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Abstract: In this paper, the extract of Citrus aurantium (CA) was used as a green approach for
the preparation of Fe3O4 nanoparticles. The green Fe3O4 (Fe3O4/CA) was characterized by X-ray
diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy analysis
(EDX), Fourier-transform infrared (FTIR) spectroscopy, Brunauer–Emmett–Teller (BET) surface area
measurement, and vibrating sample magnetometry (VSM). The synthesized Fe3O4/CA was used to
remove methylene blue (MB) dye from an aqueous solution. A four-factor central composite design
(CCD), combined with response surface modeling (RSM), was used to maximize the MB dye removal.
The four independent variables, which were initial dye concentration (10–50 mg/L), solution pH
(3–9), adsorbent dose (ranging from 200–1000 mg/L), and contact time (30–90 min), were used as
inputs to the model of the perecentage dye removal. The results yielded by an analysis of variance
(ANOVA) confirmed the high significance of the regression model. The predicted values of the MB dye
removal were in agreement with the corresponding experimental values. Optimized conditions for the
maximum MB dye removal (93.14%) by Fe3O4/CA were the initial dye concentration (10.02 mg/L),
pH (8.98), adsorbent mass (997.99 mg/L), and contact time (43.71 min). The validity of the quadratic
model was examined, and good agreement was found between the experimental and predicted
values. Our findings demonstrated that green Fe3O4NPs is a good adsorbent for MB removal.

Keywords: Citrus aurantium; green synthesis; Fe3O4 nanoparticles; methylene blue; adsorption

1. Introduction

Growth in the global population and rapid technological development has produced
environmental disruption and pollution increased, with contaminated water being the most
common sort of environmental pollution [1]. More than 100,000 commercially available
dyes are projected to be generated annually, with over 7 × 105 tons of dyestuff produced
every year [2]. It is widely acknowledged that dyes and heavy metals have a significant
impact on public perceptions of water quality [3,4]. Dyes are pollutants that are produced
by the leather, paper, textile, plastic, rubber, and printing industries. Dyes are classed based
on a variety of variables, including the molecule charge, nature of cation (e.g., methyl blue
or MB), and nature of anion (e.g., Orange G) [5]. MB is the significant material used in dyes
for wood, cotton, and silk.

MB can cause eye burns, which can result in irreversible ocular damage, MB’s in-
halation can induce rapid or difficult breathing for a short time, and swallow over the
mouth causes a burning feeling, nausea, vomiting, intense sweating, methemoglobinemia,
and mental disorientation. Due to the MB adverse effects on receiving waterways, the
wastewater treatment containing MB dye is of great interest and importance [6].

There are many methods for degrading dyes in wastewater, including chemical,
physical, and biological approaches, but most of these methods have high degradation
and maintenance costs, and some produce secondary waste products that require further
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treatment, so they are not suitable or cost-effective for wastewater treatment [7]. Adsorption
is a well-known separation process that can be used to decontaminate water [8]. This
process has been proven to be superior to other techniques for water reuse due to its low
initial cost, simplicity and flexibility of design, sensitivity to harmful pollutants, ease of
operation, and because it does not lead to the creation of any hazardous chemicals [9–12].

Recently, several methods have been investigated for the production of less expensive
and effective adsorbents. Several researchers have proposed a variety of nontraditional,
low-cost adsorbents, including natural materials, biosorbents, and waste materials from
agriculture and industry, these materials could be used to remove colors from solutions as
adsorbents [13].

Iron oxides are the most common transition metal oxides, and they have several
technological applications. The most frequently occurring iron oxides are magnetite (Fe3O4),
maghemite (γ-Fe2O3), and hematite, (α-Fe2O3) [14]. Due to the existence of iron cations in
two valence states (i.e., Fe+3 and Fe+2) in the inverse spinel structure, magnetite Fe3O4 has
the most potentially useful features of all iron oxides. At temperatures below 858 ◦K, the
cubic spinel Fe3O4 is ferromagnetic [15]. Magnetite nanoparticles, however, have two key
problems: Fast agglomeration and oxidation by atmospheric oxygen.

