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Abstract: The prediction of stack output power in solid oxide fuel cell (SOFC) systems is a key
technology that urgently needs improvement, which will promote SOFC systems towards high-power
multi-stack applications. The accuracy of power prediction directly determines the control effect and
working condition recognition accuracy of the SOFC system controller. In order to achieve this goal, a
genetic algorithm back propagation (GA-BP) neural network is constructed to predict output power
in the SOFC system. By testing 40 sets of sample data collected from the experimental platform, it
is found that the GA-BP method overcomes the limitation of the traditional back propagation (BP)
method—falling into local optima. Further analysis shows that the average relative error of GA-BP
has decreased to 1%. The reduction of the relative error improves the accuracy of the prediction
results and the average prediction accuracy. Compared with the long short-term memory (LSTM) and
BP algorithm, the GA-BP prediction model significantly reduces the relative error of power output
prediction, which provides a solid foundation for multi-stack SOFC systems.

Keywords: solid oxide fuel cell (SOFC); artificial intelligence; genetic algorithm; back propagation
neural network; SOFC applications; modeling

1. Introduction

As a representative of electrochemical power generation equipment [1,2], the urgency
of fuel cell technology needs and the uncertainty of global energy security are increasing.
Scientists around the world are actively seeking clean energy that can achieve optimal
conversion efficiency [3,4]. The solid oxide fuel cell (SOFC) has become an attractive option
for electricity generation due to its efficient electrochemical power generation reaction and
environmentally friendly characteristics, with water as the byproduct [5,6]. In order to
enhance its industrialization and promotion, many researchers have developed SOFCs
from single-stack to multi-stack systems, and integrated them with other balance of plant
(BOP) components, forming an independent power generation system that can adapt to
multi-application backgrounds [7,8]. In the current environment, the power distribution
of multi-stack systems and the optimization of system efficiency are still unsolved and
challenging problems. The premise of solving these problems is to accurately predict the
output power of a SOFC stack in the system state [9,10].

In the traditional field of chemistry, modeling is often completed by using mechanism-
based approaches. However, the current approach of predicting energy output power
and efficiency using mechanism-based models is time-consuming due to the process of
mechanism modeling (chemical mechanisms, first-principles equations) and the reliance
on software such as Fluent and Aspen for modeling and efficiency prediction. While
these models provide accuracy, they are inefficient in terms of modeling and prediction.
Additionally, traditional numerical simulations often rely on idealized assumptions; for
example, assuming all gases are ideal gases and there is no heat exchange between the
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system and the surroundings [11]. These assumptions are not suitable for accurately
predicting real-time power generation in a SOFC stack. In contrast, constructing data-
driven prediction models has the advantage of not requiring detailed knowledge of physical
and chemical mechanism equations, thus avoiding the use of modeling software programs
with high requirements for computer memory and graphics cards [12]. These models can
be built using friendly tools such as MATLAB or Python, and the data-driven methods
employed use black-box models, simplifying the technical difficulty.

In the existing field of fuel cell power prediction, the focus often deviates from the
system environment. Due to the effective application of backpropagation (BP) and long
short-term memory (LSTM) in various fields, their predictive capabilities have been widely
recognized [13,14]. Therefore, techniques such as BP and LSTM have been introduced for
predicting the operating conditions of fuel cell stacks [15,16], with data sourced from the
impedance and temperature of the SOFC stack. These methods tend to perform well in
single-input single-output systems but are not suitable for handling strongly coupled and
multivariable systems like the SOFC system. Therefore, there is a need to identify new
data-driven methods that are applicable to the characteristics of the SOFC system.

Through a literature review, it was found that although the integration of genetic
algorithms (GA) and artificial neural networks (ANN) have been widely applied in other
fields [17,18], their application in electrochemical systems is still limited. However, it has
been observed that they have been successfully used for impedance prediction in proton
exchange membrane fuel cells [19]. Additionally, it was found that BP neural networks
have been used in the predictive control of the output voltage of a SOFC system and the
temperature prediction model of a SOFC system [20,21]. Therefore, this study proposes
the use of the GA-BP method to accurately predict the real-time key parameter of power
generation in the SOFC stack under system conditions. This method does not require
assumptions about problems and conditions like mechanistic modeling, and it can provide
predicted operating parameters without complex multi-field coupling condition data and
the relationship between different BOP structures.

