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Abstract: Gold(III) complexation with the octadecahydrido-eicosaborate anion [B20H18]2− was stud-
ied for the first time. It was found that when gold(III) complexes [Au(L)Cl2]BF4 (L = bipy, phen)
reacted with [B20H18]2−, complexes [Au(L)Cl2]2[B20H18] were isolated. The compounds consisted of
a cationic gold(III) complex [Au(L)Cl2]+ and the hydridoborate cluster as a counterion. X-ray diffrac-
tion studies revealed weak B–H...Au interactions for both compounds. Note that more reactive anions
[BnHn]2− (n = 10, 12) in similar reactions with gold(III) complexes resulted in gold mirror reactions.

Keywords: hydridoborates; boron clusters; mixed-ligand complexes; X-ray diffraction; gold

1. Introduction

Higher polyhedral boron dianions [BnHn]2− (n = 6–12) [1–5] (n.b., hydridoborate
is the new IUPAC recommended name for this class of compounds [6]) are fascinating
ligands in coordination chemistry of transition metals. On the one hand, due to their
3D aromaticity [7–11] and low charge density, they are typical soft Lewis bases, which
form numerous stable complexes with the soft metal acids including copper(I) and sil-
ver(I) [12–15], zinc(II) and cadmium(II) [16–19], and lead(II) ([20] and references therein). In
addition, the boron cluster anions form compounds with metal(II) complex cations acting
as counterions, e.g., Cu(II), Fe(II), Co(II), Ni(II), and Mn(II) [15,21–26]. In the presence of
metals(III) complexes, the boron cluster anions act as reducing agents being oxidized to
oxidoborates [27–29]. On the other hand, boron clusters form numerous products of the
substitution of terminal hydrogen atoms by various functional groups keeping the initial
closo-structure [30–34].

The closo-decaborate anion [B10H10]2− can be easily oxidized in the presence of Fe(III)
or Ce(IV) salts to form a macropolyhedral boron cluster [trans-B20H18]2− [35,36], and the
coordination chemistry of the latter began to be studied only a few years ago. A number
of silver(I) compounds with the coordinated macropolyhedron and Ph3P ligand were
isolated and characterized by X-ray diffraction; the single-crystal-to-single-crystal trans-
formations initiated with UV radiation and high temperature were studied [37,38]. First
lead(II) complexes with coordinated Bipy and [B20H18]2− were synthesized and charac-
terized by IR spectroscopy and X-ray diffraction [38]. Tris-chelate manganese complex
[Mn(Bipy)3][B20H18] [39] and iron(II) complex [CpFe(Cp-CH2-NMe2Et2)][B20H18] [40] with
the boron clusters in the outer sphere are also known.
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A number of gold compounds with boron clusters were synthesized and character-
ized. In particular, the gold(I) complex with triphenylphosphine and the hexahydrido-
closo-hexaborate anion {Au2(Ph3P)4[B6H6]} was reported [41]. The compound is a bin-
uclear complex containing a closo-hexaborate anion as a bridging ligand coordinated to
the gold(I) atoms via opposite B3 faces. The complex with a direct metal–boron bond
{Au3(Ph3P)3[B10H9]} [42] was obtained by the reaction of [Au(Ph3P)Cl] with {Ag2[B10H10]}
in the acetonitrile/benzene system. A triangular Au3 fragment can be considered as a
substituent in the apical position of the boron cluster.

Gold(I) compounds with an outer-sphere coordination of the boron clusters were also
described. Complexes [Au(Ph3P)x]2[B12Hal12] (Hal = F, Cl, Br, I; x = 2, 3) with perhalogenated
boron clusters in the outer sphere were isolated [43] from the electrochemically assisted reactions
of (H3O)2[B12Hal12] acids with Au0 in the presence of Ph3P. Structures of mononuclear gold(I)
complexes [(CH3CN)2Au][B12Cl11(Me3N)]·CH2Cl2 and [(Ph3P)2Au2Cl][B12Cl11(Me3N)] [44], as
well as binuclear gold(I) complex [Ph3PAuClAuPh3P][B12Cl11(Me3N)] [45] with a substituted
closo-dodecaborate anion [B12Cl11(Me3N)]−, were also reported. In addition, polymeric
chain complex [Au(Ph3P)2][Ag[B12H12]]n was isolated [46].

