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Abstract: We explore the use of industrial sources of silicon and surfactant for obtaining low-cost
MCM-41 materials and evaluate their performances as CO2 adsorbents. All of them presented a high
specific surface area with different structural characteristics and textural properties. Interestingly,
the MCM-41 manufactured with the most economical reagents presented a SBET of 1602 m2·g−1.
The template was removed by using thermal treatments in an air atmosphere or a washing process.
Preservation of silanol groups proved to be more effective under washing or mild thermal treatment
conditions with the advantage of their lower cost and environmental benefit. Surface reactivity
against CO2 was enhanced by anchoring APTS to silanol groups through wet grafting. All amino-
functionalized materials showed a performance as CO2 adsorbents comparable to those reported in
the literature, reaching values close to 30 cm3·g−1 at 25 ◦C and 760 mmHg. Samples with a higher
concentration of silanol groups showed better performance. Our studies indicate that adsorbed
CO2 is retained at least up to 50 ◦C, and the CO2 is chemisorbed on the silica modified with amine
groups. The chemisorbed gas at very low pressures points to the potential use of these materials for
CO2 storage.

Keywords: MCM-41; industrial reactants; silanol group preservation; CO2 capture

1. Introduction

The ongoing challenge of global warming is a pressing environmental issue of sig-
nificant concern. In response to the need to reduce CO2 emissions, the development of
carbon capture and storage (CCS) technologies has emerged as a promising alternative [1].
CCS includes diverse methodologies such as absorption, adsorption, membrane-based
systems, and cryogenic separation [2]. In this context, the application of porous materials
as adsorbents is gaining substantial attraction due to its advantages, including low energy
requirements for adsorbent regeneration, high adsorption capacity, and selectivity for CO2.

Numerous adsorbents have been proposed and developed, such as activated
carbon [3], zeolites [4], mesoporous silicas [5], lamellar double hydroxides [6], metal–
organic frameworks [7], graphene oxide [8], and magnesium oxide-based adsorbents [9].
Among these materials, mesoporous silicas have emerged as particularly noteworthy can-
didates, due to their well-defined pore structures, high surface areas, and chemical surface
compositions, suitable for functionalization with reactive species for CO2 chemisorption. In
particular, amine-modified MCM-41 is effective in capturing CO2, with reported sorption
capacities between 0.87 and 2.41 mmol/g under different adsorption conditions [10–18].
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Nowadays, a persistent challenge involves improving the efficiency of existing adsor-
bents while reducing production costs. Achieving this balance is critical for the widespread
use of CO2 adsorption technologies at an industrial scale. In this regard, considerable atten-
tion has been given to template agent removal procedures. Thermal treatments are proven
to be both fast and effective in removing surfactants, as reported in most of the current liter-
ature that analyses MCM-41 silicas as CO2 adsorbents [10–13]. However, they also produce
the condensation of silanol groups into siloxane bonds when applied at temperatures above
270 ◦C with a detrimental effect on the functionalization capability of the material [19].
Moreover, the combustion of the organic template also leads to CO2 emission, which is
contrary to the potential application of these adsorbent materials [19]. An alternative
consists of the use of washing methodologies for template removal. Conversely, employing
solvents may offer the advantage of retaining these essential groups and avoiding CO2
emissions. On the other hand, inefficient extraction might lead to incomplete template
removal, resulting in materials with diminished surface areas and restricted accessibility
to the silanol groups. In addition, it is necessary to consider the environmental impact of
chemical solvents employed in the washing procedure.

Once the porosity of the MCM-41 silicas has been released, surface modification
becomes necessary to enhance their efficacy as carbon dioxide adsorbents. Among the
different molecules used for this purpose, amines stand out, given their highly selective
CO2 uptake [20]. The 3-aminopropyltrimethoxysilane (APTS) is broadly used, due to its
low cost and relatively small size, for its incorporation into the MCM-41 through two
methodologies: dry grafting [10,12,14–16] and wet grafting [11,13]. It has been proven
that wet conditions promote materials with higher CO2 adsorption capacities. This was
attributed to the role of water in the generation of silanol groups on the silica surface during
the grafting process, which serve as new active sites for the anchoring of 3-aminopropyl
groups [17].

