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Abstract: As the overall turnover-limiting step (TOLS) in the homogeneous conversion of N2O,
the oxygen-atom transfer (OAT) from an N2O to an Ru-H complex to generate an N2 and Ru-OH
complex has been comprehensively investigated by density functional theory (DFT) computations.
Theoretical results show that the proton transfer from Ru-H to the terminal N of endo N2O is most
favorable pathway, and the generation of N2 via OAT is accomplished by a three-step mechanism
[N2O-insertion into the Ru-H bond (TS-1-2, 24.1 kcal mol−1), change of geometry of the formed
(Z)-O-bound oxyldiazene intermediate (TS-2-3, 5.5 kcal mol−1), and generation of N2 from the proton
transfer (TS-3-4, 26.6 kcal mol−1)]. The Gibbs free energy of activation (∆G‡) of 29.0 kcal mol−1

for the overall turnover-limiting step (TOLS) is determined. With the participation of potentially
existing traces of water in the THF solvent serving as a proton shuttle, the Gibbs free energy of
activation in the generation of N2 (TS-3-4-OH2) decreases to 15.1 kcal mol−1 from 26.6 kcal mol−1

(TS-3-4). To explore the structure–activity relationship in the conversion of N2O to N2, the catalytic
activities of a series of Ru-H complexes (C1–C10) are investigated. The excellent linear relationships
(R2 > 0.91) between the computed hydricities (∆GH

−) and ∆G‡ of TS-3-4, between the computed
hydricities (∆GH

−) and the ∆G‡ of TOLS, were obtained. The utilization of hydricity as a potential
parameter to predict the activity is consistent with other reports, and the current results suggest a
more electron-donating ligand could lead to a more active Ru-H catalyst.

Keywords: nitrous oxide; Ru-H; oxygen-atom transfer; DFT mechanism

1. Introduction

As a dominant ozone-depleting emission [1–3] and a greenhouse gas with about 300 times
the global warming potential than that of CO2 (based on the 100-year timescale) [4–6], nitrous
oxide (N2O) has been brought to the frontier of climate and environmental protection [7–9].
Efforts that aim to terminate environmentally detrimental N2O have been examined in the
last few decades [10,11]. Beyond the commonly studied decomposition of N2O catalyzed
by metal oxides (MOs) [12–15], a variety of possible conversions of N2O have also been
investigated, including O-atom insertion into metal-H and metal-C bonds [16–21], cleavage
of N-O and N-N bonds [22–25], and reactions with organic substrates [11,26–28]. Among
the reactions, the exothermic/exergonic conversion of N2O mediated by CO generating
N2 and less harmful CO2 (N2O + CO → N2 + CO2, ∆G

◦
rxn = −86.3 kcal mol−1) [29,30]

is considered as a practicable and cost-effective method to simultaneously address the
environmental dilemma created by the emission of N2O and CO [30–33].

Milstein and co-workers showed that a dicarbonyl PNN-Ru-H pincer complex (I,
Scheme 1, PNN = 6-((di-tert-butylphosphino)methylene)-6H-[2,2′-bipyridin]-1-ide) could
serve as an efficient catalyst in the homogeneous conversion of N2O and CO [31]. The
dicarbonyl PNN-Ru-H complex (I, Scheme 1) catalyzed the conversion of N2O and CO to
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generate N2 and CO2 with a turnover number (TON) of up to 579 referenced to N2 and
561 referenced to CO2 after heating for 22 h at 70 ◦C.
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Chart 1. Proton transfer (I and II) and hydride transfer (III) between Ru-H and N2O. 

Scheme 1. Proposed pathway for the conversion of N2O and CO by PNN-Ru-H complex.

