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Abstract: Treatment of 3,4-(ClC(O))2-cC4H2S (1) with [FcCH2OLi] (2-Li) (Fc = Fe(η5-C5H5)(η5-C5H4))
in a 1:2 ratio gave 3,4-(FcCH2OC(O))2-cC4H2S (3). Compound 3 decomposes in solution during
crystallization to produce FcCH2OH (2) along with 3,4-thiophenedicarboxylic anhydride (4). The
cyclic voltammogram of 3 exhibits a reversible ferrocene-related redox couple (E1/2 = 108 mV, vs.
Cp2Fe/Cp2Fe+) using [NnBu4] [B(C6F5)4] as the supporting electrolyte. DFT calculations reveal that
the energy values of the LUMO orbitals of 3 (3,4-thiophene core) show 1 eV higher energies than
that one of 2,5-(FcCH2OC(O))2-cC4H2S (5), both compounds’ HOMO orbitals are close to each other.
Compound 4 was characterized by single X-ray structure analysis. It forms a band-type structure
based on intermolecular O1···S1 interactions being parallel to (110) and (1–10) in the solid state,
while electrostatic C···O interactions between the C=O functionalities of adjacent molecules connect
both 3D-networks. Hirshfeld surface analysis was used to gain more insight into the intermolecular
interactions in 4, the enrichment ratios (E) suggest that O···H, S···S, and O···C are the most favored
intermolecular interactions, as shown by E values above 1.20. The relevance of the weak O···H, O···O,
and O···C contacts in stabilizing the molecular structure of 4 was highlighted by the interaction
energies between molecular pairs.

Keywords: heterocycle; electrochemistry; X-ray structure analysis; Hirshfeld surface analysis;
DFT calculation

1. Introduction

Since ferrocene’s discovery in 1951, its derivatives have played an increasingly es-
sential role in chemistry during the following few decades [1–4]. Ferrocene-derived
species were inspected broadly within the field of organometallic chemistry, e.g., as high-
burning rate catalysts [5], as catalysts in homogeneous catalysis [6], as building blocks
in model systems for molecular wires [7–14]. Or as active ingredients in anticancer ther-
apies [15,16]. As a result, charge transfer interactions with ferrocenyl-functionalized -
conjugated hydrocarbons, such as arenes or five- and six-membered heterocycles, have
been investigated [17–21].

Multi-ferrocenyl compounds, particularly biferrocene complexes in which two ferro-
cenyl units are connected by separate covalent units, can easily form mixed-valent (MV)
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Fe(II)-Fe(III) species by chemical or electrochemical oxidation [22–24]. As electronic wires,
these compounds have received attention lately [25,26]. In specific, Electrochemical studies
of electronic intramolecular communication among covalently coupled redox units have
made extensive use of such substances.

On the other hand, convenient and efficient synthetic methodologies of fused thio-
phenes has attracted considerable attention, due to the importance of such compounds
as scaffolds in the world of pharmaceuticals and functional materials [27–31]. Fused thio-
phenes can be accessed by a variety of reactions [32–36] including the Rosenmund−von
Braun reaction [37], intramolecular Friedel−Crafts acylations [38] and Suzuki−Miyaura
carbon, carbon cross-couplings [39].

In order to continue our research on ferrocenyl-substituted compounds [40–52], this
article reports on the reaction chemistry and chemical and physical properties of the
ferrocenylmethylester 3,4-[Fe(η5-C5H5)(η5-C5H4CH2OC(O)]2-cC4H2S (3). The formation of
FcCH2OH (2) along with thieno [3,4-c]furan-1,3-dione (7) from 3 is discussed.

2. Results and Discussion

Treatment of diacid dichloride 3,4-(ClC(O))2-cC4H2S (1) with two equiv. of FcCH2OLi
(2-Li) at −78 ◦C in diethyl ether gave 3,4-(FcCH2OC(O))2-cC4H2S (3) in excellent yield
(Scheme 1, Experimental).
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cC4H2S (5). [49,54] The cC5H2S and the CH2 protons are observed as singlets at 7.79 and 
5.04 ppm, respectively. 

