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Abstract: The direct incorporation of Sb(V) ions into a polycondensed silsesquioxane network based
on heptaisobutyl POSS units (Sb(V)-POSSs) through a corner-capping reaction is reported for the
first time in this work. As a reference sample, a completely condensed monomeric Sb(III)-POSS was
prepared using a similar synthetic protocol. The chemical properties of both Sb-containing POSSs
were investigated with different analytical and spectroscopic techniques. The analyses confirm the
success of the corner-capping reaction for both samples and indicate that an Sb(V)-POSS sample is
characterized by a heterogenous multimeric arrangement with an irregular organization of POSS
cages linked to Sb(V) centers, and has a more complex structure with respect to the well-defined
monomeric Sb(III)-POSS.

Keywords: antimony; silsesquioxane; polyhedral oligomeric silsesquioxane; POSS; corner-capping
reaction

1. Introduction

Polyhedral oligomeric silsesquioxanes (POSSs) are a unique class of condensed oligomeric
organosilicon compounds consisting of an inorganic cage and pendant arms (e.g., H or
organic moieties) bound to its apexes. The silicon atoms of the cage are covalently bound
to 1/2 oxygen (sesqui-) and hydrogen or hydrocarbon units (-ane), globally forming a 3D
siloxane (Si-O-Si) skeleton consisting of tetrahedral base units with a generic chemical
formula (RSiO3/2)n, where n = 4–18 and R = H or organic substituents [1–4]. Because of
their unique nature, they are considered to be excellent models for silica surface sites [5,6]
and are very interesting building blocks for the development of hybrid organic–inorganic
materials with well-defined physicochemical properties exploitable in many scientific and
technological fields [3,7–11].

In addition to completely condensed POSSs with a cubic R8Si8O12 structure and an
inorganic cage diameter of 0.5 ± 0.7 nm [1,2], incompletely condensed POSSs containing re-
active silanol groups (Si-OH) (e.g., trisilanol R7Si7O9(OH)3) in their core framework [12,13]
represent a more interesting class of silsesquioxanes, owing to their ability to bind different
functionalities to the inorganic core through reactions with a wide range of organosilanes
or heteroelement precursors, the latter in the form of metal halides or alkoxides [13–16].
In the last few years, POSSs have been combined with several elements, from alkali to
alkaline earth metals [17–21], metalloids [22–25], transition metals [11,16,25,26], and some
lanthanides and actinides [19,27–34]. The construction of metal-containing POSSs [35–37]
is achievable through different strategies: (i) a corner-capping reaction, one of the most
studied in the literature, in which the Si-OH groups of partially condensed POSSs react
with metal ions to generate fully condensed silsesquioxanes [2,38,39]; (ii) a complexation
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reaction, where the hydrocarbon groups bonded to the silicon atoms of the cage coordinate
the metals [40–42]; and (iii) an interaction between the Si-O− units of POSS molecules and
the metal ions [32,34].

Over the years, several elements in group 15 (pnictogens) of the periodic table have
been studied in combination with polysilsesquioxanes and molecular POSSs [43]. Among
them, antimony-containing silsesquioxanes are the most investigated, in particular by
Feher et al. during the decade 1990–2000 [43–45]. In their work, a series of open-corner
cyclohexyl-POSSs were reacted with either (i) a trivalent antimony salt (SbCl3) through a
base-catalyzed corner-capping reaction in benzene at room temperature, giving the corre-
spondent a completely condensed cubic pnictite ester (c-C6H11)7Si7O12SbIII) [44], or (ii) 1–3
equivalents of the organometallic pentamethylantimony (Me5Sb), leading to the formation
of corresponding mono-, di-, and tri- SbMe4-subistited, open-cage silsesquioxides, thus
providing an alternative pathway for the preparation of these types of M-POSSs [45]. For
Sb(V)-POSS, a monomeric structure with three methylated Sb(V) ions directly attached to
three oxygen atoms of the partially condensed silica cage was obtained [45]. Attempted
oxidation of Sb(III) to Sb(V) via ozonolysis in cyclohexyl-POSS samples did not lead to any
experimental evidence regarding its formation [43,44]. To the best of our knowledge, no
attempts have been made to incorporate in a simple synthetic way, without using expensive
organic precursor Sb(V) ions directly in the POSS molecular structure.