The overall mechanism of the conversion of N2O and CO by the Ru-H species includes:
(1) the generation of N2 and a dicarbonyl Ru-OH complex (II, Scheme 1) via oxygen-atom
transfer (OAT), (2) the formation of a dicarbonyl Ru-COOH complex (III, Scheme 1) via the
intramolecular nucleophilic attack of OH on the nearby CO group, (3) the release of CO2
and the formation of a monocarbonyl Ru-H complex (IV, Scheme 1) via decarboxylation,
and (4) the regeneration of the dicarbonyl PNN-Ru-H active species (I, Scheme 1) via
the nucleophilic attack of a free CO. The generation of N2 via oxygen-atom transfer was
proposed as the turnover-limiting step (TOLS), which was supported by the observation
of a relatively fast formation of CO2 via an intramolecular reaction between the Ru-OH
species and CO [31]. This experimentally established turnover-limiting step is also verified
by computational studies [34–36].

It has come to our attention that the oxygen-atom transfer (OAT) between N2O and the
Ru-H complex has not been fully investigated yet. Three categories of reactions between
the N2O and Ru-H complex that need to be considered are: (1) the proton transfer from
Ru-H to the terminal N of N2O (I, Chart 1), (2) the proton transfer from Ru-H to the terminal
O of N2O (II, Chart 1), and (3) the hydride transfer from Ru-H to the central N of N2O (III,
Chart 1). The generation of N2 via proton transfer and hydride transfer from Ru-H to N2O
must be thoroughly evaluated and compared. Various transition states of proton transfer
from Ru-H to N2O could be proposed, as induced by different geometries of N2O adduct
(endo vs. exo isomer). The effect of the geometries of N2O (endo vs. exo isomer) in the
oxygen-atom transfer (OAT) from N2O to Ru-H to generate N2 and Ru-OH must also be
appropriately addressed.
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In this contribution, the detailed reaction mechanism for the oxygen-atom transfer
(OAT) from N2O to Ru-H in the conversion of N2O has been comprehensively investigated
using density functional theory (DFT) computations. With the detailed reaction mechanism
for the conversion of N2O to N2 in hand (Figure 1), the turnover-limiting step for the
conversion of N2O and CO by a series of Ru-H complexes (Chart 2) with different electron-
donating and electron-withdrawing groups have been investigated to explore the structure–
activity relationship, and the results provided here are the continuous efforts for the
homogeneous conversion of N2O by the transition metal complex.
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Figure 1. Free energy diagram for N2 generation from proton transfer to the terminal N of endo N2O.
Selected atom distances are given in Å, selected bond angles are given in degrees, and ∆G◦/∆G‡ are
in kcal mol−1.



Inorganics 2022, 10, 69 4 of 12Inorganics 2022, 10, x FOR PEER REVIEW 4 of 12 
 

 

 

Chart 2. Studied Ru-H complexes for the conversion of N2O to N2. 

2. Computational Methods 

Full gas-phase geometry optimizations were performed using the method of B3LYP 

[37–40] with Grimme’s D3 [41] dispersion with Becke–Johnson damping [D(3BJ)] [42] and 

basis set 1 (BS1) (B3LYP-D3(BJ)/BS1) through Gaussian 16 [43]. To account for the solvent 

effect of tetrahydrofuran (THF), B3LYP-D3(BJ)/BS2 single-point computations using the 

SMD [44] solvation model with parameters consistent with tetrahydrofuran (THF) as the 

solvent were performed on the B3LYP-D3(BJ)/BS1 optimized geometries [SMD(THF)-

B3LYP-D3(BJ)/BS2//B3LYP-D3(BJ)/BS1]. For comparison, optimizations using B3LYP-

D3(BJ)/BS2 with the SMD [44] solvation model in THF were also performed [SMD(THF)-

B3LYP-D3(BJ)/BS2, see SI]. In basis set 1 (BS1), the modified LANL2DZ [45,46] basis set 

and LANL2DZ effective core potentials (ECP) were used for Ru, the LANL2DZ(d,p) 

[45,47] basis set and LANL2DZ ECP were used for P, and the 6-31G(d’) [48–50] basis sets 

were used for all other atoms (C, N, O, and H). In basis set 2 (BS2), the Ahlrichs Def2-