Coprecipitation has been reported for the synthesis of Fe3O4 nanoparticles (NPs) [16].
As reducing agents, chemicals such as hydrazine, dimethyl formamide, sodium borohy-
dride, and carbon monoxide have been used in this synthetic method. These chemicals have
both environmental and biological consequences. Therefore, it is particularly desirable to
synthesise Fe3O4 NPs by utilizing a green strategy from nontoxic, environmentally friendly
ingredients [17]. Plant-mediated green nanoparticle synthesis has lately gained a great deal
of attention as a cost-effective and environmentally friendly alternative to physical and
chemical approaches. There are several studies of plant-mediated Fe3O4 NP production
that used various plant extracts, such as grape proanthocyanidin seed extract [18], gum
Arabic [19], Sapinduss Mukkorossi Fruits [20], Chlorella-K01 extract [21], and leaf extract of
Zanthoxylum armatum DC [22]. However, no literature review is available for the synthesis
of Fe3O4 NPs using citrus aurantium extract. This eco-friendly methodology offers a facile
synthesis at low cost and non-toxic alternative to obtaining magnetic materials.

One of the largest species of plants is Citrus; it consists of 40 species, which are
distributed in all continents [23]. Citrus fruits are members of the Rutaceae family, and
many citrus varieties, including sweet orange, grapefruit, lemon, bitter orange juice (Citrus
aurantium), and kiwi, have become increasingly popular for scientific applications in recent
years [24]. Bitter orange juice was analyzed by Karadeniz (2004), he found the following
composition: Malic acid 2.21 g/L, citric acid 48.79 g/L, titratable acidity 48.48 g/L, pH 2.60,
and total soluble solids (Brix) 10 [25].

In this paper, we present a straightforward and environmentally friendly approach for
synthesizing Fe3O4 NPs using Citrus aurantium juice extract, where the green Fe3O4 NPs
were used to remove MB dye from an aqueous solution.

2. Materials and Methods
2.1. Materials
2.1.1. Chemicals

Citrus aurantium juice extract was obtained from Baghdad, Iraq. The materials used
in the experiments included ferrous sulfate heptahydrate (FeSO4.7H2O), ferric chloride
(FeCl3.6H2O), ammonium hydroxide (NH4OH), sodium hydroxide (NaOH), sodium chlo-
ride (NaCl), hydrochloride acid (HCl), and methylene blue (C16H18CIN3S.XH2O). In this
study, all chemicals and reagents used were of analytical reagent grade, which were pur-
chased from HiMedia (Thane, India).

2.1.2. Preparation of Citrus aurantium (CA) Juice

To manufacture the extract Citrus aurantium, 5 kg of Citrus aurantium was thoroughly
washed with distilled water to remove any dust, after which it was cut and squeezed to
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extract the juice. Then, it was heated for 30 min at 80 ◦C. After being cooled to room
temperature, filter paper was used to remove the remaining sediment. Later, it was stored
as pure extract without the filler for more experimental work.

2.1.3. Preparation of Fe3O4

In this study, Fe3O4 NPs were synthesized using a conventional coprecipitation
method [26] and a green method that used with Citrus aurantium juice extract, denoted as
Fe3O4 NPs and Fe3O4/CA, respectively. In the synthesized Fe3O4/CA, 10 mL of 0.25 M
FeSO4.7H2O was mixed with 20 mL of 0.25 M FeCl3.6H20, and 50 mL of juice extract was
added under continuous mixing for 30 min. Then, 30 mL (12 M) of ammonia (NH4OH) was
added to the mixture, and mixing continued for 1 h at 80 ◦C until the color of the solution
changed to a dark brown.

2.1.4. Characterization

To characterize the Fe3O4 NPs and Fe3O4/CA samples, Energy-dispersive X-ray spec-
troscopy analysis (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD),
vibrating sample magnetometry (VSM), and Brunauer–Emmett–Teller (BET) measurements
were done. EDX and SEM analyses were conducted using a Bruker INSPECT550 (Lei-
derdorp, The Netherlands). The XRD measurements were conducted by Shimadzu-6000
(Kyoto, Japan) at the Cu Kα wavelength (λ = 0.1524 nm) with 2θ scaled from 5 to 80◦. The
sample magnetic measurement was performed using a magnetometer (VSM1100, Weistron,
Hsinchu City, Taiwan), and the hysteresis loops were obtained at 298 ◦K by applying
a maximum magnetic field of 60 kOe. In addition, the Brunauer–Emmett–Teller (BET)
method was conducted using the (type: Q-surf 9600, origin: USA).