In addition, in terms of the characteristics of fuel cells: unlike proton-exchange
membrane fuel cells SOFCs operate at high temperatures, typically between 800 and
1000 ◦C [22,23]. The high operating temperature brings about challenges such as tempera-
ture fluctuations of external gases, parasitic power losses, and internal material damage,
which are difficult to detect in a timely manner. These perturbation factors pose a challenge
for accurately predicting the power output of a SOFC system [24,25]. Currently, in the
system environment, the data-driven model of SOFCs often involves gas flow rate at the
anode and cathode inlets and outlets, load voltage, and stack temperature [26]. However,
there still exist discrepancies between these parameters and the requirements of the entire
system. It is difficult to arrange sensors for flow rate measurements at the stack inlet and
outlet positions in the system environment, and the stack temperature is also difficult to
measure due to the instability of the system environment.

Through an extensive review and synthesis of the literature on the construction of
prediction models and the key data for SOFC systems, a basic understanding of the research
on the prediction of SOFC power generation capacity has been achieved [27–30]. This paper
proposes a novel modeling approach and conducts a comparative study on the power
output of SOFC systems. The main innovations of this paper are as follows:

1. The prediction for SOFC output power utilizes the combustion chamber temperature,
stack temperature, and electrical current as input parameters, with the output power
being the output parameter. This approach is more comprehensive than traditional
approaches to predictive modeling that rely solely on the inputs and outputs of
the stack.

2. The suggested GA-BP algorithm notably enhances the precision of output power
prediction in a SOFC system, thereby providing valuable references for future investi-
gations on forecasting system operating conditions.
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This paper is organized as follows: Section 2 introduces the structural composition
of the SOFC system for experimentation; Section 3 proposes a method of using GA to
optimize the BP neural network; Section 4 constructs the GA-BP model; Section 5 intro-
duces the data acquisition, processing, and model parameter settings for the experiment;
Section 6 compares the prediction results of different models; and the conclusion is pre-
sented in Section 7.

2. SOFC System Architecture

The SOFC system used in this experiment is shown in Figure 1. It mainly includes
the following parts: SOFC stack, evaporator, reformer, air–exhaust gas heat exchanger,
fuel–air heat exchanger, exhaust gas combustion chamber, desulfurizer, dehumidifier, air
compressor, air storage tank, electric lighter, cooling water tank, and monitoring system.
The fuel used in the experiment is natural gas. In the reformer, natural gas undergoes
the following reaction to produce hydrogen gas. The stack used in the system consists of
20 single cells with a size of 13 × 13 cm2, and platinum is used as the catalyst. A typical IV
curve of the stack is shown in Figure 2.

CH4 + H2O→ CO + 3H2

CO + H2O→ CO2+H2
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Figure 1. The SOFC system. Figure 1. The SOFC system.

The simplified model of the SOFC is shown in Figure 3. In the cold box, water and hy-
drogen gas are preheated in the evaporator and then introduced into the reformer chamber,
and another part of the hydrogen gas is burned with air in the reformer combustion cham-
ber to provide continuous high-temperature conditions for the reforming reaction. In the
hot box, the air–exhaust gas heat exchanger exchanges heat between the high-temperature
waste gas from the exhaust combustion chamber and the cold cathode air just introduced
into the system to increase the temperature of the cathode air, so that the temperature of the
cathode air increases to about 600 ◦C after the first heat exchange. The role of the fuel–air
heat exchanger is to exchange heat between the reformed high-temperature fuel and the
cathode air after the first heat exchange, in order to reduce the temperature difference
between the anode gas and the cathode air.
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3. Problem Description and Methodology
3.1. Problem Description

The SOFC system is characterized by the presence of high-temperature and low-
temperature regions. Consequently, determining the operating conditions is challenging,
and the system exhibits a high level of complexity [31]. As a result, accurately predicting
the output power becomes a difficult task. Neural networks have been widely employed for
predicting the output power of SOFCs due to their superior accuracy in handling a complex
system compared to traditional methods. However, existing neural network models often
suffer from lengthy training times and a tendency to become trapped in local minima,
which leads to deviations from the actual situation and hampers the accurate prediction
of SOFC output power. Therefore, substantial improvements and rigorous testing are
necessary to achieve more precise prediction outcomes.