The inclusion of Sb(V) and Sb(III) ions in POSS structures could be beneficial for
the preparation of novel flame-retardant and/or fire-resistant micro- and nano-composite
materials. Indeed, silsesquioxanes represent a fascinating 3D hybrid platform for the
preparation of polymer/POSS composite materials with tailored fire-related properties
(i.e., thermal inertia, ignition temperature, etc.) [17,46–49]. Antimony tri- and pentox-
ides, along with trihalides and oxyhalides, are well-known for their fire retardancy or
resistance properties either in combination with halogenated compounds or blended into
suitable composite matrices [50–52] (as halogen-functionalized clays [53] or organoclay
combined with plasticizers in thermoplastic polymers [54]), thanks to the establishment of
synergistic effects.

Based on these considerations, in this work, we propose the direct incorporation
of Sb(V) ions into a polycondensed silsesquioxane matrix through a reaction between
trisilanol heptaisobutyl POSS and antimony pentachloride salt in equimolar amounts
(Sb(V)-POSS, Scheme 1). The preparation was carried out following a corner-capping reac-
tion procedure [27,43–45,55,56] and realized in anhydrous tetrahydrofuran in the presence
of triethylamine. A completely condensed monomeric Sb(III)-POSS was also synthetized
with the same procedure as a reference sample.
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2. Results and Discussion

A pentavalent antimony-POSS sample (Sb(V)-POSS) was prepared by adapting a
corner-capping procedure already used for the preparation of Sb(III)-containing silsesquiox-
anes [27,43–45,55,56]. The experimental parameters, such as temperature and reaction time,
were optimized to achieve a high yield of the materials prepared in this study, while main-
taining a stoichiometric ratio of 1:1 between the starting reactants. In detail, the preparation
of Sb(V)-POSS was performed in a single step, exploiting a base-assisted corner-capping
reaction between the partially condensed trisilanol heptaisobutyl POSS (hib-POSS) and
the Sb(V) pentachloride salt (SbCl5) in an equimolar ratio. The reaction was carried out at
50 ◦C for 4 h in an inert atmosphere (under N2 flow). The reaction mixture was carefully
purified and a final oily orange product was obtained. The same experimental protocol
was used in the preparation of the trivalent Sb(III)-POSS reference.

The chemical composition of the two samples was evaluated by combining elemental
CHN and ICP-AES data. For Sb(III)-POSS, the amounts of Sb(III) and carbon corresponded
to 1.1 and 31.3 mmol/g, respectively. Considering the organic composition of the POSS
unit, it was possible to conclude that each POSS cage was bound to a single Sb(III) ion, with
the formation of a fully condensed monomeric structure, in agreement with the results
obtained by Feher et al. and Alphazan et al. for the preparation of cyclohexyl-POSS and
heptaisobutyl-POSS containing Sb(III) ions through a corner-capping reaction [43–45,55,56].
By contrast, the stoichiometry of Sb(V)-POSS is completely different; the elemental analysis
indicated a carbon/Sb(V) molar ratio value of 88.9, thus suggesting a multimeric structure
of the sample with three POSS cages coordinated with one Sb(V) center.

