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Abstract: TiO2-based photocatalysts still have some limitations such as large bandgap and low sur-
face area, leading to low efficiency in the photocatalytic degradation of VOCs and limiting it to use in
sunlight. Here we report that the nanostructured Ir-doped TiO2 as an efficient photocatalyst generates
an excellent risk-reduction material of gaseous toluene. We have succeeded in developing a nanos-
tructured Ir-doped TiO2 and initially found that excellent efficient photocatalytic VOC decomposition
can be achieved in our materials The nanostructured Ir-doped TiO2 was synthesized by a one pot,
low temperature hydrothermal process with different ratios of Ir doped into the TiO2. It exhibited a
high surface area, uniformly spherical morphology of 10–15 nm. Its activity for the photocatalytic
degradation of gaseous toluene exhibited up to 97.5% under UV light. This enhancement could be
explained by iridium doping which created a high concentration oxygen vacancy and changed the
recombination rate of the photogenerated charge carriers. More generally, our study indicates a
strategic way to develop the novel nanostructured material for numerous applications.

Keywords: photocatalysts; Ir-doped TiO2; VOCs; toluene

1. Introduction

Volatile organic compounds (VOCs) are one of the sources of indoor air pollution,
which are highly toxic and adversely affect the health of people by causing headaches,
nausea, or allergies [1,2]. They can also cause genetic mutations and cancers in the human
body. There have been several methods for the removal of VOCs from indoor air, such
as using specific filtrations [3], thermally oxidating [4], or using activated carbon [5].
However, they have some drawbacks such as producing secondary waste, requiring a
high temperature, or re-emitting toxic gases to the air when the adsorbents are saturated.
Because of these disadvantages, scientists have been developing novel photocatalysts which
can degrade VOCs to harmless carbon dioxide and water, while being simple to operate
and energy saving.

At present, many researchers have been intensively studying various photocatalysts to
degrade organic compounds. For instance, Yadav et al. developed a graphitic carbon nitrile
(g-C3N4) photocatalyst from melamine via the pyrolysis route to degrade Rhodamine
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B [6]. In 2021, Hunge et al. successfully synthesized two-dimensional molybdenum disul-
fide/titanium dioxide composites (MoS2/TiO2) for tetracycline antibiotic photocatalytic
degradation [7]. Among several photocatalysts, titanium dioxide (TiO2) has been used
as an environmentally friendly photocatalyst because of its low cost, high stability, high
photo-oxidating capacity, non-toxicity, and high stability in acidic and oxidative environ-
ments. However, the application of TiO2 still has some limitations such as the wide band
gap restricting it to be used in sunlight [8]. Doping other transition metals to enhance the
photocatalytic activity of TiO2 is one of the solutions, making M-doped TiO2 (M: other
metals) photocatalysts for treating some toxic gases. In 2011, Ming Jin et al. developed
the W-doped TiO2 photocatalyst to decompose acetone with a high capacity for acetone
oxidation [9]. In 2013, M. Hinojosa-Reyes at al. used perlite granules coated with In-doped
TiO2 material to decompose gaseous ethylbenzene [10]. In 2014, Siva Nagi ReddyInturi et al.
investigated a series of M-doped TiO2 photocatalysts (M = V, Cr, Fe, Co, Mn, Mo, Ni, Cu,
Y, Ce and Zr) to decompose acetonitrile vapor, which brought the result of a high decom-
posing efficiency of 58.0% [11]. In 2015, Haibao Huang et al. doped a series of transition
metals (Co, Cu, Ni, Fe, Mn) into the TiO2 network to enhance benzene degradation under
vacuum ultraviolet (VUV) irradiation [12]. The results showed that the Mn-doped TiO2 has
the highest benzene decomposition efficiency (~58%) in the range of investigated materials.
Several studies worked on photocatalytic enhancement by doping other metals were also
carried out [13–21]. However, the results were limited because the band gap was suffi-
ciently large (Eg > 3.0 eV) and the surface area was relatively low (<100 m2/g) [13–16] due
to using the sol-gel method combined with high-temperature heating (>500 ◦C). Despite
intensive studies, the application of M-doped TiO2 photocatalysts to reduce VOCs in indoor
environment are still uncommon.