3.2. Methodology

To enhance the accuracy of predicting the output power of SOFCs and mitigate the
potential issue of local optima, the utilization of GA is employed as a means to optimize
the initial weight and threshold of the neural network, thereby minimizing the impact of
random initial weight and threshold values on the final solution. Based on the enhanced
GA-BP, a prediction model is developed with the purpose of forecasting the output power
of SOFC. During the construction of the neural network architecture, the training dataset is
utilized for model training and performance evaluation. By comparing the mean square
error (MSE) and number of iterations of the prediction model established with varying
numbers of hidden layer neurons, the optimal number of hidden layer neurons for the
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prediction model is selected. This would result in an improvement in the precision and
dependability of the prediction model. Subsequently, the prediction model is established
after identifying the most suitable number of hidden layer neurons. Finally, the test dataset
is inputted to the model to obtain the predicted output. The assessment of the prediction
model’s accuracy and reliability involves an analysis and comparison of the discrepancies
between the predicted values generated by the model and the actual values.

4. Model Building
4.1. BP Neural Network

The BP neural network is a neural network architecture consisting of three or more
layers and numerous neurons. These layers include the input layer, hidden layer, and
output layer [32,33]. The BP neural network is advantageous in complex system analyses
due to its ability to learn rules through training and generate output values that closely
match the desired results without the need for predetermined mathematical equations. This
makes it particularly effective in handling nonlinear function relationships. Nonetheless,
it is important to acknowledge that the BP neural network has certain limitations. For
instance, it is susceptible to getting trapped in local minimums during the training process,
which can hinder its accuracy and reliability. Additionally, the training outcomes of the BP
neural network are heavily influenced by the initial random weights. It further limits the
accuracy and reliability in predicting the output power of a SOFC system.

4.2. Genetic Algorithm

GA is a highly effective and parallelized approach that serves as a global search
method. It was designed to replicate the process of biological evolution found in nature.
This algorithm possesses the ability to autonomously acquire and accumulate information
about the search space as it progresses, and it can dynamically adjust its control to ultimately
obtain the optimized solution for the given problem [34].

Compared to traditional optimization methods such as enumeration algorithm and
heuristic algorithm, GA is based on biological evolution. It offers several advantages,
including good convergence, shorter calculation time, and high robustness, especially
when high calculation accuracy is needed. The outstanding advantage of GA is global
optimization [35]. The algorithm possesses the ability to efficiently explore the entirety of
the solution space, avoiding the common pitfall of becoming trapped in a local optimal
solution. The schematic diagram of GA is shown in Figure 4.
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4.3. GA-BP Algorithm Model

The training process of the BP neural network is susceptible to the problem of becom-
ing trapped in local minima. This paper proposes integrating GA with the neural network
to optimize the BP neural network. The objective is to establish a prediction model for
SOFC output power based on GA-BP. This method utilizes the global search capability of
GA to optimize the initial weights and thresholds, thereby overcoming these limitations.
The flowchart depicting the GA-BP algorithm is presented in Figure 5 The specific steps are
as follows [36]:

1. Choice of encoding

For GA, there are two common types of encoding, namely real number encoding and
binary encoding. The binary encoding method is computationally intensive as it requires
frequent encoding and decoding operations. It also has the significant disadvantage of
being prone to the Hamming Cliff, which makes the cross and mutation operation difficult.
Therefore, the real number encoding method is selected for the GA of the SOFC system
output power prediction model.