In the 13C{1H} NMR spectrum of 3 the signal of the carbonyl carbon atom of the 
C(O)OCH2Fc entity, observed at 163.0 ppm, is the most representative [49]. The α and β 
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Scheme 1. Synthesis of 3. (i) 1 (1 equiv), 2-Li (2 equiv), diethyl ether, −78 ◦C, 18 h. Yield is based on
1. 2-Li was prepared in situ by an equimolar reaction of 2 with MeLi in diethyl ether [45,49].

The newly synthesized ferrocenyl-thiophene 3 did not require elaborative purifica-
tion procedures. After diethyl ether filtration of the reaction mixture through a pad of
Celite, followed by removal of all volatiles, the obtained residue was precipitated from a
chloroform/hexane mixture of ratio 3:1 (v/v).

Compound 3 was identified by IR and 1H and 13C{1H} NMR spectroscopies, elemental
analysis, high-resolution mass spectrometry, and electrochemistry.

The IR spectrum of a freshly purified sample of 3, for example, shows a character-
istic ν(CO) stretching vibration at 1706 cm−1, typical for carbonyl functionalities of the
C(O)OCH2Fc units [45,49,53].

The 1H NMR spectrum of 3 is consistent with its molecular structure, showing reso-
nance signals with the expected coupling patterns for the ferrocenyl groups and the hetero-
cyclic moiety (Experimental) [40–42,44,48,49]. The ferrocenyl’ C5H5 protons of 3 give rise to
a singlet at 4.17 ppm, while the ones of the C5H4 rings appear as two pseudo-triplets at 4.32
and 4.20 ppm with JHH = 1.7 Hz, appearing in a similar range as characteristic for the analo-
gous 2,5-substituted isomer 2,5-[(Fe(η5-C5H5)(η5-C5H4CH2OC(O)]2-cC4H2S (5). [49,54] The
cC5H2S and the CH2 protons are observed as singlets at 7.79 and 5.04 ppm, respectively.

In the 13C{1H} NMR spectrum of 3 the signal of the carbonyl carbon atom of the
C(O)OCH2Fc entity, observed at 163.0 ppm, is the most representative [49]. The α and β

carbon atoms of the thiophene moiety appear at 131 and 133 ppm, respectively. All other
organic groups show the anticipated signals without any peculiarities [49].

The electrochemical investigations of 3 were carried out under an atmosphere of
argon in dichloromethane solutions containing [NnBu4] [B(C6F5)4] (0.1 M) as supporting
electrolyte at 25 ◦C and were referenced against the potential of the FcH/FcH+ redox couple
(Figure 1) [55].
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Figure 1. Cyclic voltammogram (bottom) and square-wave voltammogram (top) of 3 in anhydrous
dichloromethane solutions (1.0 mM) at 25 ◦C, supporting electrolyte [NnBu4] [B(C6F5)4] (0.1 M),
100 mV/s.

From the cyclic voltammetry data, two individual reversible one-electron processes with
ipc/ipa ratio close to unity are observed and the formal potentials (Figure 1, ∆E◦′ = 69 mV,
and 146 mV, respectively) are significantly anodic shifted in comparison to the ferrocene
redox event (Cp2Fe/Cp2Fe+) reflecting the electron-withdrawing nature of the −OC(O)R
substituents. However, the presence of a small redox splitting between the first and the
second oxidation step may indicate a certain degree of electronic and electrostatic interactions
between the ferrocene moieties through the 3,4-dicarboxilate thiophene bridges [56,57]. Such
behavior were noticed in a previously made electrochemical analysis of aryl-functionalized
ferrocenylmethylesters (2,5-[(Fe(η5-C5H5)(η5-C5H4CH2OC(O)]2-cC4H2S, (label as 5 with the
corresponding literature)) [49]. In addition, in comparing, a difference in the electronic and
the electrostatic interactions as a function to the relative position of the two ferrocenylmethyl-
carboxilates on the thiophene ring are noticed too and reflected as the redox potentials of 3
significantly anodically shifted.