TZVP [51,52] basis sets and related ECP were used for Ru, and TZVP [53] basis sets were 

used for all other atoms (C, N, O, P, F, and H). The Gaussian 16 default ultrafine integra-

tion grid, 2-electron integral accuracy of 10−12, and SCF convergence criterion of 10−8 were 

used for all computations, and vibrational frequency computations were performed to 

verify the nature of all stationary points. All located transition states were obtained with 

only one imaginary frequency, and minima without any imaginary frequencies were ob-

tained. The default rigid-rotor-harmonic-oscillator (RRHO) approximation was used to 

calculate the vibrational contribution to entropy. The intrinsic reaction coordinate (IRC) 

computations from the located transition states were performed, and both directions of 

the reaction path following the transition state were computed (see SI for the IRC plots) 

[54,55]. Gibbs free energies of activation (ΔG‡) and free energies of reaction (ΔG°) were 

determined with standard conditions of 1 atm and 298.15 K, which are relative to the Ru-

H complex (in kcal mol−1). The Gibbs free energies from the SMD(THF)-B3LYP-

D3(BJ)/BS2//B3LYP-D3(BJ)/BS1 computations are presented in the main text. The Gibbs 

free energies from the SMD(THF)-B3LYP-D3(BJ)/BS2 computations are presented in the 

supporting information. Gibbs free energies for the overall turnover-limiting steps (TOLS) 

were determined based on the energetic span/transition state theory. The accuracy and 

reliability of the computational method [SMD(THF)-B3LYP-D3(BJ)/BS2//B3LYP-

D3(BJ)/BS1] was verified. Good agreement between the SMD(THF)-B3LYP-

D3(BJ)/BS2//B3LYP-D3(BJ)/BS1 computations and the SMD(THF)-B3LYP-D3(BJ)/BS2 
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2. Computational Methods

Full gas-phase geometry optimizations were performed using the method of B3LYP [37–40]
with Grimme’s D3 [41] dispersion with Becke–Johnson damping [D(3BJ)] [42] and basis
set 1 (BS1) (B3LYP-D3(BJ)/BS1) through Gaussian 16 [43]. To account for the solvent ef-
fect of tetrahydrofuran (THF), B3LYP-D3(BJ)/BS2 single-point computations using the
SMD [44] solvation model with parameters consistent with tetrahydrofuran (THF) as the
solvent were performed on the B3LYP-D3(BJ)/BS1 optimized geometries [SMD(THF)-
B3LYP-D3(BJ)/BS2//B3LYP-D3(BJ)/BS1]. For comparison, optimizations using B3LYP-
D3(BJ)/BS2 with the SMD [44] solvation model in THF were also performed [SMD(THF)-
B3LYP-D3(BJ)/BS2, see SI]. In basis set 1 (BS1), the modified LANL2DZ [45,46] basis set
and LANL2DZ effective core potentials (ECP) were used for Ru, the LANL2DZ(d,p) [45,47]
basis set and LANL2DZ ECP were used for P, and the 6-31G(d’) [48–50] basis sets were used
for all other atoms (C, N, O, and H). In basis set 2 (BS2), the Ahlrichs Def2-TZVP [51,52]
basis sets and related ECP were used for Ru, and TZVP [53] basis sets were used for all
other atoms (C, N, O, P, F, and H). The Gaussian 16 default ultrafine integration grid,
2-electron integral accuracy of 10−12, and SCF convergence criterion of 10−8 were used for
all computations, and vibrational frequency computations were performed to verify the
nature of all stationary points. All located transition states were obtained with only one
imaginary frequency, and minima without any imaginary frequencies were obtained. The
default rigid-rotor-harmonic-oscillator (RRHO) approximation was used to calculate the
vibrational contribution to entropy. The intrinsic reaction coordinate (IRC) computations
from the located transition states were performed, and both directions of the reaction path
following the transition state were computed (see SI for the IRC plots) [54,55]. Gibbs free
energies of activation (∆G‡) and free energies of reaction (∆G◦) were determined with
standard conditions of 1 atm and 298.15 K, which are relative to the Ru-H complex (in
kcal mol−1). The Gibbs free energies from the SMD(THF)-B3LYP-D3(BJ)/BS2//B3LYP-
D3(BJ)/BS1 computations are presented in the main text. The Gibbs free energies from the
SMD(THF)-B3LYP-D3(BJ)/BS2 computations are presented in the supporting information.
Gibbs free energies for the overall turnover-limiting steps (TOLS) were determined based
on the energetic span/transition state theory. The accuracy and reliability of the computa-
tional method [SMD(THF)-B3LYP-D3(BJ)/BS2//B3LYP-D3(BJ)/BS1] was verified. Good
agreement between the SMD(THF)-B3LYP-D3(BJ)/BS2//B3LYP-D3(BJ)/BS1 computations
and the SMD(THF)-B3LYP-D3(BJ)/BS2 computations was obtained, and the mean absolute
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deviation (MAD) was 0.5 (Table S1) and the coefficient linear regression (R2) was 0.9967
(Figure S1) [56–58].