2. Population initialization

Population initialization is the process of creating an initial group of individuals that
serve as the initial population for an algorithm prior to its execution. This procedure
involves the establishment of the size of the population, the determination of the evolu-
tion times, the determination of the generation gap between the parent strings and their
offspring strings, and the determination of the probabilities of both crossover and mutation
at the individual level. Individuals are potential solutions for a given problem. In this
experiment, the individuals are represented by chromosome strings in real coding form
and can undergo operations such as crossover, mutation, and selection. By calculating the
fitness value of individuals, individuals with smaller errors can be found. Subsequently,
the weights and thresholds are assigned to the BP neural network.

3. Initialize the BP neural network model

This paper utilizes a neural network model comprising three layers. The selection of
the number of neurons in each layer is determined through an analysis of the training data
set from the SOFC system. Empirical Equation (1) determines the number of neurons in the
hidden layer:

k =
√

m + n + l (1)

In the Equation, k denotes the quantity of neurons present in the hidden layer.
m represents the quantity of neurons in the input layer, that is, the number of param-
eters considered as input parameters in the SOFC system data. Similarly, n represents the
quantity of neurons in the output layer, that is, the number of parameters considered as
output parameters in the SOFC system data. Additionally, the variable l is a constant value
that is constrained within the range [0, 1].

4. Designing the Fitness Function

The GA relies on fitness functions to optimize and assess data. Consequently, the
efficacy of GA is intricately linked to the construction of the fitness function. Since the
probability of survival is determined by the fitness function, it is imperative that its value
is positive, thereby promoting competition among individuals. Typically, the fitness value
function is designed based on the optimization objective function. Since the SOFC output
power prediction model requires the prediction output to have high accuracy, the objective
function chosen for this experiment is the MSE between the predicted values and the true
values. The MSE function is represented by Equation (2):

MSE = k
n

∑
i=1

(yi − oi)
2 (2)
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In the Equation, the variable n is the number of training samples. The variables yi
and oi represent the actual value of the neurons and the predicted output of the neurons,
respectively. In the output power prediction model of the SOFC system, yi is the true
value of SOFC system output power, and oi is the predicted value of the output power.
Additionally, the coefficient k is defined as 1/n.

Since the GA selects individuals with higher fitness function values, the fitness value
function uses the reciprocal of the mean square error. This is shown in Equation (3):

f =
1

MSE
(3)

In this way, individuals with higher fitness values are those with smaller mean square
error functions, so the population can evolve towards better values.

5. Selection operation

The primary aim of the selection operation is to identify and select individuals with
superior traits that can be transmitted to future generations through the operation of
crossover and mutation, either directly or indirectly. In determining the selection operation,
the fitness of individuals is a crucial factor in the output power prediction model of the
SOFC system. The likelihood of selection is positively correlated with a higher fitness.
Individuals who possess lower fitness are more susceptible to being eliminated. The relative
fitness is defined using the roulette wheel method. This is shown in Equation (4):

p(xi) =
f (xi)

∑N
j=1 f (xi)

(4)

Among them, p(xi) is the relative fitness of individual xi, which indicates the probability
of that individual being selected. Meanwhile, f (xi) is the original fitness of an individual,
and ∑N

j=1 f (xi) is the cumulative fitness of the population.
According to the probability of each individual’s choice, denoted as p(xi), the roulette

wheel is divided into N sectors. Equation (5) represents the central angle of the i-th sector:

2π
f (xi)

∑N
j=1 f (xi)

= 2π p(xi) (5)

Then, a pointer is set on the roulette wheel. When a selection is made, one can envision
a spinning roulette wheel. If the pointer points to the nth sector after the wheel stops, the
individual is selected as shown in Figure 6.

6. Cross operation

Cross operation is a process in which two individuals are randomly chosen from a
given population, and their chromosomes are exchanged and combined. This procedure
facilitates the transmission of the favorable attributes of the parent strings to the offspring
strings, resulting in the production of new individuals with superior traits. The process
of performing a cross operation between the i chromosome ai and the j chromosome aj at
position r, is illustrated by Equation (6):{

air = air(1− b) + ajrb
ajr = ajr(1− b) + airb

(6)

The equation includes a random number, represented as b, that takes on values ranging
from 0 to 1.