In this work, the use of low-cost industrial sources of silicon and surfactants for
the synthesis of MCM-41 mesoporous silica was explored. An alkaline silicate solution
was used as a source of silicon, and the template consisted of a hydroalcoholic solution
of CTAC that is currently used as a wetting agent in the plastic and textile industry.
Different methodologies for template removal were applied to maximize surface areas
while safeguarding the surface-bound silanol groups, minimizing energy consumption, and
using environmentally friendly reagents. The materials were surface modified by grafting
with APTS to enhance CO2 adsorption properties, and their retentions were evaluated as
functions of temperature by in situ Fourier transform infrared spectra (FTIR).

2. Experimental Procedure
2.1. Materials

The reactants used in this study were tetraethyl orthosilicate (TEOS 98%, Aldrich, St.
Louis, MO, USA), industrial sodium silicate solution (ISS, 27.35 wt% SiO2 and 8.30 wt% Na2O,
Mejorsil, Quilmes, Argentina), hexadecyltrimethylammonium bromide (CTAB 96%, Sigma-
Aldrich, St. Louis, MO, USA), industrial N-hexadecyltrimethylammonium chloride (CTAC,
48–50 wt% CTAC, 30–35 wt% EtOH, and less than 1 wt% N,N-dimethylhexadecylamine
(DMHA), Meranol, Avellaneda, Argentina), sulfuric acid (H2SO4, 98%, Anedra, Los Troncos
del Talar, Argentina), ammonia (25%, Merck, Darmstadt, Germany), absolute ethyl alcohol
(99.5%, Soria Analytical, Buenos Aires, Argentina), and 3-aminopropyltrimethoxysilane
(97%, Sigma-Aldrich).

2.2. Synthesis and Functionalization

Different sources of silicon and structure-directing agents were explored. The samples
were identified considering the silicon source, surfactant, and the thermal treatment used
to remove the template.

The MCM-41 synthesized from ISS and CTAB or CTAC industrial solution was ob-
tained following the methodology proposed by Edler [21]. In a typical preparation, CTAB
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or CTAC was dissolved in deionized water under stirring at 30 ◦C until a clear solution
was obtained. Then, ISS was added dropwise to the mixture under vigorous stirring. After
15 min under stirring, the pH was adjusted using a solution of H2SO4 (10 wt%). The compo-
sition of the obtained gel was 1 SiO2: 0.29 Na2O: 0.25–0.26 CTAB or CTAC: <0.006 DMHA:
1.09–1.27 EtOH: 155.47–156.12 H2O. The mixture was then transferred to a Teflon-lined
stainless-steel autoclave and kept in an oven at 100 ◦C for 4 h. After that, the solid was
filtered, washed with deionized water, and dried at 100 ◦C for 24 h. The samples were
called S-B and S-C, respectively.

A reference sample was prepared by using TEOS and CTAB [22]. The molar com-
position was 1 TEOS: 0.3 CTAB: 11 NH4OH: 58 EtOH: 144 H2O. The medium synthesis
temperature was 30 ◦C. The complete dissolution of CTAB was ensure, and, subsequently,
the silicon source was added dropwise under stirring at 30 ◦C for 2 h. The material was
recovered by filtration and washed with ethanol and then with distilled water. Finally,
excess moisture was removed by drying it at 100 ◦C for 24 h. The sample was called T-B.

The surfactant was removed using different thermal treatments in air: A long treat-
ment (LT, 540 ◦C for 10 h, heating rate 1 ◦C/min) or a short treatment (ST, 510 ◦C for
2 h, 5 ◦C/min). Samples were called S-B-LT, S-B-ST, S-C-LT, S-C-ST, T-B-LT, and T-B-ST,
respectively.

To avoid the condensation of silanol groups induced by thermal treatments [23], a
washing process with ethanol (i.e., solvent extraction) under acidic conditions at 70 ◦C for
40 min was used to remove the template [24]. This procedure was repeated 4 times, mixing
the sample previously extracted with a fresh solvent solution. Finally, the solid was dried
at 100 ◦C for 24 h. The samples were identified by the -W suffix.