In order to observe the effect of the different substituents on the electronic properties
of 3 and 5 the calculated energies and electron densities of the frontier molecular orbitals
were investigated. Figure 2 summarizes the calculated energies of the HOMO and LUMO
orbitals, in particular, the HOMO-LUMO energy gap values and the appropriate HOMO
and LUMO contour plots of 3 and 5.

The DFT results of 3 and 5 reveal that the lowest unoccupied molecular orbitals are
localized on the heterocycle fragment with no contribution fromf the ferrocenyls. On the
other hand, for 3 it is found that the HOMOs are localized on one ferrocenyl fragment,
while for 8 they are localized on both ferrocenyls. The energy levels of the HOMO orbitals
of both compounds are clearly close to each other, while the calculated LUMO orbitals
of 3 show with 1 eV higher energies than that of 8. The LUMO orbital energy increases
significantly as a function of the relative positions of the two ferrocenylmethyls on the
thiophene ring in 3 and 5, indicating that changing the position of the fragments on the
thiophene ring reduces electron density delocalization within the thiophene ring in the
LUMO. A similar tendency was observed for the two FcCH2 units on the six membered
aromatic ring [(FcCH2OC(O))2-C6H4], by switching from ortho to para positions [49].
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In attempts to grow single crystals of 3 in chloroform: hexane (ration 1:4 v/v) solvent
mixtures under air at −18 ◦C, it was found that 3 further reacts with moisture and forms
hydroxymethyl ferrocene (2) and 3,4-thiophenedicarboxylic anhydride (4) (Scheme 2). The
structures of compounds 2 and 4 were identified based on their spectroscopy data and by
comparison of their data with literature sources [37,58].
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Scheme 2. Formation of thieno [3,4-c]furan-1,3-dione (7) by the H2O-mediated cyclization of 3 under
atmospheric conditions to give 2 and 4.

The molecular structure of 4 in the solid state was determined by single crystal X-ray
structure analysis. Pale yellow plates were obtained by cooling a chloroform/hexane
mixture of ratio 1:4 (v/v) containing 4 to −18 ◦C. Table S1 (See the ESI) summarizes the
compound’s crystallographic and refining data. Figure 3 depicts the molecular structure of
7, with selected bond distances (Å), angles, and torsion angles (o) are listed in the caption.

Up to now, the crystal structures of fused thiophene compounds have been reported
rarely. The title compound, thieno [3,4-c]furan-1,3-dione, with the molecule formula of
C6H2O3S, crystallizes in the tetragonal space group P 42/n. All of the atoms are nearly co-
planar. The thiophene ring displays C–C single bond lengths of 1.407(3) Å, slightly different
to those in the furan ring (1.465(3) and 1.465(3) Å). The C=C double bond lengths are
1.356(3)/1.361(3) Å. The C–O bond distances can clearly be distinguished between carbonyl
C=O (1.191(3) Å and 1.195(3) Å) and ether C–O (1.401(2) Å and 1.405(2) Å). All bond
lengths and angles of the fused thiophenes compound are normal and comparable with
its analogues [14,40]. The molecular association pattern is dominated by S···O and O···O
interactions found within the sum of van der Waals radii (O/S = 1.52, 1.8 Å, ∑ = 3.32 Å;
O/O = 1.52 Å, ∑ = 3.02 Å). Most prominent is a square arrangement of four molecules of
based on short O···O distances between carbonyl oxygens O2 and O3 (Figure 4). Notably,
the square interaction pattern is associated with short O···C interactions based on O2 and
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the adjacent anhydride ring in a T-shaped π fashion (omitted in Figure 4). The latter displays
a very short distance between O2 and the centroid (Ct) of the heterocycle of 2.8292(4) Å
(C2–O2···Ct = 140.95(1)◦), indicating a strong donor-acceptor interaction. Further short
O···C contacts appear between the C1=O1 functionalities of two adjacent molecules, with
the electron-rich oxygen being positioned over the carbonyl carbon (O1···C1 = 3.1802(4) Å).
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Via S1 and the O1-labled carbonyl oxygen the cubic structure interacts further via
O1···S1 contacts that are present at both sites of the molecules, forming a band-type
structure (Figure 5). Based on the square arrangement these bands form planes parallel
to (110) and (1–10) hence intersecting perpendicularly. Furthermore, weak intermolecular
C–H···O hydrogen bonding stabilizes the crystal packing of 7 (Table 1).