7. Mutation operation

To mitigate the risk of GA converging to a suboptimal solution within the optimization
procedure, so as to improve the accuracy of SOFC system output power prediction, the



Inorganics 2023, 11, 474 8 of 16

incorporation of mutation is imperative to introduce variability among individuals through-
out the search process. In this process, i genes of individual j are selected for mutation,
resulting in a completely new individual, as shown in Equation (7):

aij =

{
aij + (aij − amax)r2(1− g

Gmax
)

2, r ≥ 0.5

aij + (amin − aij)r2(1− g
Gmax

)
2, r ≤ 0.5

(7)

In this Equation, amax and amin represent the maximum and minimum values of the
gene aij, respectively. r2 represents a random number, with a value ranging between [0, 1].
g denotes the current iteration number, while Gmax represents the maximum number of
evolutions. Additionally, r is another random number, with a value ranging between [0, 1].

8. Calculate fitness

In order to evaluate the fitness of a new individual, it is necessary to substitute the
original chromosome with a new chromosome. If the resulting fitness value satisfies
the specified condition, proceed to step 9. If not, return to step 4 to continue the fitness
calculation process.

9. Termination criterion:

a. Reach the maximum number of iterations.
b. The current best solution has either remained unchanged or changed very little

for several consecutive steps.
c. The algorithm has found an acceptable best solution, achieving the perfor-

mance goal.

10. Train

When one of the conditions in step 9 is met, the BP neural network is assigned
optimized weights and thresholds. Subsequently, the network undergoes training using
the training set until the set error is achieved.
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5. Model Settings
5.1. Data Sample

Data samples are obtained at fixed intervals after the start of the power generation
process from the parameter repository of the SOFC system. The collected data samples
include four key parameters, namely combustion chamber temperature, stack temperature,
electrical current magnitude, and output power. In this paper, the first three are taken as
input parameters, and output power is taken as the output parameter to establish the SOFC
output power prediction model based on GA-BP. In the collected data, the temperature
range of the combustion chamber is 750–850 ◦C, the temperature range of the stack is
650–700 ◦C, the electrical current magnitude range is 17–22 A, and the output power is
between 280 and 480 W.

In order to enhance the precision and comprehensiveness of the prediction, this paper
partitions the gathered 240 datasets. A total of 200 sets are randomly chosen as the training
sets for the prediction model, while the remaining 40 sets are set aside as the test sets.
In order to ensure a smooth convergence of the model training process, each parameter
needs to be normalized. This paper utilizes max–min normalization. The equation for the
normalization transformation is presented in Equation (8):

x∗ = (x− xmin)/(xmax − xmin) (8)

In the Equation, xmax and xmin are the maximum and minimum values of the sample
data, respectively. x and x* are the values before and after normalization, respectively.
Reverse normalization is performed after obtaining the experimental results to obtain the
true value.

5.2. Parameter Settings of BP and GA-BP

In this paper, three input parameters and one output parameter were chosen. There-
fore, the neural network in this paper has been configured with three neurons in the input
layer and one neuron in the output layer. Figure 7 depicts the neural network architecture.
Therefore, according to Equation (1) for the hidden layer, the number of neurons in the
hidden layer can be any integer between three and twelve. When the number of hidden
layer neurons is insufficient, it will lead to underfitting and low model accuracy. If the
number of neurons is too high, it tends to lead to overfitting and distortion. To minimize
the influence of the neural network structure on the precision of predictions, we replaced
different odd numbers ranging from three to twelve as the number of neurons in the hidden
layer. By comparing the mean square error and the number of iterations across different
schemes, we can select an appropriate number of hidden layer neurons for the GA-BP
model. The comparison results of different schemes for the number of hidden layer neurons
before inverse normalization are shown in Table 1.
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Table 1. Performance comparison of different numbers of neurons.