It is noteworthy that the reaction of [Au(Ph3P)Cl] with {Ag2[B12H12]} gave a gold com-
plex [Au9(PPh3)8][B24H23] [42]. The nine-vertex gold cluster [Au9(PPh3)8]3+ is a cationic
part of the compound, while the [B24H23]3− trianion with a linear B–H–B′ bridge is a
counterion and shows a centrosymmetric structure.

Complexes of metals in a high oxidation state are extremely rare. Usually, metals(III)
are reduced to metals(II) because of reducing properties of boron clusters. As far as we
know, a few examples of iron(III) and cobalt(III) complexes have been reported. Binuclear
iron(III) complex [{(η5–Cp)(dppe)Fe}2{µ2–1,10-NC[B10H8]CN)}]·H2O was isolated with dis-
ubstituted 1,10-derivative [B10H8(CN)2]2−, which acts as a bridge ligand between two metal
complexes with cyclopentadienyl and phosphine ligands [47]. In addition, the cobalt(III) com-
plex with the least reactive closo-dodecaborate anion [CoIII(Phen)3][B12H12]NO3·2DMF·4H2O
was isolated [48].

Here, we describe the results of our study of gold(III) complexation in the presence of
a [B20H18]2− anion. First, gold(III) complexes with boron cluster anions were isolated and
characterized.

2. Experimental
2.1. Synthesis

All reactions were carried out in air. Acetonitrile (HPLC grade), ethanol (95%), bipy
(98%), and Ph3P (98%) were purchased from Sigma-Aldrich. (Et3NH)2[B10H10] was synthe-
sized from decaborane(14) according to the known procedure [49]. (Et3NH)2[trans-B20H18]
was prepared by oxidation of aqueous (Et3NH)2[B10H10] with FeCl3 according to the pro-
cedure reported [35,50]. The obtained solid was dissolved in a CH3CN/water mixture
followed by the addition of aqueous Ph4PCl in the reaction solution resulting in the quan-
titative precipitation of (Ph4P)2[B20H18]. [Au(bipy)Cl2]BF4 and [Au(phen)Cl2]BF4 were
prepared according to the known procedure [51].

Synthesis of [Au(L)Cl2]2[B20H18] (1: L = bipy, 2: L = phen)
A solution of [Au(L)Cl2]BF4 (0.2 mmol) in acetonitrile was added with stirring to a

solution of (Ph4P)2[B20H18] (0.1 mmol) in acetonitrile (10 mL). The formation of dark-orange
crystals was observed within 5–10 min. The crystals were filtered off and dried in air. The
yield was ~90%. Single crystals 1·2CH3CN and 2·2CH3CN suitable for X-ray diffraction
study were taken from the reaction solutions.

Anal. calcd. for Au2C20H34N4Cl4B20 (1): C, 22.2; H 3.2; N, 5.2; B 20.0. Found, %: C
22.3; H 3.1; N, 5.1; B 19.9. IR (NaCl, ν, cm−1): ν(BH) 2540, 2515, 2501, 2470; ν(CN)CH3CN
2355, 2335;δ(BBH) 1029; 1605w, 1507w, 1456, 1377, 1320, 1249w, 1113w, 1077w, 1047w; 771.
NMR 11B (dmso-d6, ppm): −30.7 (d, 2Bap), −16.2 (s, 2B, B2, B2′), −6.0 (d, 2Beq), −11.7 (d,
4Beq), −15.3 (d, 4Beq), −18.8 (d, 4Beq), −25.1 (d, 2Bap).
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Anal. calcd. for Au2C24H34N4Cl4B20 (2): Au, 34.8; C, 25.5; H 3.0; N, 5.0; B 19.1. Found,
%: Au, 34.3; C 24.8; H 2.9; N, 5.0; B 19.0. IR (NaCl, ν, cm−1): ν(BH) 2530, 2490; ν(CN)CH3CN
2360, 2332; δ(BBH) 1030; 1602w, 1518w, 1461s, 1432, 1377, 1221w, 1153w, 954w, 871w; 847,
823w, 748w, 723w, 701w, 673w. NMR 11B (dmso-d6, ppm): −31.0 (d, 2Bap), −16.9 (s, 2B, B2,
B2′), −5.9 (d, 2Beq), −11.6 (d, 4Beq), −15.2 (d, 4Beq), −18.7 (d, 4Beq), −24.9 (d, 2Bap).

2.2. Materials and Methods

Elemental analysis for carbon, hydrogen, and nitrogen was performed using a Carlo
ErbaCHNS-3 FA 1108 automated elemental analyzer. Boron and metal contents were
determined on an iCAP 6300 Duo ICP emission spectrometer with inductively coupled
plasma. Samples were dried in air to constant mass; thus, solvent-free samples 1 and 2
were used.