2.2. Experimental Design

In this study, Design-Expert 7.0.0 software (Stat-Ease Inc., Minneapolis, MN, USA)
was used, where the central composite design (CCD) using a response surface method-
ology (RSM) was applied to correlate and optimize the four operation process variables
(i.e., initial dye concentration; solution pH; adsorbent dose; and contact time) in relation
to the dye removal. The minimum and maximum ranges of the four operational process
variables were the initial dye concontration (A) (10–50 mg/L), solution pH (B) (3–9), ad-
sorbent dose (C) (200–1000 mg/L), and contact time (D) (30–90 min). Table 1 presents the
high, center, and low levels of the four independent variables investigated in this study.
The details of the data for each of the 30 runs are presented in Table 2.

Table 1. High, center and low levels of the independent variables investigated in the present study.

Variables
Levels and Range

(+1) (0) (+1)

Initial dye concontration (A) (mg/L) 10 30 50
Solution pH (B) 3 6 9

Adsorbent dose (C) (mg/L) 200 600 1000
Contact time (D) (min) 30 60 90
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Table 2. Experimental design data in relation to perecentage dye removal.

Run No. A: Initial Con. (mg/L) B: pH C: Adsorbent
Dose (mg/L) D: Time (min) Dye Removal

(%)

1 30.00 6.00 600.00 90.00 66.1

2 30.00 9.00 600.00 60.00 80.2

3 30.00 6.00 600.00 60.00 61.99

4 50.00 3.00 1000.00 30.00 55.5

5 10.00 3.00 200.00 90.00 35.6

6 50.00 3.00 1000.00 90.00 75

7 30.00 6.00 200.00 60.00 48.45

8 30.00 6.00 600.00 60.00 61.99

9 50.00 9.00 1000.00 90.00 87.6

10 30.00 6.00 600.00 30.00 53.66

11 10.00 9.00 200.00 30.00 89.4

12 30.00 6.00 600.00 60.00 61.99

13 10.00 9.00 1000.00 30.00 89.73

14 50.00 6.00 600.00 60.00 56.34

15 30.00 6.00 600.00 60.00 61.99

16 30.00 6.00 600.00 60.00 61.99

17 50.00 9.00 200.00 30.00 62.6

18 10.00 3.00 1000.00 90.00 68.7

19 30.00 6.00 600.00 60.00 61.99

20 30.00 3.00 600.00 60.00 45.36

21 50.00 9.00 1000.00 30.00 65.78

22 10.00 3.00 1000.00 30.00 56.21

23 10.00 9.00 1000.00 90.00 93

24 10.00 6.00 600.00 60.00 68.8

25 30.00 6.00 1000.00 60.00 78

26 10.00 3.00 200.00 30.00 20.4

27 50.00 3.00 200.00 90.00 40.74

28 50.00 9.00 200.00 90.00 69.54

29 50.00 3.00 200.00 30.00 23.99

30 10.00 9.00 200.00 90.00 91.3

2.3. Batch Adsorption Studies

The removal of MB was randomly conducted by employing batch experiments in
an aqueous solution using an adsorbent, which is Fe3O4/CA. Experiments of adsorption
were carried out in a shaker (KS10, Edmund Buhler, Bodelshausen, Germany) at 300 rpm,
where 200-mL conical flasks were filled with 50 mL of the MB solution of a known initial
concentration (10–50 mg/L), and a specific mass of Fe3O4 (200–1000 mg/L) was added at a
controlled pH level (3–9) for a contact time of 30–120 min. The supernatant was separated
by centrifuge when the equilibrium was attained.

The pH of the solution was measured using a pH 9124 electronic device made by
HANNA (Woonsocket, RI, USA) and adjusted by adding 0.1 M hydrochloric acid or 0.1 M
sodium hydroxide to the dye solution. The experiment was balanced by taking a sample
at regular time intervals. The solution was filtered using a centrifuge at 10,000 rpm for
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15 min. A UV-visible spectrophotometer (λmax-664 nm) was used to calculate the dye
concentration and the ratio of the perecentage removal by Equation (1):

% dye removal =
Ci − Co

Ci
× 100 (1)

where Ci and Co are the initial and final concentration of MB, respectively.