In the present research, our objective is to solve the above issues by synthesizing a
novel nanostructured Ir-doped TiO2 photocatalyst to decompose toluene. Iridium (Ir) is
known as a potential dopant for photocatalysts because of its specific electron configuration
and U–Vis-radiation sensitivity [22–26]. Moreover, among transition metals, iridium has
some special properties such as low toxicity, anti-sinter ability, lower surface coverage,
electron-donating activity, which are hardly found in other materials. In addition, the
approximation in diameter of Ir3+ ion (rIr = 0.625Å) and Ti4+ ion (rTi = 0.605Å) [27] increases
the doping efficiency of iridium. This photocatalyst was synthesized by the one-pot
hydrothermal method without using any surfactant or subsequent heating. This method
has been reported to help reduce the particle size and increased the surface area [27–29].
Furthermore, the experiments with different iridium ratios and conditions were also carried
out to find the impact of the environment on photodegradation efficiency. As a result, we
can successfully develop a novel Ir–doped TiO2 photocatalyst via one-pot hydrothermal
synthesis. Moreover, the photocatalyst exhibited high photocatalytic activity.

2. Materials and Methods
2.1. Materials

All chemical reagents used in this study are commercial products without further
treatment. Iridium (III) chloride hydrate (IrCl3.xH2O 99.9%) and toluene (C7H8) were pur-
chased from Sigma Aldrich Lab & Production Materials. TiCl4 solution was obtained from
Shanghai Aladdin Bio-Chem Technology Co., LTD (Pudong New Area, Shanghai, China).

2.2. Synthesis of Ir-Doped TiO2 Samples

Ti1−xIrxO2 was prepared by one-step hydrothermal method without additional sur-
factants or stabilizers as described in other previous work [28,29]. The synthesis steps are
illustrated in Figure 1. Firstly, a certain amount of iridium salt was dissolved in deionized
water to obtain the Iridium’s mole percentages of 0.5 mol%, 1 mol% and 1.5 mol%. Then
HCl was added to adjust pH of solution to 1.5. After that, titanium tetrachloride was added
to the solution.
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Figure 1. Procedure to synthesize Ir-doped TiO2 photocatalysts.

The final solution was transferred into a Teflon-lined autoclave with a stainless-steel
jacket and then heating treatment was applied at 210 ◦C for 8 h in an oven. After that, the
system was cooled down to room temperature to obtain suspensions, which were collected
by laboratory centrifuge and washed with DI water. The samples were dried overnight at
80 ◦C for chemical and physical evaluation or further experiments.

2.3. Sample Characterization

Bruker D8 Advance X-ray diffractometer with Cu Kα radiation (λ = 1.540598 nm)
was used to evaluate the crystal structure of the samples in the 2θ range of 10–80◦ at a
5 min−1 scanning rate. The morphologies of the pure TiO2 and Ir-doped TiO2 samples were
analyzed by field emission scanning electron microscopy (SEM), transmission electron mi-
croscopy (TEM), field-emission high-resolution transmission electron microscopy (HRTEM).
The equipment used were a HitachiS-4800 (Hitachi High-Technologies Corporation, Tokyo,
Japan); a JEM 1400 (JEOL Ltd., Tokyo, Japan) operated at 100 kV and a TALOS F200x
(Thermo Fisher Scientific, Waltham, MA, USA) with a 200 kV acceleration voltage equipped
with an energy-dispersive X-ray spectroscopic system (EDS), respectively. X-ray fluores-
cence (XRF) measurement was performed on ARL ADVANT’X (Thermo Fisher Scientific,
Waltham, MA, USA) at an accelerating voltage of 30 kV to record the elemental composition
in the as-obtained nanomaterials. In the BET method, N2 adsorption/desorption isotherms
were performed on NOVA 1000 e at 77 K to determine the surface area and pore size of
the Ti1−xIrxO2 catalysts. The UV–visible diffuse reflectance spectra (DRS) of samples were
carried out on a JASCO-V670 UV–Vis spectrophotometer (Jasco, Tokyo, Japan) at room
temperature in the range from 350 to 800 nm.