Once the surfactant was removed, the materials were functionalized with APTS by the
grafting method reported in reference [13]. The MCM-41 was added to anhydrous ethanol
under stirring for 10 min. Then, distilled water was added under continuous stirring for
30 min. The APTS was added dropwise at 70 ◦C. The mixture was stirred and refluxed for
10 h. The APTS-modified material was obtained after washing with anhydrous ethanol and
drying at 80 ◦C for 12 h. Samples were called S-B-ST-g, T-B-ST-g, S-C-ST-g, and S-C-W-g.

Figure 1 illustrates the different synthesis routes followed in this work.
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2.3. Characterization

The small angle X-ray diffraction patterns (SAXS) were obtained using XENOCS
(Santa Barbara, CA, USA) XEUSS 1.0 equipment with a Pilatus 100K detector with Cu Kα
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radiation (λ = 1.5405 Å). Scanning electron microscopy (SEM) images were acquired on
an FEI (Hillsboro, OH, USA) Inspect S50 microscope operated at 2 kV. The samples were
sputtered with a thin film of gold. Transmission electron microscopy (TEM) was performed
using a FEI (Hillsboro, OH, USA) Tecnai F20 G2 microscope operated at 200 kV. FTIR
spectra were obtained in a Thermo Fisher Scientific (Buenos Aires, Argentina) FTIR Nicolet
iS5 spectrophotometer with an iD5 ATR accessory.

The N2 adsorption–desorption isotherms at 77 K were measured on Micromeritics
(Buenos Aires, Argentina) ASAP 2020 apparatus. Prior to the analysis, the samples were
degassed at 100 ◦C for 12 h under a vacuum of 10−2 mmHg. The specific surface area
was obtained from the gas adsorption isotherms by applying the Brunauer–Emmett–Teller
theory (SBET) and non-local density functional theory (SDFT). The total pore volume (VP)
was estimated using the Gurvich rule at a relative pressure of 0.953 [25]. The pore size
distribution (PSD) analysis was performed using the NLDFT model applied to cylindrical
pores and an oxide surface.

2.4. CO2 Adsorption Testing

The CO2 adsorption/desorption isotherms were measured in Quantachrome (Boynton
Beach, USA) Autosorb iQ model automatic sorption equipment with its control and data
analysis software (ASiQwin 6.0). The samples were introduced into a 12 mm diameter
quartz cell provided for the chemisorption mode. The isotherms were fitted using the
Langmuir isotherm to determine the moles of CO2 sorbed in a monolayer covering the
surface. CO2 isotherms were obtained at 25 ◦C in the pressure range from 10 to 800 Torr.

Diffuse reflectance infrared spectroscopy (DRIFTS) measurements were performed on
a Thermo Fisher Scientific (Buenos Aires, Argentina) Nicolet 6700 with a low-temperature
high sensitivity Thermo Fischer MCT-A detector. This equipment was assembled with a
sealed cell that allowed the treatment of samples with gases at a controlled temperature.
Spectra were taken after dosing 5 Torr of CO2 and then in vacuum at different temperatures
up to 100 ◦C.

3. Results and Discussion

The SAXS diffraction patterns shown in Figure 2 are consistent with the expected 2D
hexagonal structure (plane group p6m) and are indexed accordingly. The samples synthe-
sized with ISS exhibited a higher degree of order. Among them, the one obtained using
CTAC presented broadened reflections. It can be observed that a longer thermal treatment
at higher temperature (LT) produced a slight decrease in the interpore distance from 4.64
to 4.57 nm for the S samples and from 4.02 to 3.83 nm for the T samples. The number
of observed reflections indicated high-quality samples in the bulk analysis, confirming a
well-ordered hexagonal structure.

The SEM images (Figure 3) showed morphological differences depending on the silicon
source. Samples made using TEOS had a spherical shape, whereas those synthesized with
sodium silicate presented a more irregular geometry and a smaller particle size.