3. Results and Discussion

To fully understand the oxygen-atom transfer (OAT) from N2O to an Ru-H complex
(Scheme 1), the proposed pathway for the proton transfer from Ru-H to the terminal
N of endo N2O is presented in the following Section 3.1 (Figure 1), and other higher
energetic pathways including: (1) the proton transfer from Ru-H to the terminal O of N2O
(Scheme S2) and (2) hydride transfer from Ru-H to the central N of N2O (Figures S6 and
S7) are presented in the supporting information.

3.1. Proton Transfer from Ru-H to the Terminal N of Endo N2O

The release of N2 from an oxygen-atom transfer from N2O via the pathway of the
proton transfer from Ru-H to the terminal N of endo N2O involves two important (Z)-
O-bound oxyldiazene intermediates (structures 2 and 3, Figure 1). Structure 2, which
has an intramolecular hydrogen bond between the oxyldiazene substrate and the anionic
pyridinyl unit, is generated by the insertion of N2O into the Ru-H bond of the Ru-H complex
(structure 1) via TS-1-2 at 24.1 kcal mol−1 (Figure 1). It should be noted that the bent
geometry of the O atom in the six-membered ring caused by the intramolecular hydrogen
bond in (Z)-O-bound oxyldiazene intermediate 2 prevents the direct proton transfer from
the terminal N-H to the O atom. Intermediate 2 must go through a necessary change of
geometry to form its structural isomer 3 in order to accomplish the proton transfer. There is
a facile geometry isomerization from intermediate (Z)-O-bound oxyldiazene intermediate
2 to 3 via TS-2-3 (5.5 kcal mol−1, Figure 1). The O-bound oxyldiazene intermediate 3 is
6.4 kcal mol−1 lower in energy than 2 (–2.4 vs. 3.8 kcal mol−1), which is partially due to
the breaking of the six-membered ring formed from the intramolecular hydrogen bond.
In structure 2, the orientation of the lone pair of electrons is unfavorable for the proton
transfer to the oxygen from the terminal N-H. However, from structure 3, the proton transfer
from the terminal N-H to the O may occur. The geometry of (Z)-O-bound oxyldiazene
intermediate 3 is consistent with reported Ru/Rh intermediates [59–61], but is dissimilar
to the recent results of Xie and co-workers [34]. From the O-bound diazene intermediate
3, the cyclic four-membered ring transition state for the proton transfer (TS-3-4, 26.6 kcal
mol−1, Figure 1) forms the Ru-OH complex (structure 4, Figure 1) and molecular N2. The
generation of N2 from the proton transfer (TS-3-4) is the TOLS for the conversion of N2O
to N2. The Gibbs free energy of activation for the overall turnover-limiting steps (TOLS)
based on the energetic span/transition state theory is determined as 29.0 kcal mol−1 (3
to TS-3-4, Figure 1) [62,63]. The generation of separated N2 and the Ru-OH complex
(structure 4) from the Ru-H complex and N2O is favorable by –65.1 kcal mol−1 (Figure 1).
The effect of potentially existing traces of water in the THF solvent in the homogeneous
conversion of N2O was also considered. Anticipated lower Gibbs free energy of activation
in the generation of N2 (15.1 kcal mol−1, TS-3-4-OH2, Figure 1) with the participation
of potentially existing H2O serving as a proton shuttle compared to the non-assisted
generation of N2 (26.6 kcal mol−1, TS-3-4, Figure 1) was obtained. No such assistance of
solvent THF was found (34.2 kcal mol−1, TS-3-4-THF, Figure 1). The result of the H2O-
assisted generation of N2 is consistent with Poater’s results on the hydrogenation of N2O
by the PNP-Ru-dihydride pincer complex [35,36].

