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Abstract: This study focuses on the development of a Ca-Bi-O system (CBO) with efficiency in the
degradation of Rhodamine B, which is extremely toxic to many organisms and can have long-term
negative consequences if not safely removed from the water. The conventional precipitation method
was used to create a stable phase of Ca2Bi2O5 with a stoichiometric 1:1 molar ratio of Ca:Bi. Before
obtaining the pure phase, the details of the reaction processes were investigated and the various
intermediate products were identified using X-ray diffraction followed by Fourier transform infrared,
UV-Vis, and Raman spectroscopy. An ab initio calculation evaluated with the HSE06 functional yields
a band gap of 3.5 eV, similar to the band gap obtained by diffuse reflectance recorded on Ca2Bi2O5.
This newly synthesized compound is addressed to the environmental application by investigating
the photocatalytic properties of CBO materials obtained at different calcination temperatures. The
investigation of pure Ca2Bi2O5, with characterization techniques and complemented by new first-
principles calculations to investigate the photocatalysis provide valuable new insights for this scarcely
studied yet potentially interesting compound.

Keywords: CBO materials; precipitation synthesis; photocatalytic activity; XRD; phase transition

1. Introduction

The problems associated with an increased population density, global climate change,
and natural resource depletion are reflected in all scientific fields [1]. In chemistry, the
principles that underpin sustainable chemical development [2] (green chemistry) have
imposed the need to identify innovative materials [3], processes, and products for reducing
the consumption of reactants and energy in chemical processes, reducing toxic chemical
emissions in the environment, and expanding the use of renewable resources [4]. Because
of the activities of the population in big cities and the high demand for food production
by the agro-food industry, there has been an increase in concern for various pollutants
in recent decades. Environmental impacts in air, soil, and water have been observed in
specific locations [5,6]. Contaminants are released into the atmosphere, water, and soil
and being absorbed by organisms. They are responsible for serious diseases, such as
irreversible immune system damage, cancer, genetic disorders, and ovarian toxicity [7–9].
Dyes, for example, are used in the paper, textile, and food industries and in medicine
for histological specimens and cosmetic products. The EU member states have reported
the presence of dangerous dyes in foods, such as chili powder, curry powder, processed
products containing chili or curry powder, sumac, curcuma, and palm oil. One of the dyes
used is Rhodamine B, a potentially genotoxic and carcinogenic dye. Advanced devices
and techniques for dye degradation and monitoring are required for population safety
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and security. Photocatalysis is an ideal technology that has the potential to be one of
the most significant contributors to the transition to a greener lifestyle. Photocatalysts
have great potential due to the sun’s virtually limitless energy source. Organic waste
degradation is a major application area for photocatalysts. Photocatalytic decomposition of
toxic water pollutants can be a cost-efficient and simple way to clean up environmental
systems. Scientists have been drawn to bismuth-containing semiconductor materials in
recent decades due to their high photocatalytic activity in various reactions combined
with their high efficiency in the photoelectric conversion of solar energy. Photocatalysis
technology will be an important tool for removing organic pollutants from the environment.

Semiconductor-based photocatalytic systems have recently received increased at-
tention for their ability to degrade organic molecules, but not limited to their rapid
speed and efficiency. There has been an abundance of work done with various systems,
such as CaBi2O4 [10,11], CaBiO3 [12,13], Ca6Bi6O15 [14], Ca4Bi6O13 [15], CaBi6O10 [16],
Ca3Bi8O15 [17], CaBi2O6 [18], and Ca5Bi14O26 [19], but less on Ca2Bi2O5. Further, Table 1
presents the degradation efficiency of various contaminants over CBO materials investi-
gated in other studies.

Table 1. Scientific literature review for photocatalytic degradation of various contaminants over
CBO materials.

CBO Type
Catalyst

Concentration
(ppm)

Contaminant
Type

Volume (mL) and
Concentration (ppm)

of Contaminant

Degradation
Efficiency of

Contaminant (%)

Irradiation
Source Source

CaBi6O10/Bi2O3 10 Methylene blue 300 mL of 1 ppm

97% after
180 minutes of

irradiation and 1 h of
adsorption

Visible light
irradiation [16]

CaBi6O10 10 Methylene blue 300 mL of 1 ppm

75% after
180 minutes of

irradiation and 1 h of
adsorption

Visible light
irradiation [16]

CaBiO3 300 Ciprofloxacin 100 mL of 10 ppm

90.5% after
90 minutes of

irradiation and
15 minutes of

adsorption

Solar light
irradiation [12]

CaBiO3 300 Tetracycline 100 mL of 30 ppm

68.6% after
90 minutes of

irradiation and
15 minutes of

adsorption

Solar light
irradiation [12]

CaBi2O4−x 1500 Methylene blue 100 mL of 16 ppm

100% after
75 minutes of

irradiation and
30 minutes of

adsorption

Visible light
irradiation [20]

Ca2Bi2O5 167 Methylene blue 300 mL of 10 ppm

87% after 40 minutes
of irradiation and

30 minutes of
adsorption

Visible light
irradiation [21]
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Table 1. Cont.