In Figure 4, representative TEM images of each sample are shown. Different morpholo-
gies are observed. Samples obtained using ISS tend to present porous structures organized
at different spatial scales. S-C samples presented particles with a bowl shape and shorter
mesochannels compared to samples S-B. Mesochannels in S-C materials are oriented more
randomly than those in S-B samples due to their lengths. Samples T-B have a spherical
shape with a broad particle size distribution and radial mesochannels.
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Before textural analysis, the surfactant elimination was verified by FTIR. Spectra of
the S-C sample before and after removal treatments are shown in Figure 5 (left). Similar
results were obtained for S-B and T-B samples.
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The spectra of as-made samples showed bands attributed to the surfactant at 2854 cm−1,
2925 cm−1, and 1480 cm−1 [26,27]. These bands are assigned to C-H asymmetric stretching
of alkyl chains of CTA cation and symmetric and asymmetric stretching C-H scissoring
vibration of the CH3-N+ group. The absence of these bands after treatments indicated
the removal of the template. Other bands observed between 1224 cm−1 and 795 cm−1 are
assigned to different Si-O modes [28,29]. The preservation of silanol groups was confirmed
by the band at 964 cm−1 (blue line), which corresponds to the stretching vibrations of the
surface Si-O- groups [28,30–32]. Bands observed at 1625 cm−1 and 3400 cm−1 are assigned
to OH bending vibrations and -OH units of adsorbed water and silanol groups [28].

From the point of view of preservation of silanol groups, solvent extraction and
ST treatment seem to be more efficient than the longer one. The incorporation of APTS
molecules was confirmed (Figure 5, right) by the appearance of the bands at 2925 cm−1 and
2854 cm−1 (C-H bonds) and 1642 cm−1 (N-H deformation in RNH3

+) [33].
An indication of the high reactivity of the functionalized material against CO2 ad-

sorption was evidenced by the presence of the band around 1555 cm−1 (C=O stretch),
which is attributed to carbamate formed by the exposure to air [33–35]. The symmetric and
asymmetric stretching modes of CO2

− could be seen around 2349 cm−1, 1386 cm−1, and
1430 cm−1 [20,36].

Nitrogen adsorption and desorption isotherms and the PSD for the synthesized ma-
terials subjected to ST treatment and for their functionalized counterparts are shown in
Figure 6. The main textural parameters obtained from different methods are compiled in
Table 1, with the sample S-C-ST showing the best textural properties.

Nitrogen isotherms from S-C-ST and S-B-ST can be classified as type IV according to
the IUPAC classification, which is characteristic of mesoporous materials. When examining
the curves, two different hysteresis loops can be seen. The first one corresponds to H1 type
and appears at a relative pressure of around 0.35. This can be attributed to a narrow pore
size distribution of the open-ended tubular pores from MCM-41 material framework [25].
The second one extends over the relative pressure range of 0.46–0.95. This hysteresis
loop can be associated with the existence of the porosity observed at a bigger scale, as
revealed in the TEM images. On the other hand, T-B-ST exhibits a type I-like isotherm, as
reported elsewhere [37,38]. Samples S-C-ST and S-B-ST presented a narrow PSD with a
pore diameter of about 4 nm.
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Table 1. Textural parameters for MCM-41 materials obtained from N2 adsorption isotherms.

Sample SBET
(m2/g)

SDFT
(m2/g)

VP
(cm3/g)

DP NLDFT
(nm)

S-C-W 760 608 0.68 3.95
S-C-LT 992 818 0.86 3.95
S-C-ST 1602 1356 1.45 4.10

S-C-ST-g 398 295 0.26 2.24–3.45
S-B-ST 812 673 0.73 3.95

S-B-ST-g 196 152 0.18 2.50–3.60
T-B-ST 1200 886 0.66 2.24–3.10

T-B-ST-g 138 121 0.083 1.77–2.67

After amine modification, the textural parameters decreased significantly. Samples
synthesized using ISS (S-C-ST g and S-B-ST-g) presented isotherms similar to type I, pre-
serving the H4 hysteresis loop. This might suggest a reduction in the MCM-41 channel
diameter. The second loop seems to be preserved. However, T-B-ST-f exhibited a full type I
isotherm commonly attributed to microporous materials, after amine modification, which
agrees with the shift of PSD to lower values. In addition, amine-modified samples did
not display fully reversible isotherms over the complete relative pressure range. A similar
behavior occurs in activated carbons with the only presence of micropores, where the solid
wall potential has a great influence on physical adsorption [39].

