2 ± 3.8
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For example, in Figure 4a, a typical TEM image of the supported Pt nanoparticles
on carbon with the calculated particle size distribution is shown. Figure 4b shows XRD
patterns for Pt/C and the initial carbon.
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Typical reflections attributed to the metal Pt structure are observed in this pattern. For
some variety of Pt particle sizes, Pt/C, Pt/SiO2 and Pt/TiO2 catalysts were prepared from
two types of precursors. In the case of the Pt/C system, noticeably different Pt particle
sizes for Pt/C-1 and Pt/C-2 catalysts are observed. In other cases, there is less particle size
divergence. DLS analysis after the STS procedure showed similar results when comparing
<d6/5> and <d(DLS)> values (Table 2).

As an example, Figure 5 shows the Pt particle size distribution for Pt-contained sols
prepared from Pt/C-1 and Pt/C-2 samples, correspondingly. It is important to notice
that for this group of samples, only a partial support dissolution degree was achieved.
Nevertheless, it was enough for the successful determination of Pt particle sizes in all cases
(Table 2).

In the case of the third group of catalysts, porous polymeric support (HPS) was used
for preparation. All supported catalysts were also studied by TEM and XRD (Table 3). For
example, in Figure 6a, a typical TEM image of supported Ru nanoparticles on the HPS with
the calculated particle size distribution is shown. In Figure 6b, XRD patterns for Ru/HPS
and initial HPS are shown. Typical reflections attributed to the Ru metal structure are
observed in this pattern.

Table 3. TEM and XRD data for noble nanoparticles supported on HPS and DLS data for prepared
sols from these samples.

Samples <dl>, nm <dm>, nm <d(XRD)>, nm <d6/5>, nm <d(DLS)>, nm

Pd/HPS 5.3 ± 2.3 8.1 6.1 10.7 11.4 ± 1.8

Ru/HPS 3.2 ± 1.9 8.8 9.0 14.8 20.1 ± 5.8

Pt/HPS 5.5 ± 3.4 11.8 7.1 15.5 16.1 ± 2.4
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For HPS support, only partial dissolution in the hot concentrated sulphuric acid media
was also achieved. Figure 7 shows the Ru particle size distribution for Ru-contained sol
prepared from Ru/HPS and the Pd particle size distribution for Pd-contained sol prepared
from Pd/HPS, correspondingly. In the case of Ru-contained sol, DLS shows small Ru
nanoparticles with sizes of 20 nm and larger particles with sizes of approximately 150 nm.
It is difficult to make a definite conclusion about the nature of formation of this fraction of
large particles. On the one hand, it could be the partial aggregation processes of small Ru
nanoparticles during sol preparation.
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According to another hypothesis, the Ru/HPS sample contains a small contamination
of large Ru aggregates initially, and only due to the high sensitivity of DLS, this minor
fraction of large particles is found. The last hypothesis is partially supported by the XRD
data (Figure 6b)—it can be seen that the Ru peak (101) contains both a narrower component
and a wider one, which could be interpreted as a bimodality. For a better view, on the
inset of Figure 6b, the simulation of differential Ru XRD patterns regarding the narrow (big
particles) and wide (small particles) peaks are shown. However, Ru peaks overlapping do
not allow for a more unambiguous conclusion.

It is also interesting to note that the value of <d(DLS)> is always somewhat higher than
<d6/5> (Tables 1–3). What is the reason for this discrepancy? TEM can be expected to lead
to underestimating the maximum possible particle size actually present in the catalysts
due to the locality of TEM and insufficient statistics for the minor fraction of large particles.
Figure 8 shows such divergence between TEM values (<d6/5>) for initial catalysts and DLS
values (<dDLS>) for sols prepared from solid catalysts by STS. All data from the present
work and our previous works [26,29,34] were used to plot these data for the fullest possible
statistics. According to these data, the average difference between TEM values (<d6/5>)
and DLS values (<dDLS>) is equal 12.2 ± 6.1%.