3. Results and Discussion
3.1. Characterization of Fe3O4 NPs/CA

The FTIR spectra of Fe3O4/CA, and Fe3O4/CA after the adsorption of MB are pre-
sented in Figure 1a,b. The FTIR spectra of Fe3O4/CA exhibited intense peaks between
580 cm−1 and 630 cm−1, which are attributed to the stretching vibration mode associated
with the bonds of Fe–O in the Fe3O4 crystal lattice [27]. At 1629 cm−1 and 3435 cm−1, there
are band and broad band due to the hydroxyl groups, OH–bending and OH–stretching,
respectively [28]. Other bands were observed in the spectra of Fe3O4/CA. The peak in
Figure 1a at 1562.34 cm−1 refers to the C=C stretching vibration in the aromatic C–C bond.
The peak at 1562.34 cm−1 indicates that impregnation with Fe3O4 NPs led to an increase in
the aromatic properties. The peaks at 1415.75 cm−1 and 1327.03 cm−1 are attributed to the
bending and stretching vibrations of CH2 and C–N bonds of the Fe3O4 NPs [29,30], while
the peak between 1157.29 cm−1 and 1114.86 cm−1 is attributed to the stretching between
C–O and O–H for –COOH [31]. After adsorption of MB over Fe3O4/CA, the FTIR spectrum
showed a minor shift of band locations and decreased in intensity in comparison to fresh
Fe3O4/CA, clearly confirming the MB adsorption over Fe3O4/CA and the adsorptive
binding of MB with Fe3O4/CA, which may be governed by electrostatic interaction electron
rich oxygen of Fe3O4/CA and MB cations, as demonstrated in Figure 1b. In addition,
effective functional groups appeared at 1041.56 cm−1 as a sulfoxide (S=O), which confirm
the presence of MB dye on Fe3O4/CA.

The vibrating sample magnetometry (VSM) hysteresis loop magnetization curve was
produced using a magnetometer at 298 ◦K. Figure 2 shows the magnetization curve of
Fe3O4/CA, which confirms the superparamagnetic behavior. The resulting saturation
magnetization value of 24.5 emu/g is in agreement with the magnetic nanoparticle’s
known values [32].

The pattern of XRD for the Fe3O4/CA is presented in Figure 3. The magnetite char-
acteristic peak can be seen at 2θ = 30.3◦, 35.8◦, 43.01◦, 54.14◦, 57.5◦, and 62.6◦, the 2θ of
35.8◦ is the high intensity. These diffraction peaks are according to the corresponding
indices of (220), (311), (400), (422), (511), and (440), and a comparison with the JCPDS card
No. 79-0418 indicates that Fe3O4/CA particles clearly matched to Fe3O4. An equation of
Scherrer was applied for calculating the average of the crystal size, as follows [33]:

Dc =
K λ

β/2cosθ
(2)

where Dc is the crystalline diameter in nm; K is the Scherrer constant; λ is the wavelength
of the X-ray radiation; β is the FWHM of the diffraction peak; and θ is the peak diffraction
angle. The average crystallite size was computed to be 12.5 nm.
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Figure 3. XRD of Fe3O4/CA.

Figure 4 shows the surface morphology of the Fe3O4 NPs and Fe3O4/CA. These
indicate that the Fe3O4 NPs were predominantly spherical nanoparticles of approximately
similar diameters (Figure 4a). In contrast, Figure 4b shows that Fe3O4/CA particles were
exposed to some aggregation. In most cases, this agglomeration is caused by the lack of a
capping agent in the plant extract used in the nanoparticle manufacturing [34]; however,
these agglomerations are commonly recognized as overlapping pieces held together by
weak Van der Waals forces [35].
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From the literature concerning manufacturing Fe3O4 using Rhus coriaria extract under
comparable circumstances, Chen et al. (2013) reported that the majority of Fe3O4 particles
were large (5–50 m) and asymmetrical [36].

The EDX technique was used to analyze the chemical compositions of the samples.
Figure 5 shows the EDX spectrum of Fe3O4 NPs after juice loading, which confirms the
presence of iron elements in the compounds. The iron percent (72.1) and oxygen percent
(19.9) were recorded in the total weight of the Fe3O4 NPs, while additional elements
occurred in minor amounts.
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Figure 5. EDX of the Fe3O4 NPs/CA.