The structural features of Sb(V)-POSS were analyzed via X-ray powder diffraction
(XRPD) and the diffractogram was compared to that of both Sb(III)-POSS and the open-
corner hib-POSS reactant. The X-ray pattern of Sb(V)-POSS (Figure 1c) was characterized
by two main broad signals centered at 7 and 19◦ 2θ. Compared to the X-ray profile of
hib-POSS (Figure 1a), most of the intense and well-resolved crystallographic signals were
lost after the reaction. This indicated a loss of order in the arrangement of the silsesquioxane
molecules, thus suggesting a mostly irregular rearrangement in the structural network
of the POSS cage linked to Sb(V). A similar behavior was also observed for POSS-based
polysilsesquioxanes functionalized with Eu3+ and/or Tb3+ ions and, more generally, in
silica-based nanostructures possessing some degree of amorphous components [32,34,57].
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Instead, Sb(III)-POSS (Figure 1b) showed a different profile, with the presence of a well-
defined reflection at 8.3◦ 2θ along with several less intense bands at high 2θ values. The
presence of these signals suggested a more orderly assembly of the monomeric Sb(III)-POSS
with respect to the Sb(V)-POSS sample.
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The occurrence of the corner-capping reaction was confirmed through FT-IR spec-
troscopy by dispersing the solids in a KBr matrix (0.5 wt.%). The vibrational spectrum
of Sb(V)-POSS (Figure 2b) was compared to that of both Sb(III)-POSS (Figure 2c) and
the reactant hib-POSS (Figure 2a). The IR spectrum of hib-POSS showed two bands at
3250 cm−1 and at 890 cm−1, assigned to the stretching of OH and Si-OH groups, respec-
tively. Absorption in the 3000–2800 and 1500–1200 cm−1 ranges were attributed to the
stretching and bending vibrations of the isobutyl fractions bound to the POSS cage. An
intense band centered at 1100 cm−1, due to the vibration modes of the Si-O-Si units, was
also detected [58]. After reacting with the metal precursors, the vibrational modes of
isobutyl moieties remained unchanged, denoting a preservation of the organic fraction
of the POSS unit [27,33,56]. Furthermore, the band attributed to the stretching of Si-O-Si
groups appeared to be less intense. This was mainly evident in the spectrum of the Sb(V)-
POSS sample. This latter feature is indicative of a local modification of silsesquioxane cage
symmetry due to coordination with Sb(III) or Sb(V) ions, consistent with existing literature
data on the combination of POSS with several metal centers [29,32,34,59,60]. Finally, the ab-
sorptions at 3250 and 890 cm−1 were eroded and an intense band at 920 cm−1 and 985 cm−1,
attributed to the stretching of Si-O-Sb bonds for Sb(III)-POSS and Sb(V)-POSS, respectively,
appeared evident in the spectra [56]. In general, this information indicates the success of
the corner-capping reaction, with the production of a condensed structure [37,43,61,62].
In the case of the Sb(III)-POSS sample (Figure 2b), the band at approx. 3400 cm−1 was
assigned to the stretching modes of physisorbed water in the matrix. Signals typical of tri-
ethylamine hydrochloride were not present in the IR profiles of either Sb-POSS compound,
thus indicating a complete purification of both reaction products.

The XRPD and FT-IR results are well supported by NMR spectroscopy applied to
1H and 29Si nuclei. Samples were thoroughly dissolved in CDCl3 for all analyses (see
Section 3). The high-resolution 1H NMR spectrum of Sb(V)-POSS (Figure 3c) was compared
to that of both Sb(III)-POSS (Figure 3b) and hib-POSS (Figure 3a). The 1H NMR spectrum of
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hib-POSS showed three main peaks ascribed to the -CH (1.87 ppm), -CH2 (0.61 ppm), and
-CH3 (0.98 ppm) protons of the isobutyl groups bound to the POSS cage (Figure 3a) [13,63].
The same profile was also detected for Sb(III)-POSS (Figure 3b), in agreement with previous
observations by Feher et al. [44,45] and the 1H NMR spectrum of Sb(V)-POSS (Figure 3c)
showed a significant line broadening of the peaks. In addition, a second group of less
intense peaks appeared at low ppm (0.68 ppm), which could suggest the presence of two
different sets of chemically equivalent methylene groups in different chemical surroundings.
The complexity of the structure of Sb(V)-POSS was also confirmed by 29Si NMR data.
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High-resolution 29Si NMR spectra of all compounds provided additional information
on the distribution of silicon sites before and after the corner-capping reaction with anti-
mony ions. As a general note, the 29Si-NMR spectrum of hib-POSS (Figure 4a) showed three
well-defined signals at −58.8, −67.4, and −68.6 ppm (3:1:3 ratio). The peak at −58.8 ppm
was assigned to the three silicon atoms bound to the hydroxyl groups (Si-OH), whereas the
other peaks were ascribed to the remaining silicon sites of the cage [13,27,59,64].