Table 1. Hydrogen bond geometry (Å, ◦) for compound 7.

D–H···A D–H H···A D···A D–H···A

C6–H7···O2i 0.93 2.54 3.2708(4) 136

C6–H7···O1ii 0.93 2.57 3.1211(4) 118
Symmetry codes: (i) −1 + y, 1/2 − x, 1/2 − z (ii) −1/2 + x, −1/2 + y, −z.
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In total, a three-dimensional network is formed based on short and very strong
interaction patterns. However, cavities remain (Figure 6, top), which are filled by an
individual second network that interpenetrates the first one highlighted in black and blue
in Figure 6. Weaker dispersion interactions between the π-orbitals of the C=O functionalities
of adjacent molecules (O/C = 3.18 Å; ∑o,x = 3.22 Å) connect both 3D-networks (Figure 7).

To accomplish the description of the supramolecular connectivity in the crystal struc-
ture of 1, a Hirshfeld surface analysis was realized. Maps of the Hirshfeld surface, shape
index and curvedness were generated based on the crystallographic information file (CIF)
using the CrystalExplorer 3.1 program [59,60]. Hirshfeld surfaces enable the visualiza-
tion of intermolecular interactions and indicate the relative strength of the interactions
by different colors and color intensity. In the dnormal map (Figure 8), the vivid red spots
are due to short normalized O···H/H···O, C···O/H···C, O···S/S···O, O···O; C···C, H···H,
S···S, and C···H interactions. The white areas depicted at either side of the molecular
structures in the Hirshfeld surface represent the aromatic rings and are footmarks of pep
interactions [61,62]. On the shape-index surface of compound 4, convex blue regions
represent hydrogen-donor groups and concave red regions represent hydrogen-acceptor
groups. Figure 8 illustrates that the thiophene unit behaves simultaneously as donor and
acceptor group. Meanwhile, the carbonyl substituents are acceptors only. Two-dimensional
fingerprint plots quantify the contributions of each type of non-covalent interactions on
the Hirshfeld surface map [63,64]. Analysis of the 2D fingerprint plots (Figure 9) reveals
that the major contribution corresponding to 39.8% of the surface is due to O···H/H···O
contacts (Figure 9f), indicating that aside from hydrogen bonding interactions van der
Waals contacts are relevant for the molecular packing in the crystal structure. C···O/H···C
interactions contribute 18.2% (Figure 8g), the O···S/S···O interactions 9.9% (Figure 9h),
while O···O contributes 6.2% (Figure 9c). The remaining contacts, i.e., C···C, H···H, S···S
and C···H, respectively, to the crystal structure stabilization (Figure 9a,b,d,e).
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The enrichment ratios E, the ratio between the actual contacts proportion in the
crystal and random contacts (theoretical proportion), were computed with MoProViewer
program [65]. Values of E > 1 indicate that the pair of elements involved have a high
propensity to form contacts in the crystal structure, while an E < 1 value indicates that the
propensity would be low [66]. The contributions to the surfaces (taking into account the
inner and outer surfaces) in 4 and the corresponding enrichment ratios are presented in
Table 2. The enrichment ratios of 4 show that the O···H contacts (EOH = 2.18) is the most
favoured contact in the crystal packing followed by the S···S (ESS = 2.04), O···C (EOC = 1.21)
and C···C contacts (ECC = 1.16), respectively. The O···H contacts cover 24.98% of the total
Hirshfeld surface of 4, while the surface contacts of O···C covers 22.97%, illustrating the
importance of these relatively weak interactions in the molecular packing of 4.
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Interaction energies were computed using CrystalExplorer to evaluate the role of the
various intermolecular interactions in stabilizing the molecular packing of 4 [67]. The
interaction energies between molecular pairs were calculated for a cluster of 3.8 Å around
the central molecule. The molecular pair interaction energies are expressed in terms of
total energy (E_tot), electrostatic energy (E_ele), polarization energy (E_pol), dispersion
energy (E_dis), and repulsion energy (E_rep). The values of these energies for 4 are listed
in Table 3. The highest stabilized molecular pairs in 4 (E = −32.5 kJ/mol) is related to the
three molecules linked by the O···O, O···H and O···C short contacts (all within the sum of
van der Waals radii), where the main stabilizing energy is due to the E_ele contribution
followed by E_dis. The second highest stabilized molecular pairs in 4 (E = −16.1 kJ/mol)
are related to the three molecules linked by the S···O, O···H and O···C short contacts (all
within the sum of van der Waals radii). The main stabilizing energy of these molecules is
also due to the E_ele contribution followed by E_dis.
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Table 2. Hirshfeld contact surfaces and enhancement ratios (E) for 4.