Surface features (i.e., specific surface area and pore volume) are crucial elements that
must be studied because they have a significant impact on the adsorption capacity. Table 3
provides the BET surface area and pore volume of the Fe3O4 and Fe3O4/CA. The tabulated
results show that the pore volume and surface area of Fe3O4/CA were greater than those
of Fe3O4. The increase in the surface area and pore volume can enhance the adsorbent dye
removal efficiency [37].

Table 3. Fe3O4 and Fe3O4/CA textural properties.

Fe3O4 Fe3O4/CA

Surface area (m2/g) 6.67 32.656

Pore volume (cm3/g) 0.00472 0.02658

3.2. Regression Model Equation

The experimental results of the perecentage dye removal were modeled using RSM
combined with a method of backward, which was performed in Design-Expert 7.0.0 au-
tomatically. The developed model for the perecentage dye removal used a second-order
polynomial quadratic equation in terms of the coded factors, as follows:

% dye removal = +59.63 − 4.22 × A + 18.66 × B + 11.60 × C + 6.13 × D − 5.76 ×
A × B + 2.01 × A × D − 8.53 × B × C − 1.88 × B × D + 3.16 × C2 (3)
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where A is the initial dye concontration (mg/L), B pertains to the solution pH, C is the dose
of adsorbent (mg/L), and D denotes the contact time (min). The above model presents
the positive signs point to these variables exerting a positive effect on the perecentage
dye removal, whereas negative signs point to the effect of antagonistic on the perecentage
dye removal. The positive value relating to the adsorbent dose (B), contact time (C), and
solution pH had a positive effect, as these terms increased the perecentage dye removal.
Conversely, the negative value relating to the initial dye concontration (A) indicates that it
exerted the effect of antagonistic on the perecentage dye removal of Fe3O4/CA.

To study the adequacy and significance of the current model, an ANOVA test was
performed, with the results presented in Table 4. The p value was set at <0.05, and
the F-value was high, at 116.16. These results indicate that the second-order quadratic
model was adequate for describing the MB removal process using Fe3O4/CA. Values of
“Prob > F” less than 0.0500 indicate that the model terms are significant. In this case A, B,
C, D, AB, AD, BC, BD, CD, and C2 are significant model terms. An accuracy of the above
model was estimated in terms of the regression coefficients (R2), adjusted R2, and predicted
R2, which were 0.9812, 0.9728, and 0.9346, respectively.

Table 4. ANOVA results for the MB dye removal model.

Source Sum of
Squares df Mean

Square F-Value p-Value
Prob > F

Model 9668.99 9 1074.33 116.16 <0.0001 Significant

A: Initial con. (mg/L) 321.31 1 321.31 34.74 <0.0001

B: pH 5928.76 1 5928.76 641.01 <0.0001

C: Adsorbent dose (mg/L) 1071.29 1 1071.29 115.83 <0.0001

D: Time (min) 676.02 1 676.02 73.09 <0.0001

AB 531.65 1 531.65 57.48 <0.0001

AD 64.60 1 64.60 6.98 0.0156

BC 775.76 1 775.76 83.87 <0.0001

BD 56.29 1 56.29 6.09 0.0228

C2 31.99 1 31.99 3.46 0.0777

Residual 184.98 20 9.25

Lack of Fit 184.98 15 12.33

Pure Error 0.000 5 0.000

Cor. Total 9853.97 29

Std. Dev. 3.04 R-Squared 0.9812

Mean 63.13 Adj. R-Squared 0.9728

C.V.% 4.82 Pred. R-Squared 0.9346

PRESS 644.30 Adeq. Precision 43.126

Actual and predicted values of the perecentage dye removal are shown in Figure 6,
supporting an agreement between the observed and predicted values, with similar findings
in [8].
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Figure 6. Actual and predicted perecentage of MB removal by Fe3O4/CA.

The percentage contributions (PCs) of each independent variable for the perecentage
dye removal were estimated using Equation (4) [38] by using the ANOVA results, with
the results presented in Table 5. The solution pH (B) showed the highest influence on the
perecentage dye removal as its contribution was 62.7%, followed by the adsorbent dose (C)
at 11.3%, interaction (BC) at 8.2%, contact time (D) at 7.1%, interaction (AB) at 5.6%, and
initial dye concontration (A) at 3.4%. The interaction terms (AD), (BD), and (C2) had the
lowest effects on the perecentage dye removal.