Estimating the surface area of adsorbents with mesopores in the range of 20 to 40 Å,
such as MCM-41 and MCM-48, using the BET approach can pose challenges. In this case,
pore filling takes place at pressures very near the range where the formation of monolayer-
multilayer structures on the pore walls occurs. This phenomenon is a consequence of the
growing potential of pore walls during the condensation process [40]. The presence of these
multilayer structures leads to a significant overestimation of the monolayer capacity when
conducting BET analysis. As a response to this challenge, we chose to present the surface
area reported by the NLDFT model. These models account for the increasing potential of
the walls concerning nitrogen adsorption as pore size decreases, thereby yielding more
dependable and accurate surface area results.

3.1. CO2 Adsorption Performance

The CO2 sorption isotherms are shown in Figure 7. In the upper left panel, the
results for different sources of silicon and surfactant for ST samples are compared. The
isotherms are similar to those of type I of the IUPAC classification [41], in which the
sorption of CO2 on the surface can be described without the formation of a multilayer
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for the pressure range up to 800 mmHg. They can be fitted by the Langmuir isotherm,
indicating monolayer adsorption. The physisorption isotherms are nearly identical to the
sorption ones, suggesting that the adsorption is almost completely of a physical nature.
However, all samples exhibited nonreversible isotherms, which might indicate some degree
of CO2 chemisorption. The samples functionalized significantly increased the sorption
of CO2 [42]. The adsorbed volumes are comparable to those found in the literature (see
Table 2). All modified samples exhibited similar adsorption curves, with S-C-ST g material
demonstrating a slightly better performance at higher pressures. This might be due to its
superior textural properties.
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Table 2 summarizes the results for our materials and similar ones reported in the literature.
When available, it can be seen that there is a great variation in the conditions of the studies
and the preparation of reported samples. Our studies presented a slightly better performance
than those carried out at similar conditions of pressure and temperature [10,12,14,15]. Other
studies performed under dynamic conditions led to higher adsorption values [11,13]. In all
cases, textural properties decreased after amine modification.
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Table 2. CO2 adsorption for amine-modified samples and results available in the literature.

Material Amine-Modified
Material CO2 Adsorption Reference

Si Source
SBET

(m2/g)/VP
(cm3/g)

Modification
SBET

(m2/g)/VP
(cm3/g)

Temp. (◦C)
CO2

Pressure
(mmHg)

CO2
Adsorbed
(mmol/g)

MCM-41 ISS 760/0.68 APTS, WG --/-- 25 760 1.29 S-C-W-g
MCM-41 ISS 992/0.86 APTS, WG --/-- 25 760 1.09 S-C-LT-g
MCM-41 ISS 1602/1.45 APTS, WG 398/0.26 25 760 1.28 S-C-ST-g
MCM-41 ISS 812/0.73 APTS, WG 196/0.18 25 760 1.22 S-B-ST-g
MCM-41 TEOS 1200/0.66 APTS, WG 138/0.08 25 760 1.24 T-B-ST-g
MCM-41 -- 997/0.90 APTS, WG 958/0.51 70 114 1.88 [13]
MCM-41 TEOS 1059/0.68 APTS, DG 198/0.13 Room temp. 750 1.15

[10]SBA-15 TEOS 548/0.95 APTS, DG 304/0.55 750 0.93
MCM-41 TEOS 894/1.28 APTS, DG 544/0.74 45 750 0.87 [14]
MCM-41 TEOS 992/0.69 APTS, WG 736/0.37 25 750 2.41 [11]

MCM-41 -- 1031/0.90 APTS, DG 17/0.04
20 750 1.07

[12]30 750 0.96
MCM-41 TEOS 1045/2.59 APTS, DG --/-- 30 750 1.20 [15]

MCM-41
Sodium
silicate
Merck

864/0.62 APTS, DG 207/0.13 30 3.8 0.39
[16]

SBA-15 TEOS 782/0.73 APTS, DG 280/0.29 60 114 1.06

SBA-15 TEOS 766/1.32
TRI-s, DG 177/0.49

25 760

1.30

[17]
TRI-s, WG 112/0.31 1.66

Bimodal
silica

TEOS 612/1.59
TRI-s, DG 203/0.96 1.73
TRI-s, WG 71/0.56 1.96

Hierarchically
Ordered
Porous
Silica

TEOS 1045/0.58 APTS, DG 781/0.45 0 750 1.98 [18]

APTS: aminopropyltrimethoxysilane or aminopropyltriethoxysilane; TRI-s: N1-(3-
Trimethoxysilylpropyl)diethylenetriamine; WG: Wet grafting; DG: Dry grafting; ‘--’: No data available.