2.4. Toluene Degradation Laboratory System

Figure 2 shows the experimental set up of the system in which the photocatalytic
degradation experiments were carried out. Toluene concentrations before and after reaction
were determined. The air was pumped by the first compressor (P1) and then filtered
through two glass tubes. The first glass tube contained silicates (3) in the middle of it to
remove the moisture from the air, while the second tube contained activated carbon to
clean the air and remove residual moisture. They both had glass wool (2) and were sealed
by rubber cap (1) to avoid air loss. F1 flow meter (F1) was used to control the stream. A
quartz tube (7) (5 mm in diameter) contained the sample drop (6), which was a mixture of
toluene and distilled water. Below the tube, there was an alcohol burner (5) evaporating
the sample. The four-way cock was used to change the direction of the stream. The air
containing toluene was pumped into a TEDLAR 3 L air bag (9) to stabilize the concentration
of inlet gas. Then, the second compressor (P2) was used to withdraw the air from this
air bag for photocatalytic degradation. F2 flow meter (F2) controlled the air flow before
passing through photocatalyst layer as well as the time for reacted air collecting. A quartz
tube (10) (100 mm in length, 5 mm in diameter) was used as a packed-bed reactor filled
with previously prepared TixIr1-xO2 photocatalyst. Two identical UV lamps (12) (Ecomax,
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25 W) with 132.6 W/m2 irradiation power and minimum wavelength of 255 nm were used
as light sources. The fan (8) helped to cool these two lamps. Another TEDLAR air bag (13)
was used to collect the reacted air for further analysis. Gas chromatography (Agilent 6890
N Network Gas Chromatograph) was then used to determine the concentration of toluene
in the inlet collected by bag (9) (C0) and the outlet collected by bag (13) (C). The efficiency
(E) in each experiment was then calculated as follows: E =

(
1 − C

C0

)
· 100%. Finally, the air

was pumped through a glass tube containing activated carbon to ensure the harmlessness
of the outlet gas.
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The experiments were carried out in the following steps:

• The air bag was connected to V3 valve. Then, V6 valve of the air bag was opened. F1
flow meter was adjusted to the rate of 1 L/min while other valves were closed. The
glass wool was padded into the tubes.

• A sample drop (containing 0.02 mL of toluene and 0.11 mL distilled water) was put in
the reaction tube. Then, the alcohol burner was used to evaporate the drop in 1 min.

• V3 and V5 valves were opened to collect the air in 03 min. When the bag was full, V6
valve was closed, the P1 compressor was turned off and then other valves were closed.

• A measure of 0.1 g of synthesized photocatalyst was placed evenly in the reaction tube.
Then, the cooling fan and UV lamps were turned on 10 min before reacting to stabilize
the light source.

• Another air bag was connected to V11 valve and V12 valve of this airbag was
also opened.

• P2 compressor and F2 flow meter were adjusted to desired flow rates. Then, V3, V4,
V7, and V11 valves were opened, while V5, V6, V8, V9, and V13 valves were closed.

• The air was collected in T (minutes) needed for investigation. When the bag containing
outlet gas was full, V11, V12 valves were closed. Then, the bag was removed, then P2
compressor and UV lamps were turned off.

• After reactions, the tube containing sample drop and reaction tube were cleaned. The
system was also cleaned by blowing air through it.

• The air bags were labeled and sent to the analyzing center for gas chromatography
analysis.
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The airtightness of the system was ensured by using soap solution at the connecting
joints. There were no soap bubbles, therefore the system was airtight. All experiments were
performed at room temperature (30 ◦C). The experiment to examine toluene degradation
under visible light was also conducted with a similar procedure. The system was exposed
to natural light from the sun instead of using UV lamps as light source. The experiment
was carried out in the steps mentioned above and gas samples were collected in air bags
for further analysis. Each experiment was repeated three times to ensure the precision.