Figure 4. 29Si NMR spectra in CDCl3 of hib−POSS (a), Sb(III)−POSS (b), and Sb(V)−POSS (c).

The absence of the signal at −58.8 ppm in the 29Si NMR spectrum of Sb(III)-POSS
(Figure 4b), along with the presence of a new peak at −68.2 ppm attributed to the Si-
O-Sb(III) sites, verified the formation of a fully closed monomeric structure (Figure 5A),
in agreement with previous literature studies on the preparation of Sb(III)-doped POSS
compounds [44,45,55,56]. Instead, the 29Si NMR spectrum of Sb(V)-POSS (Figure 4c)
appeared to be more complicated, with the presence of several peaks. The signals at low
ppm (from −65 to −70 ppm) were associated with polycondensed silicon sites in different
chemical surroundings, while those between −54 and −60 ppm could be assigned to a
fraction of residual silanols (not clearly detectable in the IR spectrum), which were partially
involved in coordination with Sb(V) [59]. These results supported the elemental, diffraction,
and IR data and confirmed that Sb(V)-POSS is characterized by a more heterogeneous
multimeric structure with different stoichiometry, compared to that of monomeric Sb(III)-
POSS and to the structures reported in the literature [45]. A hypothetical arrangement of
the POSS cages around the Sb(V) site, in analogy to other metal-containing POSS structures
previously reported [64,65], is shown in Figure 5B. This representation is based on the Sb/C
elemental ratio calculated by CHN analysis and corroborated by the NMR DOSY results.
The structures were generated using the Avogadro software (ver. 1.2), optimizing their
geometries with the Universal Force Field (UFF).
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These considerations were also proven with 2D diffusion-ordered spectroscopy (DOSY)
1H NMR spectra collected for the reference hib-POSS and Sb(V)-POSS samples (Figure 6a
and Figure 6b, respectively). The DOSY spectra were recorded in order to determine the
molecular translation diffusion coefficients and to estimate the particle size of both samples
by applying the Stokes–Einstein Equation (1) defined below:

Dt

[
m2/s

]
=

kb·T
6π·η·r (1)

where Dt is the translational diffusion coefficient of the sample analyzed (m2/s), h is the
viscosity of the solvent used in the NMR experiments (CDCl3, 0.510 mPa·s), kb is the
Boltzmann constant (1.380649·1023 J/K), T is the temperature (300 K), and r is the radius of
the spheroidal molecule (Å) [66–68].
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The 1H spectrum of Sb(V)-POSS is reported on the F2 axis and the translational
diffusion constants on the F1 axis (in logarithmic scale, m2/s). For the sake of clarity,
we decided to plot only the 1H NMR spectrum of Sb(V)-POSS on the F2 axis; however,
the data in the 2D image are related to both Sb(V)-POSS and hib-POSS samples. The
spectra in Figure 6 show a set of three signals for both hib-POSS (Figure 6a) and Sb(V)-
POSS (Figure 6b), with a double component visible in the case of the latter. The Dt
values extrapolated by the DOSY NMR data were found to be equal to 5.13·10−10 and
3.16·10−10 m2/s for hib-POSS and Sb(V)-POSS, respectively, corresponding to a particle
radius of 8.4 Å for hib-POSS and of 13.6 Å for Sb(V)-POSS. The mean particle size of the
Sb(V)-POSS compound was around twice that of the POSS reactant. This result confirmed
the existence of a high-molecular-weight multimeric structure for Sb(V)-POSS, compatible
with the presence of three POSS units attached to the metal center (Figure 5B). Moreover, a
second minor component with a lower diffusion coefficient at 0.68 ppm, already observed
in the 1H NMR spectrum, was also observed (Figure 6b).