PC% =
SS

∑ SS
× 100 (4)

where SS is the summation of the squares of these terms.

Table 5. PC% for current model terms.

Terms A B C D AB AD BC BD C2

PC% 3.4 62.7 11.3 7.1 5.6 0.7 8.2 0.6 0.3

3.3. One Factor Plot

Design-Expert 7.0.0 software was used to evaluate the influence of each operation
variable on the MB dye removal, as shown in Figures 7–10.
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Figure 7 shows the influence of the initial dye concontration on the perecentage dye
removal at a constant pH (B) of 9, adsorbent dose (C) of 200 mg/L, and time (D) of 89.75 min.
The perecentage dye removal decreased from 89.8% to 73.8% as the initial dye concontration
increased from 10 to 50 mg/L. Due to a lower initial dye concentration, a higher surface
area was obtained due to the smaller number of MB molecules. While with higher dye
concentrations, a large number of dye molecules reacted with the accessible adsorption
sites. This is in a good agreement with the literature concerning MB removal [12].

Figure 8 shows the effect of the solution pH on the perecentage dye removal, with a
constant initial dye concentration (A) of 38.19 mg/L, adsorbent dose (C) of 200 mg/L, and
time (D) of 89.75 min. The perecentage dye removal increased from 38.9% to 78.55% as
the solution pH increased from three to nine. This occurred because of the influence of the
solution’s pH on the Fe3O4/CA surfaces. At a pH of 9, the negatively charged surface of the
Fe3O4/CA adsorbed the most cationic dye (MB) because of an increase in the electrostatic
attraction between the negative surface charge and the MB dye [12], while, at a pH of three,
the protons vied with the MB dyes to adsorb onto the Fe3O4/CA surfaces; thus, the dye
removal percentage decreased in this acidic medium.

Figure 9 displays the influence of the adsorbent dose on the perecentage dye removal at
an initial dye concentration (A) of 38.19 mg/L, pH (B) of nine, and time (D) of 89.75 min. The
perecentage dye removal increased from 78.55 to 85.46% as the adsorbent dose increased
from 200 to 1000 mg/L. This was because, as the adsorbent dose increased, the area of the
surface expanded, generating a larger active sites number, thereby increasing a probability
that the adsorbate could find active sites [9]. The slope being close to zero confirmed that
the adsorbent dose had little influence on the responses.

Figure 10 illustrates the influence of the contact time on the perecentage dye removal
at a constant initial dye concentration (A) of 38.19 mg/L, pH (B) of nine, and adsorbent
dose (C) of 200 mg/L. The perecentage dye removal increased from 68.44% to 78.6% as the
time increased from 30 to 90 min. The results indicate the positive effect of the contact time
on the perecentage dye removal.

3.4. Variables Combined Influence on the MB Dye Removal

This study investigated the influence of the initial dye concontration, pH of the
solution, adsorbent dose, and contact time of the Fe3O4/CA on the MB dye removal as
well as their joint influences.

Figure 11 illustrates the interaction between the initial dye concontration and pH at a
constant contact time of 89.75 min and adsorbent dose of 200 mg/L. The MB removal from
the aqueous solution increased as the pH of the solution increased from three to nine across
the entire initial MB concentration range (up to 50 mg/L). This can be explained by the
influence of the solution’s pH on the adsorbent surface. Figure 12 shows the plot of pHf
pHi versus pH. The positive values of the Fe3O4 changed to negative values = 7.6 (pHpzc).
At a pH of nine, the negatively charged surface of the adsorbent most significantly affected
the adsorption of the MB dyes due to the electrostatic attraction between the negative
surface charge and the cationic dye [39]. In contrast, at a pH of three, the protons competed
with the MB dyes in trying to adsorb onto the available surfaces. As a result, the percentage
removal decreased under these acidic conditions. These results confirmed those reported
in earlier studies [40,41], which showed an increase in cationic dye adsorption with a rise
in the pH level.
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Figure 13 shows the interactive effect of the initial dye concontration and contact
time at a constant adsorbent dose and solution pH of Fe3O4/CA on the MB removal. It is
obvious that the perecentage MB removal decreased as the MB concentration increased.
This gives an indication that the active sites of adsorption were saturated on Fe3O4/CA
surfaces. With the same MB initial concentration and various contact times, an increase
in the contact time from 30 to 90 min caused an increase in the perecentage dye removal.
Thus, it can be found that there were more active adsorbent sites on the Fe3O4/CA surfaces
that were available and unoccupied to adsorb the dye molecules [42,43]. As can be seen in
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Figure 14, the lines are not elliptical, which indicates that there is no interaction between
the contact time and initial dye concentration.
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Figure 14. Interaction effect between the solution pH (B) and adsorbent dose (C) on the perecentage
dye removal at a constant initial dye concontration (A) of 38.19 (mg/L) and contact time (D) of
89.75 min.