IR spectra of compounds were recorded with a Lumex Infralum FT-02 FTIR-spectrometer
in the range of 4000–600 cm−1 at a resolution of 1 cm−1. Samples were prepared as Nujol
mulls; NaCl plates were used. Fresh crystals containing solvent molecules were used
in measurements.

11B NMR spectra of solutions of compounds in dmso-d6 were recorded with a Bruker
AC 200 spectrometer at a frequency of 64.297 MHz using BF3·Et2O as an external standard.

X-ray powder diffraction studies of crystals 1·2CH3CN were carried out on a Bruker
D8 Advance X-ray diffractometer at the Shared Research Center of the Kurnakov Institute
of General and Inorganic Chemistry, Russian Academy of Sciences. The measurements
were performed using CuKα radiation in low-background cuvettes with a substrate of an
oriented silicon single crystal in the 2θ angle range of 5◦–80◦ with a step of 0.01125◦. To
obtain diffraction patterns, the samples were carefully triturated in an agate mortar. Before
the measurements, the samples were dried to constant weight to remove solvent molecules.
X-ray powder diffraction patterns of compound 1·2CH3CN are shown in Figure S1. The
data obtained verify the purity of the compound.

X-ray diffraction studies of single crystal 1·2CH3CN were performed with a Bruker
Apex DUO diffractometer (MoKα radiation, respectively); crystal 2·2CH3CN was studied
using a Bruker Smart Apex II diffractometer (MoKα radiation). The structures were solved
by the SHELXT method [52] and refined by the full-matrix least squares method against F2

of all data using SHELXL-2014 [53] and OLEX2 [54] software. Nonhydrogen atoms were
found on difference Fourier maps and refined with anisotropic displacement parameters.
The positions of hydrogen atoms were calculated and included in the refinement in isotropic
approximation by the riding model with the Uiso(H) = 1.5Ueq(C) for methyl groups and
1.2Ueq(C) for the other atoms, where Ueq(C) are equivalent thermal parameters of parent
atoms. Crystal data, details of data collection, and results of structure refinement are
summarized in Table S1. The crystallographic data were deposited with the Cambridge
Crystallographic Data Center as supplementary publications under CCDC nos. 2126248 and
2153860. These data can be obtained free of charge from the Cambridge Crystallographic
Data Centre via www.ccdc.cam.ac.uk/structures (accessed on 17 June 2022). Molecular
views of compounds are shown in Figures S2 and S3.

3. Results and Discussion

Here, we studied the reactions of gold(III) complexes [Au(L)Cl2]+ containing chelat-
ing N,N-ligands (L = bipy, phen) with the boron cluster anions. Earlier, it was found
that iron(III) and cobalt(III) salts react with [BnHn]2− anions (n = 10, 12) in the presence
of bipy and phen, giving metal(II) compounds [55] with the boron clusters as counteri-
ons or even with substituted derivatives of the closo-decaborate anion with OH or Phen
substitutes [56,57]. In the case of less reactive [B12H12]2−, it was possible to isolate the
cobalt(III) complex [Co(phen)3][B12H12]NO3 [44].

First, we carried out reactions of [Au(L)Cl2][BF4] with the [B10H10]2− and [B12H12]2−

anions in acetonitrile or acetonitrile/water solutions. However, it was found that both
boron cluster anions reduce gold(III) to Au0 decomposing to oxidoborates.

www.ccdc.cam.ac.uk/structures
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(Et3NH)2[B10H10] or (Ph4P)2[B12H12] + [Au(L)Cl2][BF4]→ Au0↓ + oxidoborates (L = bipy, phen)

The reaction solutions became black for a few seconds and a thin layer of gold formed
on the flask wall, indicating that a gold mirror reaction took place. 11B NMR spectra of
the reaction solutions showed the only peak at +20 ppm related to oxidoborates. In the IR
spectra, a broad band at 1300–1200 cm−1 is also observed assigned to ν(BO) of oxidoborates.
No bands were found around 2500 cm−1, which is a typical range for ν(BH).