Hidden Layer Neuron MSE Iterations

3 0.00061 20
5 0.00052 17
7 0.00074 16
9 0.00085 15
11 0.00085 14

As shown in Table 1, in the range of three to twelve neurons, there is an observed
pattern of initially decreasing and subsequently increasing MSE. As the number of neurons
increases, the number of iterations tends to decrease. In order to ensure the number of
iterations and prediction accuracy of the overall model, the number of neurons in the
hidden layer is finally selected as five.

In the model, the GA parameters are set as follows: the size of the population is 50, the
probability of crossover and mutation is 0.8 and 0.05, respectively. The maximum number
of evolutions is 50, and the generation gap is 0.9. The training parameters for the BP neural
network are as follows: the training times are set to 1000, the activation function is set to
tansig, the learning rate is 0.01, the training goal is 0.0001. Network training utilizes the
Levenberg–Marquardt (LM) algorithm. Table 2 shows the parameter settings.

Table 2. Parameter settings.

Parameter of BP Setting

Training times 1000
Neurons in the input layers 3

Neurons in the hidden layers 5
Neurons in the output layers 1

Activation function tansig
Training function LM

Learning rate 0.1
Training goal 0.0001

Parameter of GA Setting

Size of the population 50
Maximum number of evolutions 50

Crossover probability 0.8
Mutation probability 0.05

Generation gap 0.9
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6. Results and Discussion

The GA-BP model is constructed to test the accuracy of the model prediction by using
the toolbox in the MATLAB platform. Figure 8 displays the prediction results. Figure 9
displays the fit curve and prediction intervals at the 95% confidence level. The relative
error is shown in Figure 10 and Table 3.
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Table 3. Prediction relative error for the three models.

Sample GA-BP/% BP/% LSTM/% Sample GA-BP/% BP/% LSTM/%

1 0.194 0.546 1.278 21 0.305 0.277 0.929
2 0.678 0.095 1.072 22 0.389 0.678 0.595
3 0.141 0.043 0.196 23 0.142 0.201 0.24
4 2.826 3.444 3.128 24 0.041 0.331 0.129
5 1.721 0.565 1.658 25 9.724 15.068 11.053
6 0.461 1.652 1.431 26 0.224 6.14 2.859
7 1.189 0.239 0.631 27 1.292 0.452 0.709
8 0.269 0.603 1.821 28 1.998 2.248 2.049
9 0.622 1.553 1.246 29 1.63 2.335 2.271
10 1.085 0.794 0.137 30 0.359 0.499 0.192
11 0.867 2.703 0.876 31 0.353 1.247 0.323
12 0.884 1.669 0.983 32 0.286 1.282 0.344
13 1.598 2.189 0.641 33 0.121 0.505 0.108
14 0.75 0.095 1.57 34 0.737 1.164 1.839
15 0.439 0.184 1.186 35 0.517 1.443 1.438
16 0.578 0.488 0.14 36 0.021 1.385 1.09
17 1.052 1.523 0.837 37 0.345 0.276 0.522
18 2.822 4.207 2.801 38 0.035 1.575 2.027
19 1.476 1.556 1.903 39 0.282 2.45 2.286
20 1.345 2.09 2.445 40 0.213 2.175 1.517

As shown in Figure 8, the yellow column represents the predicted output power of
the GA-BP model, and the red dot represents the true value. It can be seen that for the
40 test sample points, the predicted values of GA-BP are approximate to the true values,
indicating the accuracy of the GA-BP prediction model.

As shown in Figure 9a, the blue dashed line represents the fit curve of the predicted
output power of the GA-BP model, and the two orange solid lines represent the prediction
interval at a 95% confidence level. It can be seen that the R2 of the GA-BP model is 0.9832,
indicating a strong correlation between the predicted value of GA-BP and the true value.
Furthermore, it can be observed that out of the forty test sample points, only one point is
outside the prediction interval, indicating a low likelihood of the predicted value deviating
from the true value, and in most cases, the predicted values are close to the true values.