Figure 14 represents the effect of the solution’s pH and adsorbent dosage at a fixed
initial dye concontration of 38.19 mg/L and contact time of 89.75 min. It clearly shows that
the adsorbent dosage had positive effects on the perecentage dye removal, whereas the
removal efficiency increased with increases in the adsorbent dosage across the entire pH
range (three–nine) of the solution. This may be attributed to the fact that the uptake was
higher due to the availability of more active binding sites [44].
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As can be seen in Figure 14, the lines are elliptical, which indicates that there is an
interaction between the adsorbent dosage and pH of the solution.

The response surface plot for the effect of the pH and contact time on the removal
efficiency at a constant initial dye concontration of 38.19 mg/L and adsorbent dose of
200 mg/L is shown in Figure 15. As the pH of the solution increased, the perecentage dye
removal increased with the contact time from 30 to 90 min. This was due to the electrostatic
interaction between the positively charged dye and the negatively charged adsorbent
surface; the adsorption process worked best under these circumstances [45].
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3.5. Optimization and Model Validation

Target criteria were set to maximize the perecentage MB removal to optimize the
adsorption process, with four experimental parameters (i.e., initial dye concontration,
solution pH, adsorbent dose, and contact time) chosen in the ranges considered in this study.

The optimal solution was based on a desirability value of one. Under optimal condi-
tions, the best maximum perecentage dye removal of 93.14 was found to be at the initial dye
concontration of 10.02 mg/L, the solution pH of 8.98, adsorbent dose of 997.99 mg/L, and
contact time of 43.7 min (Figure 16). Additional experiments were conducted at the optimal
experimental conditions in three replicates to validate the model’s predicted results. The
average MB removal efficiency of these three replicates was found to be 94%, which agrees
with the predicted MB removal of 93.14%. This indicates the applicability of using a central
composite design (CCD) to optimize and evaluate MB dye removal by Fe3O4/CA.
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3.6. Mechanism of Adsorption

The adsorption process is facilitated by various factors, including high surface area,
high surface charge, and the presence of compatible functional groups. Of the total num-
ber of phenolic compounds, C. aurantium juice has been reported to contain 86% phe-
nolic acids. A number of phenolic compounds are present in the Citrus aurantium juice
(e.g., gallic, sinapic acid, dihydroxyphenilic acid, dihydrobenzoic acid, chlorogenic, vanillic,
syringic, p-coumaric, ferulic, rosmarinic, trans-2-dihydrocinnamic, and cinnamic acids) [46].
According to the FTIR spectra of Fe3O4/CA, as shown in Figure 2b, a band at 1629 cm−1

and the broad band centered at 3435 cm−1 are related to the presence of hydroxyl groups
and attributed to OH–bending and OH–stretching, respectively. The peaks between
1157.29 cm−1 and 1114.86 cm−1 are assigned to the stretching of between C–O and O–H for
–COOH. Therefore, the phenolic and carboxylic groups played key roles in the adsorption
mechanism.

In addition, the mechanisms of MB removal by the Fe3O4/CA adsorbent are illustrated
in Figure 17. The bonding of hydrogen between the –OH groups of the Fe3O4/CA and an
aromatic heterocyclic ring of the MB was a significant contributor in capturing the MB. Van
der Waals forces between the phenolic ring of the adsorbent and aromatic heterocyclic ring
of the MB may also have contributed.

The batch study data pointed that Fe3O4/CA exhibited better dye removal efficacy
with a higher solution pH. This is possibly due to electrostatic interactions, because at
a higher pH, the surface of the Fe3O4/CA tends to be negatively charged and interacts
favorably with the positively charged MB dye. Thus, MB molecules were captured from
water through Van der Waals forces, hydrogen bonding, and the electrostatic interaction.