Another structural isomer that created a pathway for the N2 generation from the N2O
oxygen-atom transfer involves an intermediate without an intramolecular hydrogen bond,
and is presented in Figure S6. Structures 2b, 3b, and 4b in Figure S6 are the structural isomers
of structures 2, 3, and 4 in Figure 1 with a different orientation of diazene substrate and the
OH group. For this alternative pathway, slightly higher ∆G‡ are found (26.5 kcal mol−1 for
TS-1b-2b vs. 24.1 kcal mol−1 for TS-1-2, 27.5 kcal mol−1 for TS-3b-4b vs. 26.6 kcal mol−1

for TS-3-4). The effect on the ∆G‡ for the generation of N2 from the anionic pyridinyl is
relatively small. The possible proton transfer from Ru-H to the terminal O of N2O was also
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investigated (Scheme S2), and significantly higher ∆G‡ were obtained (40.6 kcal mol−1 for
TS-1-2d and 38.6 kcal mol−1 for TS-1b-2c). Compared to the formation of the Ru-O bond in
Figure 1, the relatively small electronegativity of terminal N of N2O made it difficult to form
Ru-N bonds (2c and 2d in Scheme S2), which caused the higher ∆G‡. Even higher ∆G‡ were
also obtained for the hydride transfer from Ru-H to the central N of N2O (42.7 kcal mol−1

for TS-1-5 and 45.2 kcal mol−1 for TS-1b-5b, Figures S6 and S7).
The above discussed mechanistic studies of the homogeneous oxygen-atom transfer

(OAT) from N2O to the Ru-H complex to generate an N2 and Ru-OH complex clearly
showed that the pathway of the proton transfer from Ru-H to the terminal N of endo N2O
is most favorable (Figure 1). It is accomplished by three asynchronous steps including N2O
insertion into the Ru-H bond (TS-1-2), change of geometry of the formed O-bound diazene
intermediate (TS-2-3), and the generation of N2 from the proton transfer (TS-3-4). The last
step (TS-3-4) forming the molecular N2 and Ru-OH complex is the overall turnover-limiting
step (TOLS) in the proposed three-step mechanism.

3.2. Hydricity as A Parameter to Predict the Activity

The concept of hydricity has been previously utilized to interpret the structure–activity
relationships in transition-metal hydride species involved homogeneous catalysis [64–70].
The hydrogenation of CO2 to formate catalyzed by molecular Co-H complexes presented
an excellent linear relationship between the logarithm of the catalytic turnover frequency
and the hydricity of Co-H complexes (R2 = 0.9956), and significantly improved activity for
Co-H complexes with relatively stronger hydride-donating ability were observed [66]. The
model using the relationship between hydricities and the one-electron reduction potential
of the transition-metal complexes is also used to study the reactivity of transition-metal
hydride complexes in the CO2 reduction [68]. The hydricity (∆GH