3. Results and Discussion
Material Characteristics

Figure 3 gives information of XRD measurement of the photocatalysts with different
doped Ir concentrations. The results show the diffraction peaks relating to tetragonal
anatase phase. The peaks of IrO2 were not detected, which could be explained by the low
loading content of iridium as well as the successful doping of this metal into the TiO2
structure. There were also the peaks (at 2 θ = 27

◦
and 2 θ = 36

◦
) that corresponded to

the crystallographic orientation of rutile phase (JCPDS 21-1276). The positive difference
of Ir4+ radius compared to Ti4+ radius might result in crystallinity reduction, limiting the
formation of rutile phase, because of this, the peaks of this phase decreased their intensity
when the concentration of iridium increased. Moreover, it might due to the synthesis used
being hydrothermal synthesis at 250 ◦C in 8 h. At this reaction condition, amorphous TiO2
was completely transformed into anatase TiO2 but not enough for the transformation from
anatase phase to rutile phase [27–29]. The intensive peaks show that the anatase phase
formed accounted for a larger proportion than the rutile phase did. This is consistent with
the previous studies [27–29]. However, the anatase/rutile TiO2 ratio gradually increased
with the increase of doped iridium concentration. This suggests that doped iridium in the
TiO2 matrix might inhibit the formation of a rutile phase [30]. Due to the larger radius of
Ir3+ ions compared to that of Ti4+ ions, resulting in distortion of the TiO2 structure, the
observed peaks at 2 θ range of 24.5–25◦ of the materials shifted toward higher values, which
showed the reduction in the lattice parameter of TiO2 [31,32]. This could be explained by the
effect of Schottky defects in the anionic sublattice, which are the result of the replacement
of tetravalent Ti ions with trivalent Ir ions, forming in oxygen vacancies in the lattice
for electrostatic balance. The rutile phase in undoped TiO2 was higher as compared to
the doped TiO2, which could be explained by the iridium doping process. The positive
difference of Ir4+ radius compared to Ti4+ radius might have resulted in a crystallinity
reduction, limiting the formation of the rutile phase.
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Transmission electron microscopy (TEM) was used to determine the morphology
and particle size of the Ir-doped TiO2 photocatalyst. Figure 4 indicates that the particles
mainly had a diameter of 10–15 nm with spherical morphology. In addition, with the
increase of iridium concentration, the crystallite size decreased, which could be explained
by the distortion of TiO2 structure after the doping process. Moreover, the particles were
uniformly distributed although the clusters still exist. Table 1 shows that the elemental
composition of Ir was approximately close to theory, thus it suggests that the sample’s
composition can be controlled facilely by tuning the ratio of the precursor.
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(a) 0.5 mol% Ir-doped sample; (b) 1.0 mol% Ir-doped sample; (c) 1.5 mol% Ir-doped sample.

Table 1. Percentage of iridium in different samples obtained from EDX analysis.

No. Sample Mol% of Iridium

1 0.5 mol% Ir-doped 0.62%

2 1.0 mol% Ir-doped 1.15%

3 1.5 mol% Ir-doped 1.80%

To analyze the distribution of elements in the as-prepared photocatalyst, SEM pho-
tographs and EDX were used with 1.0 mol% Ir-doped TiO2 material. The data in Figure 5
suggest that titanium, iridium, and oxygen were evenly distributed throughout the material
structure.
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Figure 5. SEM-EDX elemental mapping of (a) Ti, (b) O, (c) Ir for as-synthesized 1.0 mol% Ir-doped
TiO2 photocatalyst.

The specific surface areas of Ir-doped TiO2 with Ir concentrations of 0.5; 1.0 and
1.5 mol% were 156, 164 and 170 (m2/g), respectively. Figure 6 compares the specific
surface area of these samples to that of some commercial photocatalysts reported in other
literature [33]. The surface areas of these samples were significantly higher than those
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of some commercially available photocatalysts such as P25, P90, C-E100. Its high value
is presumably the result of the lack of coalescence of the primary particles. However,
it appears that the manufacturing method of PC-500 and UV-100 is more advantageous
since these photocatalysts had significantly higher specific areas. Meanwhile, the CR-160’s
specific area was only slightly different from those of the prepared samples. The surface
areas of the undoped TiO2 prepared by the same method, Ir-doped TiO2 and other doped
TiO2 are shown in Table 2.
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Table 2. Surface area and crystallite size of photocatalysts.