Atoms H C O S

Surface interior (%) 17.53 30.67 31.41 20.39

Surface exterior (%) 17.86 28.16 33.22 20.76

Actual contacts merged (%)

H 0.68 - - -

C 6.37 10.00 - -

O 24.98 22.97 2.50 -

S 2.68 9.48 11.69 8.65

Equiprobable contacts merged (%)

H 3.13 - - -

C 10.41 8.64 - -

O 11.43 19.03 10.43 -

S 7.28 12.11 13.30 4.23

Enrichment reciprocal contacts merged (%)

H 0.22 - - -

C 0.61 1.16 - -

O 2.18 1.21 0.24 -

S 0.37 0.78 0.88 2.04

Table 3. Selected interaction energies (kJ/mol) (with E_tot > −50.0 kJ/mol) for 4.

Contacts Symmetry
Operation E_ele E_pol E_dis E_rep E_tot

O···O, O···H,
and O···C

y, −x + 1/2,
−z + 1/2 −25.7 −5.0 −17.6 22.2 −32.5

S···O, O···H,
and O···C

x + 1/2, y + 1/2,
−z −13.4 −2.8 −6.6 9.5 −16.1

3. Conclusions

The synthesis of 3,4-((FcCH2OC(O))2-cC4H2S (3) by treatment of FcCH2OLi with 3,4-
(ClC(O))2-cC4H2S (2) is described. Electrochemical measurements on 3 showed that the
substitution pattern of the ester on the aryl ring and the electron-withdrawing effect of
the acyl groups influences the electrochemical shift of the formal potential. The respective
aryl system possesses a significantly higher Fc/Fc+ vs. Cp2Fe/Cp2Fe+ redox potential as
observed for the more electron-rich ferrocenemethanol [68,69]. DFT calculations show dif-
ferent degrees of HOMO-LUMO energy gaps when comparing 3 with 5 due to changing the
LUMO energy depending on the positions of the carboxylic ester substituents on the thio-
phene rings. Compound 3 decomposes in solution with moisture to form 1-hydroxymethyl
ferrocene (2) and thieno [3,4-c]furan-1,3-dione (4) which was characterized by single X-ray
structure analysis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/inorganics10070096/s1, Table S1: Crystallographic data and
refinement details for 4.
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