−) of each Ru-H complex
was calculated using the equation presented in Scheme 2 [64,65].
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To explore the structure–activity relationship in the conversion of N2O to N2, the
catalytic pathways of a series of Ru-H complexes (C1–C7, Chart 2) were investigated. The
parent PNN-Ru-H complex was modified by the introduced electron-donating (CH3) and
electron-withdrawing groups (CF3) on the para positions of these two pyridinyl fragments.
For comparison, the structural isomers of the Ru-H complex with the PNC ligand [PNC
= 6′-((di-tert-butylphosphino)methyl)-(2,2′-bipyridin)-3-ide] were also modeled (C8–C10,
Chart 2). It is noted that the Ru-H complex with the PNC ligand [PNC = 6′-((di-tert-
butylphosphino)methyl)-(2,2′-bipyridin)-3-ide] was significantly less active than the PNN-
Ru-H complex in the homogeneous conversion of N2O and CO [31].

The most favorable intramolecular hydrogen-bond-involved pathway (Figure 1) for
the conversion of N2O to N2 catalyzed by Ru-H complexes (C1–C10, Chart 2) is studied.
The ∆G‡ for TS-1-2 (formation of O-bound diazene intermediate from insertion of N2O
into the Ru-H bond) and TS-3-4 (generation of N2 from proton transfer) are summarized
in Table 1. Catalysts with an electron-withdrawing group (CF3) generally produce higher
∆G‡ for TS-1-2 and TS-3-4 compared to catalysts with an electron-donating group (CH3).
The ∆G‡ of TS-1-2 for C1 [(PCF3NCF3N)-Ru-H], C4 [(PNN)-Ru-H], and C7 [(PCH3NCH3N)-
Ru-H] are 24.9, 24.1, and 23.6 kcal mol−1, respectively (Table 1). The ∆G‡ of TS-3-4
for C1 [(PCF3NCF3N)-Ru-H], C4 [(PNN)-Ru-H], and C7 [(PCH3NCH3N)-Ru-H] are 27.3,
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26.6, and 26.0 kcal mol−1, respectively (Table 1). It is noted the C8 [(PNC)-Ru-H] has a
higher ∆G‡ for the turnover-limiting step (TOLS, TS-3-4) compared to C4 [(PNN)-Ru-H]
(28.4 vs. 26.6 kcal mol−1), which is consistent with the experimental reports [31].

Table 1. Computed hydricities, Ru-H stretching frequencies, and Gibbs free energies of
activation, ∆G‡.

Catalyst Hydricity, ∆GH
–

(kcal mol−1)
Ru-H

(cm−1)
TS-1-2

(kcal mol−1)
TS-3-4

(kcal mol−1)
TOLS

(kcal mol−1)

C1, (PCF3NCF3N)-Ru-H 54.7 1950.9 24.9 27.3 30.6
C2, (PCF3NN)-Ru-H 53.0 1947.1 24.4 26.7 29.5
C3, (PNCF3N)-Ru-H 51.6 1946.1 24.2 26.9 29.6

C4, (PNN)-Ru-H 50.9 1943.3 24.1 26.6 29.0
C5, (PCH3NN)-Ru-H 49.4 1941.3 24.1 26.4 28.0
C6, (PNCH3N)-Ru-H 49.8 1942.4 23.7 26.1 28.4