Inorganics 2023, 11, 474 13 of 16

Inorganics 2023, 11, x FOR PEER REVIEW 13 of 17 
 

 

As shown in Figure 9a, the blue dashed line represents the fit curve of the predicted 
output power of the GA-BP model, and the two orange solid lines represent the prediction 
interval at a 95% confidence level. It can be seen that the R2 of the GA-BP model is 0.9832, 
indicating a strong correlation between the predicted value of GA-BP and the true value. 
Furthermore, it can be observed that out of the forty test sample points, only one point is 
outside the prediction interval, indicating a low likelihood of the predicted value deviat-
ing from the true value, and in most cases, the predicted values are close to the true values. 

Table 3. Prediction relative error for the three models. 

Sample GA-BP/% BP/% LSTM/% Sample GA-BP/% BP/% LSTM/% 
1 0.194 0.546 1.278 21 0.305 0.277 0.929 
2 0.678 0.095 1.072 22 0.389 0.678 0.595 
3 0.141 0.043 0.196 23 0.142 0.201 0.24 
4 2.826 3.444 3.128 24 0.041 0.331 0.129 
5 1.721 0.565 1.658 25 9.724 15.068 11.053 
6 0.461 1.652 1.431 26 0.224 6.14 2.859 
7 1.189 0.239 0.631 27 1.292 0.452 0.709 
8 0.269 0.603 1.821 28 1.998 2.248 2.049 
9 0.622 1.553 1.246 29 1.63 2.335 2.271 

10 1.085 0.794 0.137 30 0.359 0.499 0.192 
11 0.867 2.703 0.876 31 0.353 1.247 0.323 
12 0.884 1.669 0.983 32 0.286 1.282 0.344 
13 1.598 2.189 0.641 33 0.121 0.505 0.108 
14 0.75 0.095 1.57 34 0.737 1.164 1.839 
15 0.439 0.184 1.186 35 0.517 1.443 1.438 
16 0.578 0.488 0.14 36 0.021 1.385 1.09 
17 1.052 1.523 0.837 37 0.345 0.276 0.522 
18 2.822 4.207 2.801 38 0.035 1.575 2.027 
19 1.476 1.556 1.903 39 0.282 2.45 2.286 
20 1.345 2.09 2.445 40 0.213 2.175 1.517 

 
Figure 10. Prediction relative errors. 

As shown in Table 3 and the purple column in Figure 10, the relative errors of the 
predicted values of the GA-BP model for each test sample point are presented. It can be 
seen that for most of the test sample points, the relative error is within a very small range, 

Figure 10. Prediction relative errors.

As shown in Table 3 and the purple column in Figure 10, the relative errors of the
predicted values of the GA-BP model for each test sample point are presented. It can
be seen that for most of the test sample points, the relative error is within a very small
range, indicating that constructing a GA-BP model to predict the output power of the SOFC
system has high accuracy.

LSTM is a special type of recurrent neural network (RNN) designed to address the
issues of gradient vanishing and exploding during the training of long sequences [37].
LSTM captures and processes long-term dependencies in time series by introducing a gate
control mechanism and cell states. The BP neural network is a feedforward network in
which the output depends solely on the current input, without a gate control mechanism
and cell states. Furthermore, there are differences in their training processes. LSTM uses
the backpropagation through time (BPTT) method to handle time series data, while BP uses
the backpropagation algorithm for training. GA-BP is based on the BP neural network, and
it introduces GA to optimize the weights and thresholds in order to obtain better solutions.

To demonstrate the accuracy of using the GA-BP model to predict the output power
of SOFC systems, the BP model and LSTM model were constructed using the MATLAB
platform. The same data set as the GA-BP model was used for training and prediction, and
the results were compared. The parameter settings of the BP model are consistent with
those of the BP parameter settings in the GA-BP model, and the partial parameter settings
of the LSTM model are shown in Table 4. Figure 8 displays the prediction results. Figure 9
displays the fit curves and prediction intervals at the 95% confidence level. The relative
error is shown in Figure 10 and Table 3.

Table 4. Parameter settings of LSTM.