In the upper right panel, the effects of the method used to remove the surfactant on
the CO2 sorption isotherms are compared. The long treatment has a deleterious effect on
the CO2 adsorption performance. This might be attributed to a diminished concentration
of silanol groups on the surface. Interestingly, the S-C-W g sample has a very similar
performance to the S-C-ST-g, with considerable economic and environmental benefits. The
better performance of -ST and -W samples can be rationalized based on the stronger Si-OH
signal observed in FTIR and the employed wet grafting methodology, which induced
the formation of new silanol groups helping to create new active sites for aminopropyl
anchoring [17].

Figure 7 (left lower panel) shows the sorption isotherms of three consecutive cycles
for the S-C-ST g sample. The adsorption and desorption are comparable. A progressive
small difference in chemisorption with cycles is observed, which would reflect a greater
number of adsorption sites. This result may be attributed to the progressive removal of
surface residue from the surface occupied by active sites for adsorption, added to the fact
that the binding of the amine responsible for this chemical adsorption is strongly anchored
to the surface of the MCM-41, which is consistent with the existing literature [43].

Upon exposing the sample S-C-ST g to adsorption at different temperatures (Figure 7,
right lower panel), it is observed that the combined adsorption decreases slightly between
25 and 50 ◦C, whereas the chemisorption increases fivefold. As the adsorption temperature
is raised to 60 ◦C, the combined adsorption decreases remarkably, and chemical adsorption
is reduced almost to zero. The adsorption energy decreases with increasing temperature;
however, it appears that there is a competition between this physical phenomenon and the
phenomenon of chemical adsorption, the latter being favored in the range of 25–50 ◦C.
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3.2. FTIR with In Situ CO2 Adsorption

FTIR measurements were carried out to assess CO2 retention at different temperatures,
Figure 8. The amine-modified samples (S-C-ST-g, S-B-ST-g, and T-B-ST-g) were exposed to
a controlled atmosphere of CO2 (Figure 8 left), and then the spectra were acquired under
vacuum at different temperatures. The spectra corresponding to 50 ◦C and 100 ◦C are
shown in Figure 8 (right).
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Figure 8. (Left) FTIR spectra at 5 Torr of CO2; (Right) Spectra acquired at 50 ◦C (black) and
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In all cases, the band attributed to the CO2 gas phase at 2345 cm−1 [36] is ob-
served under the 5 Torr of CO2 atmosphere. Additional bands are visible in the range
1700–1400 cm−1 [20,34,35,44], which could be assigned to the species formed from CO2
chemisorption on -NH2 groups. Bands at 1500 cm−1 and 1625 cm−1 are associated with
-NH3

+ deformation [35]. In the as-made samples, we did not observe bands in this range.
It can be concluded that there is no CO2 chemisorption on the MCM-41 surface with-
out aminopropyl groups. It is corroborated that CO2 is retained at least up to 50 ◦C, in
agreement with adsorption measurements.

In summary, the response of the functionalized materials shows sensitivity to CO2
adsorption at very low pressures. This adsorption is retained after high vacuum evacuation
at 25 ◦C. Furthermore, upon heating the sample to 100 ◦C, the bands corresponding to
chemisorbed CO2 disappear.

4. Conclusions

In this work, inexpensive MCM-41 materials were synthesized successfully using
different sources of silicon and surfactants of industrial origin. Surface reactivity was
preserved by using gentle methods of template removal, which are environmentally sus-
tainable and implies reducing costs. All of them presented a high specific surface area,
but the structural features depended on the reactant nature. Amine-modified materials
presented a CO2 adsorbent capacity comparable with other systems previously reported.
The retention of chemisorbed gas at least up to 50 ◦C at very low pressures suggests the
potential of these materials for CO2 storage. These results combined whit the simplicity of
fabrication of the porous materials for the CO2 sorption constitute a low-cost alternative.
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