We assume that the standard TEM analysis does not possess a sufficient number
of particles from the “tails” of particle size distributions. This leads to the understated
values of high moments of particle size distributions, such as <d6/5>. The independent
confirmation of our hypothesis about the underestimation of the maximum possible size
by TEM can be found in work [35]. In this work, particle size distributions of Pt particles
in a colloidal solution were investigated by TEM and MS (mass spectrometry). Generally,
MS as a highly sensitive method is used to determine the particle sizes of nanoparticles
in extremely diluted solutions [35–39]. Actually, it would be interesting to combine the
STS technique with MS or NTA (Nanoparticle Tracking Analysis) [40,41] for the analysis
of supported catalysts. Returning to [35], it was observed that the use of an MS could
detect noticeably larger particles in the tail of Pt particle distributions by comparing to
TEM, whereas the sizes of the major fraction of Pt nanoparticles coincided with TEM data.
Thus, due to poor statistics, TEM can indeed underestimate the maximum possible size
of supported particles. In this case, DLS with the STS technique has unique potential to
identify ultra-small quantities of large particles or particle aggregates in the supported
catalysts. This can be useful for the precise determination of catalyst sintering initiation
during a catalytic reaction.
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Additionally, a reminder about the main limitations of the proposed STS technique is
needed. First of all, it is necessary to find conditions for selective dissolution or destruction
of support. There are some samples that could be invalid for STS application. Then,
checking the stability of nanoparticles in a solution after support dissolution is needed to
compare TEM/XRD data for initial solid samples with DLS results from prepared solutions.
If this calibration procedure is successful, it is possible to use the STS/DLS technique for
the analysis of similar systems without using TEM/XRD further. Nevertheless, for any
new type of sample (new active phase or new support), the STS/DLS technique is needed
to make such a calibration procedure again.

3. Materials and Methods
3.1. Sample Preparation
3.1.1. Supported Ag Nanoparticles on the Different Supports

The silver-contained samples were obtained by the incipient wetness impregnation of
an γ-Al2O3 (S(BET) = 220 m2/g), g-C3N4 (S(BET) = 20 m2/g) and microcrystalline cellulose
(ZAO Vekton, St. Petersburg, Russia) with a solution of silver nitrate in acetonitrile followed
by drying on air at 120 ◦C and reduction with an aqueous solution of NaBH4. The samples
contained 4.0 wt.% Ag for Ag/γ-Al2O3, 3.0 wt.% Ag for Ag/g-C3N4 and 2.0 wt.% Ag for
Ag/cellulose, correspondingly.

3.1.2. Supported Pt Nanoparticles on the Different Supports

To prepare the supported Pt catalysts on different supports, dilute solutions of com-
mercial platinum nitrate (samples designated as Pt/support-1) and platinum nitrate with
tetramethylammonium hydroxide with pH = 8.0 (samples designated as Pt/support-2)
were used.

All catalysts were prepared by wet impregnation. In the case of the porous carbon
support (S(BET) = 390 m2/g), both Pt/C samples after drying were reduced by hydrogen
flow at 180 ◦C for 1 h. In the case of the silica support (S(BET) = 300 m2/g), both Pt/SiO2
samples after drying were reduced by hydrogen flow at 330 ◦C for1 h. Finally, in the case
of the titanium dioxide support (S(BET) = 100 m2/g), both Pt/TiO2 samples after drying
were calcined at 600 ◦C for2 h in the air. The samples contained 3.0 wt.% Pt for Pt/C-1
and Pt/C-2, 1.0 wt.% Pt for Pt/SiO2-1 and Pt/SiO2-2, and 1.8 wt.% Pt for Pt/TiO2-1 and
Pt/TiO2-2, correspondingly.
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3.1.3. Supported Ru, Pd and Pt Nanoparticles on the Polymer Support

For all samples, hypercrosslinked polystyrene (HPS) of the MN-270 type (S(BET) = 1360
m2/g) was used as a support. Additionally, the impregnation method was used in all cases.
For preparing the Ru/HPS sample, polymeric support was impregnated with the water
solutions of Ru(OH)Cl3. The Pd/HPS catalyst was synthesized by a similar procedure
using Pd acetate as a precursor. After drying, these samples were reduced by hydrogen for
30 min at 120 ◦C and 6.0 MPa. The Pt/HPS sample was prepared by the wet impregnation
method and was also used using a dilute solution of commercial platinum nitrate. After
air drying, the sample was reduced by NaBH4 in the water–ethanol media. The samples
contained 3.0 wt.% Ru for Ru/HPS, 3.0 wt.% Pd for Pd/HPS and 3.0 wt.% Pt for Pt/HPS,
correspondingly. More detailed information about the preparation procedure can be found
in [42–44].