Parameter Setting

Batch size 30
Neurons in the input layers 3
Number of hidden layers 1

Neurons in the hidden layers 16
Neurons in the output layers 1

Learning rate 0.01
Training times 1000

Optimizer Adam

As shown in Figure 8, the predicted values of these two models are not as close to
the true values as the GA-BP model. As shown in Figure 9, among the fit curves of the
three models, the R2 of the GA-BP model is greater than these two models. Furthermore,
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as shown in Table 3 and Figure 10, the relative error of the predicted values of the GA-BP
model is also smaller in most cases than these two models.

In addition, the MSE, R2, maximum relative error, minimum relative error, average
error, and training duration of the three models are shown in Table 5.

Table 5. Analysis and comparison of the prediction results.

MSE R2 Maximum Error Minimum Error Average Error Training Duration

BP 92.67 0.9573 15.068% 0.043% 1.7% 4 s
GA-BP 35.94 0.9832 9.724% 0.021% 1% 83 s
LSTM 56.50 0.9733 11.053% 0.108% 1.5% 61 s

As shown in Table 5, the MSE, maximum error, minimum error, and average error of
the GA-BP model’s prediction results are also smaller than the other two models, indicating
the accuracy of the GA-BP prediction model.

These experimental results suggest that the three models possess the ability to predict
the output to some extent. However, in comparison to the conventional BP algorithm model,
the prediction accuracy of the GA-BP algorithm model exhibits a significant improvement.
This enhancement can be attributed to the fact that the BP algorithm model generates
random initial weights and thresholds, and employs gradient descent to optimize the loss
function, resulting in the obtained solution being confined to a locally optimal solution. On
the other hand, in the GA-BP model, the initial weights and thresholds of the network are
optimized by GA, thereby circumventing the local optimization of the obtained solution
and substantially enhancing the accuracy of prediction.

In order to further validate the effectiveness of the GA-BP model in this experiment, a
new set of 40 samples was selected. Then, the trained neural network was used to predict
the output power and the results were compared with the actual values. An analysis of the
predicted results is shown in Table 6.

Table 6. Analysis of prediction results.

MSE R2 Maximum Error Minimum Error Average Error

GA-BP 43.82 0.9805 4.325% 0.032% 1.3%

From the data in Table 6, it is not difficult to see that the prediction results of this
model remain accurate even for new values outside the range of the original sample data.

Based on the research results of this article, the proposed GA-BP prediction model for
a single-stack SOFC system output power has certain effectiveness and application value.
Moreover, since SOFC systems often integrate multiple stacks, it also provides guidance
for predicting the output power of high-power multi-stack SOFC systems.

7. Conclusions

In high-power SOFC systems, multiple stacks are inevitable, and the output power
of multiple stacks directly affects system efficiency. Due to a lack of relevant experience,
this article starts with predicting the power output of a single stack in order to provide
guidance for multi-stack systems. SOFC output power is influenced by several key parame-
ters, including stack temperature, combustion chamber temperature, and electrical current
magnitude. By considering these three key input parameters and the output power as the
output parameter, the optimal number of hidden layer neurons can be selected by empirical
equation and experimental method to create the BP neural network. Then, the BP model is
optimized by GA, and the GA-BP model is established to improve the prediction accuracy.
The results obtained from the testing samples show that the prediction model is both stable
and reliable. Compared with the traditional BP prediction model, the R2 of the enhanced
GA-BP prediction model increases from 0.9573 to 0.9832. In addition, the MSE decreases
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from 92.67 to 35.94, the maximum relative error decreases from 15.068% to 9.724%, the
minimum relative error decreases from 0.043% to 0.021%, and the average relative error
value decreases from 1.7% to 1%. Meanwhile, compared to the various indicators of the
LSTM prediction results, it also demonstrates superior performance. The reduction of
these relative errors helps to improve the accuracy of the average prediction results. The
high-precision prediction and modeling of stack output power in the SOFC system pro-
vides an important basis for the development of high-power multi-stack SOFC systems in
the future.
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