Then, we studied the reactions of [Au(L)Cl2][BF4] with [B20H18]2− in acetonitrile
and found that in such a case, gold(III) complexes [Au(L)Cl2]2[B20H18] (1: L = bipy, 2:
L = phen) precipitate immediately as solvates [Au(L)Cl2]2[B20H18]·2CH3CN (1·2CH3CN or
2·2CH3CN). The complexes start to precipitate from the reaction solutions as dark orange
needles (1·2CH3CN) or prisms (2·2CH3CN) as soon as solutions of reagents were mixed
in acetonitrile.

(Ph4P)2[B20H18] + [Au(L)Cl2][BF4]→ [Au(L)Cl2]2[B20H18]↓

Successful formation of the gold(III) complexes with the [B20H18]2− anion is most
probably due to a lower reduction ability of the macropolyhedral boron cluster compared
to [BnHn]2− (n = 10, 12) boron clusters.

A crystallographically independent part of the orthorhombic and triclinic unit cells
of complexes 1·2CH3CN (Pbca) and 2·2CH3CN (P-1) contains the [Au(L)Cl2]+ cationic
complex, half an anion, and a solvate molecule of acetonitrile, thus having the composition
of [Au(Bipy)Cl2]2[B20H18]·2CH3CN or [Au(Phen)Cl2]2[B20H18]·2CH3CN. The anion in
both cases also realizes the trans-configuration. The metal atom of the cations realize the
square geometry with the gold(III) atom situated in the center of the AuCl2N2 polyhedron
(the shift in metal atom from the center is equal to 0.042(3) Å and 0.043(3) Å, respec-
tively). The Au–N and Au–Cl distances are 2.016(8)–2.064(7) Å and 2.265(5)–2.278(4) Å
for 1, and 2.051(7)–2.060(6) Å and 2.270(3)–2.283(3) Å for 2, respectively. In the struc-
tures of 1·2CH3CN and 2·2CH3CN, additional intermolecular interactions of the gold(III)
atom can be observed (Figure 1). These are the B–H...Au interaction with the anion
(r(Au...B8) = 3.89(1) Å, AuHB = 138.1(6)◦, and NAuH = 72.4(2)–91.2(2)◦ for 1 and r(Au...B9)
= 3.55(1) Å, AuHB = 123.7(5)◦, and NAuH = 73.4(2)–93.9(2)◦ for 2) and a long Au...Cl bond
(r(Au-Cl) = 3.406(5) Å, AuClAu = 88.2(2)◦, and NAuCl = 82.8(2)–87.7(2)◦) in 1 and Au . . .
Au bond (r(Au-Au) = 3.586(4) Å and AuAuN = 86.6(2)–102.6(2)◦) in 2. Crystal packings of
both compounds are shown in Figures S4 and S5. One of the equatorial BH groups interacts
with the gold(III) atom in both structures.

In the IR spectra of complexes 1·2CH3CN and 2·2CH3CN, a strong splitting of the
band of stretching vibrations ν(BH) is observed near 2500 cm−1, which is explained by
weak interactions found in the structure. A narrow intensive band of bending vibrations
of the BH group with respect to the boron cage δ(BBH) is observed near 1030 cm−1.
Bands ν(CN) assigned to CH3CN molecules are observed near 2300 cm−1. In addition,
bands corresponding to coordinated Bipy and Phen ligands are observed in the region of
1600–700 cm−1.

At room temperature, complexes 1·2CH3CN and 2·2CH3CN are stable both in DMF
solutions (at least for few days) and as solids (for some weeks) following our experimental
data. We did not expose it to higher temperatures; however, based on our previous
data for closely related compounds, we can expect them to show reasonable thermal
stability. Note that cobalt and nickel compounds of the general formula [ML6][B10H10]
(M = Co, Ni; L = DMF, H2O, 1/2N2H4) were used for low-temperature synthesis of metal
borides [58–61]; they contain solvent molecules that can be easily removed when heating.
Thermal stability data of gold complexes obtained here could be interesting because gold
complexes contain metal in a more oxidized form (gold(III)), and in the presence of boron
clusters that act as reducing agents, the obtained compounds should be more power-
consuming compounds.
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4. Conclusions

We studied the reactions of gold(III) complexes [Au(L)Cl2]+ (L = bipy, phen) with hydridob-
orate anions [B10H10]2−, [B12H12]2−, and the macropolyhedral hydridoborate anion [B20H18]2−.
The first gold(III) complexes with a hydridoborate cluster anion [Au(L)Cl2]2[B20H18] (L = bipy,
phen) were isolated and characterized. In the structures of the compounds, the B–H...Au
interactions were observed above the plane of the square-planar AuN2Cl2 coordination
polyhedron.
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