3.2. Selective Support Dissolution Procedure (STS)

Concentrated sulphuric acid (98%) was used to selectively dissolve most samples. For
a typical experiment, 200 mg of powder catalyst was added to 2.0 mL of sulphuric acid and,
if necessary, heated until the color of the solution changed. Depending on the supports,
total or partial support dissolution was finally observed. In general, hot, concentrated
sulphuric acid from this point of view is a rather convenient universal destroying agent for
many types of supports, including porous carbon. In all cases, after the mixture was cooled
down, aliquot was taken and added to some quantity of initial concentrated sulphuric
acid. A certain degree of dilution depends on the metal nanoparticle’s quantity in the
prepared solution and sensitivity of the DLS spectrometer. The prepared probe was studied
by DLS. For silica-based catalysts, 1M NaOH solution was used instead of concentrated
sulphuric acid.

As a rule, complete dissolution of the support is preferable, but it is not a requirement.
Sometimes it is sufficient to achieve at least partial dissolution, although then there is
less sensitivity compared to complete dissolution of the support. For example, partial
dissolution was observed in the cases of carbon, HPS, titanium dioxide and silica supports.
Colloid solutions prepared in such ways have low stability (from several hours to several
days). However, this time is more than enough, since a DLS analysis takes about 15 min or
even less, if necessary.

3.3. High-Resolution Transmission Electron Microscopy (HR-TEM)

A JEOL JEM-2010 transmission electron microscope operating at 200 kV was used for
the acquisition of high-resolution TEM images. For TEM measurements, a small quantity of
sample powder was suspended in hexane. The suspension was deposited on a perforated
carbon film fixed on a copper gauze. The solvent was evaporated before loading the sample
into the microscope. Each sample contained at least 500 particles to obtain the particle size
distribution and to determine the mean particle size.

3.4. X-ray Diffraction (XRD)

Powder XRD measurements were carried out using a ARL X’TRA diffractometer
(Thermo Electron Corporation, Zug, Switzerland), equipped with a vertical theta–theta
geometry (Bragg–Brentano), CuKα radiation (λ = 0.15418 nm) and a Peltier-cooled Si(Li)
solid-state detector. A 2θ range from 10◦ to 75◦ was scanned with a step of 0.075◦ and
counting time of 5 s. The average metal crystallite sizes, 〈dXRD〉, were estimated using the
Scherrer equation:

〈dXRD〉 = Kλ/(b−b0) cos θ (1)

where λ is the X-ray wavelength (λ = 0.15418 nm), θ is the half of the scattering angle;
b and b0 are the observed and instrumental full width at half-maximum (FWHM) of the
diffraction peak; K = 1.0.
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3.5. UV–Vis Spectroscopy

UV–vis spectra of prepared Ag-containing sols were acquired with a Cary 60 spec-
trophotometer. The spectra were collected over a range of 200–800 nm.

3.6. Dynamic Light Scattering (DLS)

Dynamic light scattering experiments were carried out using Photocor equipment
(Photocor Instruments, Inc., Moscow, Russia) with a digital correlator (288 channels). The
measurements were performed at a scattering angle of 160◦ and temperature of 24 ◦C.
The wavelength of the light source was equal to 638 nm. The processing of the DLS raw
data was performed using the DynaLS software [45]. For the calculation of particle sizes,
the standard values of viscosity and the refractive index of sulphuric acid and 1M NaOH
solution were used. To calculate the z-averaged hydrodynamic diameter, we used the
Stokes–Einstein formula for spherical particles [14]. The data set from 5–6 measurements
was averaged for each sample. The time of one measurement was 120 s.

4. Conclusions

Different sets of supported metal catalysts were studied by TEM, XRD and DLS.
A new STS (from solids to sols) technique for DLS analysis was tested on the oxide,
carbon and polymeric porous supports. A good agreement between TEM/XRD data
for the initial supported catalysts and DLS data for sols prepared from them was found.
Regarding the selective dissolution of porous support, the STS technique allows for one
to obtain metal-containing sols with particle sizes close to those of initial supported metal
nanoparticles. Due to the high sensitivity of DLS, partial dissolution of the support is
sufficient—this can be important for the analysis of poorly soluble materials (e.g., oxide
ceramics). Moreover, DLS can detect a small admixture of large particles or their aggregates
compared to conventional methods. Finally, it makes it easier and faster to measure particle
sizes in supported catalysts.
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