3. Materials and Methods
3.1. Reactants

Trisilanol heptaisobutyl silsesquioxane (hib-POSS) was purchased from Hybrid Plas-
tics Inc. (Hattiesburg, MI, USA) and stored at 277 K in the refrigerator. Other chemicals were
purchased from Sigma-Aldrich/Merck KGaA (Darmstadt, Germany) and stored at room
temperature (r.t.), apart from deuterated chloroform (CDCl3, 99.8 atom %D), which was
stored at 277 K in the refrigerator. All compounds were used without further purification,
unless stated otherwise.

3.2. Materials
3.2.1. Synthesis of Sb(III)-POSS

The completely condensed Sb(III)-doped heptaisobutyl POSS was prepared through a
corner-capping reaction, inspired by several synthetic procedures adopted in the literature
for the preparation of trivalent antimony-substituted silsesquioxanes [27,43–45,55,56].

In detail, 0.151 g of SbCl3 (0.66 mmol; ≥99.95%) was added with vigorous stirring to a
solution of 0.500 g of hib-POSS (0.63 mmol) in 30 mL of anhydrous distilled tetrahydrofuran
(THF; 0.37 mol; ≥99.9%) in the presence of 544 mL of triethylamine (Et3N; 5.22 mmol;
≥99.5%). The reaction was carefully purged with nitrogen for 10 min. The temperature was
increased to 50 ◦C and the mixture was stirred for 4 h. Afterwards, the reaction mixture
was filtered to remove unreacted reagents and by-products. The filtered solution was
evaporated in vacuo and the resulting solid sample was extracted in chloroform (CHCl3;
≥99.8%) (10 mL + 10 mL of ultrapure water, 3 times); an appropriate amount of sodium
sulphate (Na2SO4; ≥99.0%) was then used to remove any traces of residual water. The
extracted sample was filtered again, evaporated in vacuo, and finally dried overnight in an
oven at 50 ◦C, obtaining a white solid, hereafter named Sb(III)-POSS (yield = 81.7%).

3.2.2. Synthesis of Sb(V)-POSS

Sb(V)-POSS was prepared following the procedure previously described. In detail,
78.5 mL of SbCl5 (0.66 mmol; ≥99.99%), carefully dissolved in 10 mL of anhydrous distilled
THF (0.12 mol), was added with vigorous stirring to a solution of 0.500 g of hib-POSS
(0.63 mmol) in 20 mL of anhydrous distilled THF (0.25 mol) in the presence of 544 mL
of Et3N (5.22 mmol). The reaction was carefully purged with nitrogen for 10 min. The
temperature was increased to 50 ◦C and the mixture was stirred for 4 h. Afterwards, the
reaction mixture was filtered to remove unreacted reagents and by-products. The filtered
orange solution was evaporated in vacuo and the resulting oily sample was extracted in
CHCl3; an appropriate amount of Na2SO4 was then used to remove any traces of residual
water. The extracted sample was filtered again and evaporated in vacuo, obtaining an oily
orange compound, hereafter named Sb(V)-POSS (yield = 62.1%).
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3.3. Analytical Methods

Elemental analyses were performed with an Ametek Spectro Genesis EOP Inductively
Coupled Plasma Atomic Emission Spectrometer (ICP-AES) (Kleve, Germany) equipped
with a cross-flow nebulizer with simultaneous spectrum capture in the 175–770 nm wave-
length range. The compounds were mineralized in a mixture of HNO3 70% and HF 48% at
373 K for 8 h, and then opportunely diluted in 1 wt.% HNO3 solutions before analysis.

CHN elemental analyses were performed with an EA3000 CHN Elemental Analyzer
(EuroVector, Milano, Italy). Acetanilide, purchased from EuroVector (Milano, Italy), was
used as the calibration standard (C % = 71.089, H % = 6.711, N % = 10.363).