PhotocatalystsUn-Doped
TiO2

P25 P90 PC105 PC500
Ir-Doped

TiO2

Fe-Doped
TiO2Properties

Surface area (m2/g) 50 50 90 88 340 156–170 103

Crystallite size (nm) 20–30 21–30 14 15–25 5–10 10–15 13

References [33] [33] [33] [33] [33] This work [34]

Regarding the formation of the pores, the previous study (Energy Environ. Sci. 2011, 4,
4194–4200) indicated that all the atomic positions of Ti in the unit cell were considered for
substitution by Ru to obtain the lowest energy. This caused the O vacancies in the structure
of TiO2. Therefore, in this work, the pore diameter and pore volume of catalyst based
Ir-doped TiO2 could be modified by the doping process as Ru-doped TiO2. However, we
are going to study the detailed effect of this observation next time.

UV–Vis absorption spectroscopy was used to determine the optical properties of the
Ir-doped TiO2 material and pristine TiO2 photocatalyst. Figure 7 indicates the differences
in the UV–Vis absorbance of Ir-doped TiO2 samples compared with the anatase TiO2. In
Figure 7a, the absorption edge of TiO2 was shifted toward a longer wavelength by the
iridium doping process which means that the absorption range of TiO2 was expanded
to the visible region. Furthermore, the increase in iridium concentration resulted in the
enhancement of the red shift of TiO2. This could be explained by the formation of oxygen
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vacancies which are a result of the doping process. Introducing iridium into TiO2 lattice
might generate a high oxygen vacancy concentration, creating a minor band below the
conductance band (CB) of TiO2 photocatalyst [35,36]. Therefore, in Figure 7b, the average
absorbed photon energies of Ir-doped TiO2 materials were significantly lower than that of
pristine TiO2. These results suggest that the absorption range of TiO2 could be expanded
toward a longer wavelength to visible light by the doping iridium process. This result is
consistent with previous studies [37–40].
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The air containing 1901 mg/m3 toluene was pumped through the system to determine
the photocatalytic activity of the photocatalysts having different iridium concentrations
(0.5, 1.0 and 1.5 mol%) and the concentrations of residual toluene were 1361, 887 and
47.5 mg/m3 respectively. As shown in Figure 8, between the three photocatalysts, the
1.5 mol% Ir-doped photocatalyst had the highest degrading efficiency while 0.5 mol%
Ir-doped sample had the lowest one. We found that the efficiency in toluene degradation
without illumination was 3.45%; this could be explained by the adsorption of toluene on
the catalyst surface. Importantly, the degradation efficiency of 1.5 mol% Ir-doped material
was more than 97%, while the TiO2/ACFs photocatalyst only had a conversion rate of
14.2% at 25 ◦C and relative humidity of 60% [41]. This could be explained by the impact
of the iridium doping process on TiO2 material which helps to reduce the electron-hole
recombination rate by trapping charge carriers. A mechanism of dopant trapping, and
mediating charges was proposed by Choi et al. [42], indicating that each photocatalyst
should have an optimum metal doped concentration. Our finding is consistent with that of
Choi et al. whereas the efficiency would rise to a certain value with the increase of doped
iridium concentration. In the present study, 1.5 mol% iridium-doped material showed
the higher decomposing efficiency compared to two other doped TiO2. Therefore, in the
following experiments, we used 1.5 mol% Ir-doped TiO2 to make further investigations.
In this work, the 1.5% ratio of iridium was chosen to dope into TiO2 because only a small
amount of iridium can reduce the absorbed photon energy of TiO2, therefore we could
apply this material in air treatment. However, reducing the bandgap may be not good due
to the recombination of hole and electron so that it would decrease the efficiency of catalyst
performance. In addition, iridium is quite expensive, so a larger ratio of iridium would not
be so economically effective.
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Figure 8. Effect of iridium’s mol fraction on photodegradation efficiency of toluene at 125 mL/min,
ϕ = 70%.