C7, (PCH3NCH3N)-Ru-H 49.1 1941.9 23.6 26.0 27.5
C8, (PNC)-Ru-H 52.2 1910.7 24.0 28.4 30.9

C9, (PCH3NCH3C)-Ru-H 50.8 1906.5 23.9 27.9 30.3
C10, (PCF3NCF3C)-Ru-H 57.3 1914.0 24.6 29.3 31.6

Computed Ru-H harmonic stretching frequencies (νRu-H, gas-phase B3LYP-GD3BJ/BS1
computations) and computed hydricities (SMD(THF)-B3LYP-GD3BJ/BS2//B3LYP-GD3BJ/BS1)
are also summarized in Table 1. Computational results show that introducing the CF3
electron-withdrawing group strengthens the Ru-H bond (higher Ru-H stretching frequen-
cies) compared to the CH3 electron-donating group (1950.9 cm−1 for C1 [(PCF3NCF3N)-Ru-
H], 1943.3 for C4 [(PNN)-Ru-H], and 1941.9 for C7 [(PCH3NCH3N)-Ru-H]. These results
are consistent with the computed hydricities, and a stronger Ru-H bond has a poorer
hydride-donating ability (the more positive hydricity value). The computed hydricities
are 54.7 kcal mol−1 for C1 [(PCF3NCF3N)-Ru-H], 50.9 for C4 [(PNN)-Ru-H], and 49.1 for C7
[(PCH3NCH3N)-Ru-H] (Table 1). The computed hydricities, together with the Ru-H stretch-
ing frequencies, demonstrate that the hydride-donating ability for the Ru-H complexes
with the CF3 electron-withdrawing group is poorer compared to the complexes with the
CH3 electron-donating group.

In order to quantitatively explore the structure–activity relationship in the conver-
sion of N2O to N2, the relationship between the computed ∆G‡ and Ru-H stretching
frequencies (Figure 2), and the relationship between the computed ∆G‡ and computed
hydricities (Figure 3) were fitted. Good linear relationships between computed ∆G‡ and
Ru-H stretching frequencies (R2 = 0.9658 for C1–C7, and R2 = 0.8578 for C8–C10, Figure 2)
were obtained, and excellent correlations exist between ∆G‡ of TS-3-4 and the computed
hydricities (R2 = 0.9158 for C1–C7, and R2 = 0.9765 for C8–C10, Figure 3). Excellent linear
fittings between the ∆G‡ of TOLS and the computed hydricities (R2 = 0.9381 for C1–C7, and
R2 = 0.9272 for C8–C10, Figure 4) were also obtained. The structure–activity relationship
using hydricity to predict the activity is consistent with the results from studies on the
molecular transition-metal hydride involved CO2 hydrogenation, CO2 reduction, and H2
evolution [66–68,71,72]. This result suggests that a more active Ru-H catalyst with a higher
turnover frequency for the conversion of N2O to N2 would come from introducing a more
electron-donating ligand.
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4. Conclusions

A comprehensive theoretical investigation of the reaction between N2O to an Ru-H
complex using DFT computations was performed. The proton transfer from Ru-H to the
terminal N of endo N2O (Figure 1) was shown as the most favorable pathway, which
includes N2O insertion into the Ru-H bond (TS-1-2, 24.1 kcal mol−1), change of geometry
of the formed (Z)-O-bound oxyldiazene intermediate (TS-2-3, 5.5 kcal mol−1), and the
formation of an Ru-OH complex and generation of N2 from a proton transfer step (TS-3-4,
26.6 kcal mol−1). Significantly low Gibbs free energy of activation in the generation of
N2 (15.1 kcal mol−1, TS-3-4-OH2) with the participation of potentially existing traces of
H2O in the THF solvent serving as a proton shuttle was observed. The excellent linear
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relationships between the computed hydricities (∆GH
−) and the Gibbs free energies of

activation (∆G‡) of TS-3-4, between the computed hydricities (∆GH
−) and the Gibbs free

energy of activation (∆G‡) of TOLS (R2 > 0.91), suggest that hydricity could be utilized as a
potential parameter to predict the catalytic activities, and the design of more active Ru-H
catalysts could benefit from ligand modification with more electron-donating groups.
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for an alternative higher-energy pathway; Scheme S2. Free energy diagram for proton transfer; Figure
S7. Free energy diagram for N2 generation from hydride transfer; Figure S8. Free energy diagram for
a higher-energy hydride transfer; Figure S9. Linear fitting; Table S2. DFT computed energies; Table
S3. SMD(THF)-B3LYP-GD3BJ/BS2 computed energies; Table S4. Cartesian coordinates.
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