X-ray powder diffractograms (XRPDs) were collected on unoriented ground powders
using a Bruker D8 Advance Powder Diffractometer (Karlsruhe, Germany), operating in
Bragg–Brentano geometry with a Cu anode target equipped with a Ni filter (used as the
X-ray source) and a Lynxeye XE-T high-resolution position-sensitive detector. Trio and
Twin/Twin optics were mounted on the DaVinci Design modular XRD system. The X-ray
tube of the instrument operated with a Cu-Kα1 monochromatic radiation (λ = 1.54062 Å),
with the current intensity and operative electric potential difference set to 40 mA and
40 kV, respectively, and with automatic variable primary divergent slits and primary and
secondary Soller slits of 2.5◦. The X-ray profiles were recorded at room temperature in
the 5◦–50◦ 2θ range with a coupled 2θ–θ method, continuous PSD fast scan mode, time
per step (rate or scan speed) of 0.100 s/step, and a 2θ step size (increment) of 0.01◦, with
automatic synchronization of the air scatter (or anti-scatter) knife and slits, and a fixed
illumination sample set at 15 mm.

Fourier-transform infrared (FT-IR) spectra were collected using a Thermo Electron Cor-
poration FT Nicolet 5700 Spectrometer (Waltham, MA, USA) in the range 4000–400 cm−1

with a resolution of 4 cm−1. IR spectra of the solids mixed with potassium bromide (KBr,
0.5 wt.%) pellets were measured in absorbance mode at beam temperature (b.t.). All
spectra were normalized to the intensity of the bending modes of isobutyl groups in the
1500–1200 cm−1 region.

Then, 1D 1H (500 MHz), 29Si-{1H} (99.34 MHz), and 2D DOSY (diffusion-ordered
spectroscopy) 1H Nuclear Magnetic Resonance (NMR) spectra in solution were recorded
at 300 K with a Bruker Advance III Spectrometer equipped with a wide bore 11.7 Tesla
magnet. The 1D experiments were carried out by dissolving an appropriate amount of each
sample (40 mg) in 600 µL of CDCl3 and placing them in 5 mm NMR tubes for analyses.
A 1H-decoupling method was used in 29Si experiments to enhance their signals. The 2D
DOSY 1H experiments were performed by dissolving ~55–65 mg of each sample in 550 µL
of CDCl3. The spectrometer was equipped with a 5 mm double-resonance Z-gradient
broadband probe, with the inner coil optimized for the observation of nuclei between 31P
and 15N and for 19F (BBFO), and a Bruker BVT-3000 unit for temperature control. All
chemical shifts were reported using the δ [ppm] scale and were externally referenced to
tetramethylsilane (TMS) at 0 ppm. Thermogravimetric analysis, TGA, was performed over
a Perkin Elmer 7HT apparatus. Analyses were run under dry air with a heating temperature
program of 5 ◦C min−1, from 50 ◦C to 950 ◦C. Samples of ca. 10 mg were weighed.

4. Conclusions

In conclusion, we report the direct incorporation of pentavalent antimony ions into a
polycondensed silsesquioxane network consisting of heptaisobutyl polyhedral oligomeric
silsesquioxane cages as base units. The synthesis of the Sb(V)-POSS compound was
accomplished through a corner-capping reaction carried out under mild experimental
conditions. A completely condensed heptaisobutyl POSS bound to a single trivalent
antimony ion was also prepared as a reference compound. A detailed investigation of the
chemical properties of the samples was performed through a multi-technique approach.
The ratio between POSS molecules and Sb(V) ions, estimated by CHN and ICP-AES
analyses, suggests the average presence of three silsesquioxane cages linked to one Sb(V) ion.
Infrared analyses confirmed the successful incorporation of the Sb(V) ions into the inorganic
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framework. X-ray powder diffraction studies, combined with 1D 1H and 29Si NMR spectra,
further demonstrate the multimeric nature of the Sb(V)-POSS sample, consisting of an
irregular organization of Sb(V)-linked POSS cores in the final structural network. Moreover,
the molecular size of Sb(V)-POSS was found to be approx. two times greater than that of
trisilanol heptaisobutyl POSS. Future studies will be focused on the application of these
Sb-POSSs as flame-retardant additives for polymeric composites.
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