Air at 125, 200 and 350, and 450 mL/min flow rates was blown through the system
containing a 1.5 mol% Ir sample to determine the impact of flow rate on decomposing
efficiency. The corresponding efficiencies were 98.42, 97.5 and 97.63, 76.55% indicating
that with the range of flow rates between 125–350 (mL/min) used in this experiment
there was no significant impact on toluene treating efficiency, suggesting that in this flow
rate range, the toluene degradation efficiency was good and reaction time was enough to
degrade the toluene (Figure 9). However, when increasing the flow rate to 450 mL/min, the
toluene degradation efficiency was reduced to 76.55%. It might suggest that the flow rate
of 350 mL/min should be chosen for the optimum flow rate and 98.42% was the highest
degradation capacity that Ir-doped TiO2 could reach in the study.
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Figure 9. Effect of flow rate on photodegradation efficiency of toluene at 1.5 mol% Ir, ϕ = 70%.

Regarding the impact of humidity on the photocatalytic activity, the air containing
1901 mg/m3 toluene was also used to evaluate the photocatalytic decomposition of toluene
under different humidity conditions. After treatment by the toluene degradation system in
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Figure 2, the concentrations of residual toluene, corresponding to 60, 70 and 80% humidity
conditions, were 609.6, 45.1 and 306.3 mg/m3 while the decomposing efficiencies (Figure 10)
were 67.93, 97.63 and 83.89%, respectively. It could be explained by the presence of hydroxyl
radicals, formed from water by the photodegradation reaction, which play an important
role as the main oxidants along with adsorbed O2 in decomposing VOCs [30,31,43,44].
Choi et al. also suggested that hydroxyl radicals could recombine with metal ions which
acted as trapping sites and eliminate charges. Therefore, the rise in humidity of the air
increased the toluene decomposing efficiency of Ir-doped TiO2 photocatalyst.
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Figure 10. Effect of humidity on photodegradation efficiency of toluene at 1.5 mol% Ir, 350 mL/min.

From our findings, it is indicated that toluene is a molecule hard to be degraded
photocatalytically, but high conversion was obtained using high initial concentration of
toluene (1900 mg/m3). This is a remarkable result in our work, so we have measured the
CO2 for further confirmation of the CO2 yields at different Ir-doping ratios with a high
initial concentration of toluene (1900 mg/m3) in Table 3.

Table 3. CO2 resulted from the toluene degradation by different ratios of Ir doped into TiO2.

No. Sample Toluene Degradation
Efficiency (%) CO2 Yield (%)

1 0.5 mol% Ir-doped TiO2 28.04 1.87%

2 1.0 mol% Ir-doped TiO2 53.34 34.67%

3 1.5 mol% Ir-doped TiO2 97.50 64.35%

From the results we can see that the CO2 yields obtained were quite high (64.35% for
1.5% Ir-doped TiO2), this result corresponds with previous work [45].

The toluene degradation reaction at optimum conditions was repeated three times
and the corresponding efficiencies were 97.60, 97.61, and 97.63%. This result suggests that
VOC removal could be the saturation of the catalyst surface by reaction byproduct. We
found that the toluene degradation efficiency under visible light was 46.25% in 8.5 min
compared to the efficiency under UV light of approximately 97% in 8.5 min. The efficient
degradation of toluene under visible light could be improved when the reaction is extended
longer. In comparison with some previous studies, the Ir-doped TiO2 photocatalyst showed
a significantly high degradation efficiency (Table 4).
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Table 4. The comparison of Ir-doped TiO2 photocatalyst with previously studied TiO2-based materials.

No. Materials Synthesis Method Parameters Reaction Condition Degradation Efficiency References

1 Co-alloyed TiNbON photocatalyst. Urea-glass synthesis method.

-Particle diameter: 1–2 µm.
-Crystalline structure: irregularly shaped surfaces
-Surface area: 40.76 m2/g.
-Band gap: 2.3 eV.