3.7. Influence of Temperature

The influence of temperature on the MB dye removal was studied at 25, 30, and 35 ◦C,
under the following conditions: The adsorbent dose of 998 mg/L, initial MB dye concen-
tration of 10.02 mg/L, time of 43.7 min, and a solution pH of 8.98. The results indicated
that the temperature had a small influence on the MB dye removal. For example, the dye
removal efficiency increased from 93% to 95.49% by increasing the solution temperature
from 293 to 308 K (Figure 18). This result demonstrated that the adsorption of MB on
Fe3O4/CA was an endothermic process because, at higher temperatures, the dye molecules
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diffused into the adsorbent. Reference [47] reported a similar observation, i.e., that the
adsorption was an endothermic and spontaneous process.
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3.8. Recycled Adsorption

Table 3 O4/CA was studied in this work. Upon completion of the MB removal, the
Fe3O4/CA particles were separated from the reaction mixture, washed with distilled water,
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and reused for the removal of MB dye. As shown in Figure 19, the perecentage dye
removal of Fe3O4/CA after five rounds of cyclic adsorption accounted for 93.14%, 92%,
91%, 88%, and 80.00% at the following conditions: pH = 8.98, adsorbent dose = 998 mg/L,
initial concentration = 10.02 mg/L, and time = 43.7 min. Thus, the evidence indicates that
Fe304NPs/CA is stable and reusable in removing MB dye from wastewater.
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3.9. Comparative Study of MB Dye Removal with Other Adsorbents

Table 6 shows the perecentage dye removal of MB by Fe3O4/CA compared to other
adsorbents through the statistical experimental design at optimum conditions. It is evident
that Fe3O4/CA is an efficient adsorbent for the removal of MB dye.

Table 6. Comparison of the perecentage dye removal of MB reported in extant studies with that of
Fe3O4/CA.

Adsorbents Optimum Conditions % MB Dye Removal Ref.

Activated carbon (AC) from
grape leaves

pH (11), adsorbent dosage (12.5 g/L), MB initial
concentration (100 mg/L), contact time (90 min) 97.4 [48]

Spruce sawdust (SD) coated by
magnesium oxide (MgO) pH (11), adsorbent dosage (3.50 g/L) 94.05 [49]

Cellulose dusts (CD)
pH (9.84), adsorbent dosage (4.38 g/L), MB

concentration (75.50 mg/L), contact time
(208.13 min)

98.05 [50]

Agricultural waste, cashew
nut shell (CNS)

pH (10), adsorbent dose (2.1846 g/L), initial dye
concentration (50 mg/L), contact time

(62.8693 min)
100 [51]

Banana leaf ash (BLA) Adsorbent dose (23.9 mg/100 mL), shaking time
(3 h), shaking speed (356 rpm) 93.75 [52]

Zeolites 13X modified by
magnetic nanoparticles

pH (8.93), adsorbent dose (1198 mg/L),
temperature (53.39 ◦C), initial MB concentration

(10.05 mg/L)
96 [12]

Fe3O4/CA pH (8.98), adsorbent dose (997.99 mg/L), initial
concentration of the dye (10.02 mg/L), contact

time (43.7 min)

93.14 This work

Fe3O4 72.2 This work
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4. Conclusions

In this paper, the extract of Citrus aurantium (CA) was employed in a green approach
to prepare Fe3O4 nanoparticles. The green Fe3O4 NPs were used to reduce the amount
of methylene blue dye in wastewater. In conclusion, these Fe3O4 NPs were successfully
synthesized using an extract of Citrus aurantium (CA) via a green method. The results
represented the Fe3O4/CA is an active adsorbent for MB removal from aqueous solutions,
as 93.14% removal was conducted at an initial dye concentration of 10.02 mg/L, solution
pH of 8.98, adsorbent dose of 997.99 mg/L, and contact time of 43.7 min. The solution pH
(B) showed the essential effect on the perecentage dye removal, followed by adsorbent dose
(C), interaction (BC), contact time (D), interaction (AB), and the initial dye concontration
(A). The interactions terms (AD), (BD), and (C2) had the lowest effects on the perecentage
dye removal. The findings of this research support using green Fe3O4 NPs as an alternative
and efficient adsorbent for MB dye removal in wastewater treatment.
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