-Toluene concentration: 1–5 ppm.
-RH: 25–65%.
-Irradiation: 42–95 (W/m2) (400–540 nm)

58% [46]

2 TiO2 nanoparticles (TNPs)
photocatalyst. Sol-gel method.

-Particle diameter: 10–20 µm.
-Crystalline structure: tetragonal.
-Surface area: 151 m2/g.
-Band gap: 3.17 eV.

-Toluene concentration: 200 ppm.
-Irradiation: UVA (320–400 nm) and UVB
(290–320 nm).

40% [47]

3 xNi − TiO2 − SnO2
(x = 0.1, 0.3, 0.5 wt%) photocatalyst.

Sol-gel method and
wet-impregnation method.

-Crystallite size: 15–16 nm.
-Crystalline structrure: TiO2 crystalline structure.

-Toluene concentration: 177 ppm.
-Irradiation: visible light source with minimum
wavelength of 400 nm.

51% [48]

4 TiO2/ACF photocatalyst. Commercial photocatalyst. -Fine TiO2 particles were coated on the activated
carbon fibers.-Surface area: 999.6 m2/g.

-T = 25 ± 0.5 ◦C.
-RH = 15, 30, 45, and 60%.
-Irradiation: UV radiation with a primary
wavelength at 254 nm

14.2% [41]

5 V-doped TiO2/PU
(6 wt% V-TiO2)

Immobilization of amino
titanosiloxane on activated PU
combined with using NH4VO3

as precursor.

-Surface area: 192.5 m2/g
-Bandgap: 2.83 eV for 6 wt% V-TiO2

-T = 25 ◦C
-RH = 50%
-AFR = 200 mL/min
-Irradiation: visible light source with minimum
wavelength of 400 nm

80% [49]

6 MnOx-ZrO2
(MnOx-5% ZrO2)

Co-precipitation with NaOH of
Mn3O4 and ZrO2

-Crystallite size: 14.5 nm
-Surface area: 85.4 m2/g.
-Bandgap: 3.26 (eV)

-T = 25 ◦C
-Irradiation: solar lamp (300 W; 10.7 mW/cm2) 84% [50]

7 TiO2-MnO2

One-step anodic oxidation of
Ti–Mn alloys in an ethylene

glycol-based electrolyte

-Crystallite size: d = 76 ± 9 nm; l = 1.0 ± 1 µm
-Crystalline structure: anatase
-Surface area: 170 m2/g.

-T = 25 ◦C
-Irradiation: 25 LEDS (wavelength at 465 nm) 43% [51]

8 Brookite TiO2-5% CeO2
Thermohydrolysis of titanium

tetrachloride

-Crystalline structure: brookite
-Surface area: 66 m2/g.
-Bandgap: 3.19 (eV)

-T = 25 ◦C
-Irradiation: solar lamp (300 W; 10.7 mW/cm2) 25% [52]

9 Ir-doped TiO2 photocatalyst. Hydrothermal method.
-Particle diameter: 10–15 nm.
-Crystalline structure: tetragonal.
-Surface area: 170 m2/g.

-Toluene concentration: 1900 ppm.
-RH: 60–80%.
-Minimum wavelength: 255 nm

97% Present work
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4. Conclusions

In conclusion, we have successfully prepared the novel nanostructured Ir-doped TiO2
photocatalyst with different iridium mol fractions by a hydrothermal method without
employing any surfactant or subsequent heat treatment. The results showed that the
obtained photocatalyst had the particle diameter of 10–15 nm and exhibited the co-existence
of rutile phase and anatase phase, and the ratio of rutile phase decreased with the increase of
dopant concentration. The surface area of the as-prepared material was more than 150 m2/g.
In addition, iridium was uniformly dispersed on TiO2 and interacted with substituted
Ti4+ and O2− ions, resulting in oxygen vacancies in the lattice for electrostatic balance.
Regarding its optical properties, the adsorption range of the Ir-doped TiO2 photocatalyst
was expanded to visible light due to the existence of rutile TiO2. This study found that
the iridium mole fraction and the humidity of the air had sufficient impact on the toluene
decomposition of this photocatalyst. On the other hand, the air flow rates from 125 to
350 mL/min exhibited no effect on toluene degrading efficiency.
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