CBO Type
Catalyst

Concentration
(ppm)

Contaminant
Type

Volume (mL) and
Concentration (ppm)

of Contaminant

Degradation
Efficiency of

Contaminant (%)

Irradiation
Source Source

Ca2Bi2O5 167 Rhodamine B 300 mL of 10 ppm

93% after
120 minutes of
irradiation and
30 minutes of

adsorption

Visible light
irradiation [22]

Ca2Bi2O5/0.1α-
Bi2O3

167 Rhodamine B 300 mL of 10 ppm

100% after
60 minutes of

irradiation and
30 minutes of

adsorption

Visible light
irradiation [22]

CaBiO3 900 Cr(VI) 100 mL of 364 ppm

94% after
120 minutes of
irradiation and
45 minutes of

adsorption

Visible light
irradiation [13]

Thus far, the following methods have been used by other researchers for the prepara-
tion of Ca2Bi2O5: sol-gel method (from Ca(NO3)2, Bi(NO3)3 with citric acid and polyvinylal-
cohol [21,22] or sorbitol [23]) mechanochemical ceramic method (from CaO and Bi2O3) [24]
and solid-state reaction (from CaCO3 and Bi2O3 in the presence of NaCl and KCl [14,25] or
without [15,26–28]). In this study, we obtained Ca2Bi2O5 at 725 ◦C through a fast precipita-
tion method starting with equal volumes of ammonium oxalate and acidified Ca-Bi nitrate
aqueous solutions stirred for 1 h to make the solution homogeneous. The whole process is
described in the preparation from Section 4.1. From what we know, there are no other stud-
ies on obtaining CBO by the precipitation method. We add novelty also with the calculation
of the band gap based on the DFT framework using the Heyd–Scuseria–Ernzerhof (HSE)
hybrid functional approach [29], calculations which have never been performed until now.

2. Results

In this study, we obtained CBO by the precipitation method using ammonium oxalate
and Ca-Bi nitrate aqueous solutions as the reactants. The molar ratio of ammonium oxalate
and Ca-Bi nitrate was 2:1 and the molar ratio for Ca-Bi nitrates was 1:1. The obtained
powder was calcined at 450 ◦C, 600 ◦C, 725 ◦C, and 775 ◦C, and all the intermediate phases
were characterized. Additional details of the synthesis are presented in Section 4.1.

2.1. X-ray Diffraction

The composition at 450 ◦C consists of two phases: Bi2O3 and CaCO3 indexed in the
database by PDF 01-074-1374 and 01-085-1108, [30] respectively. At a temperature of 600 ◦C,
the composition has a two-phase composition of Bi2O3 and Ca2Bi2O5. At 725 ◦C, the
composition becomes single-phase. This can be seen from XRD (Figure 1). On the XRD
patterns of these samples, there are pronounced reflections belonging to Ca2Bi2O5 indexed
by PDF 00-042-1438. A triclinic cell was found with space group P-1, a = 10.14, b = 10.11,
c = 10.47A, α-107.13, β = 116.91, and γ = 92.96◦, with a volume of 893 cm3 for the Ca2Bi2O5.
We tested the catalyst at 775 ◦C to verify if the structure was changing. As we could observe,
the structure was stable.

The XRD analysis confirmed that the samples calcinated at 725 ◦C and 775 ◦C were
well-crystallized and can be indexed in the Ca2Bi2O5 structure according to JCPDS card
no. 00-042-1438.
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Figure 1. XRD diffractograms of CBO samples calcinated at different temperatures.

The samples calcinated at 450 ◦C and 600 ◦C were not single phase; hence, in order
to compare the crystallite sizes we calculated the diameter for the samples calcinated at
725 ◦C and 775 ◦C from the first 10 highest peaks of both samples. The average of the
calculated crystallite sizes were 40.22 nm for the Ca2Bi2O5 sample calcinated at 725 ◦C and
47.21 nm for the Ca2Bi2O5 sample calcinated at 775 ◦C.

2.2. FT-IR Analysis

Because each building block and each chemical bond has a distinct vibrational fre-
quency that can be thought of as their fingerprint, FTIR is an effective tool for characterizing
the structure. A molecule’s chemical bonds can be identified using FTIR by creating an
infrared absorption spectrum. At room temperature, FTIR spectra were used to identify
both the building blocks and the chemical bonds within the studied samples. The FTIR
spectra presented in Figure 2 of the CBO samples prepared at various temperatures of
450 ◦C, 600 ◦C, 725 ◦C, and 775 ◦C, were recorded in the range of 400–4000 cm−1 in order
to gather information on the presence of functional groups.
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According to the FTIR results, some observations can be made:

• All samples present broad absorption bands at 3426 cm−1 and 1635 cm−1 due to the
stretching and scissoring vibrations of the adsorbed water;
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• The peaks from 1422 cm−1, 873 cm−1, and 713 cm−1 are specific for asymmetric
C-O stretching, out-of-plane vibration, and in-plane vibration from the traces of
trapped carbonate-based compounds that result from the decomposition of oxalates,
respectively. This decreases with temperature [31]. The peak from 1795 cm−1 can also
be attributed to calcite [32];

• The 400–650 cm−1 domain, attributed to the Bi-O and Ca-O vibrations, shows that
between 450 and 650 cm−1 a structuring of the crystal lattice takes place. The IR
absorption spectra of the samples contained additional absorption bands specifically
for Ca2Bi2O5 at 428, 449, 492, 522, and 622 cm−1, corresponding to the vibrations of
the Bi–O and Ca–O bonds [33];

• The peak from 3640 cm−1 can be attributed to the OH stretching vibration from a trace
of the hydroxy compound formed with water from the atmosphere [31,34]. When
CBO particles’ highly reactive surface areas are exposed to air during calcination, CO2
and H2O are formed and then adsorbed as free -OH and carbonate species on the CBO
surface. The stretching vibration of water can also indicate the adsorptive properties
of the materials. In the heterogeneous catalysis, adsorption is an important step as it
precedes the chemical reaction on the catalyst surface and facilitates the reaction path
on the active sites [35,36].

2.3. Raman Shift Spectroscopy

Raman analysis was used to investigate the ionic bonding that could not be detected
by FTIR. The presence of fingerprint modes in the samples of the Raman spectra enhanced
the powder X-ray diffraction results. The Raman spectra of the CBO calcinated at 450 ◦C,
600 ◦C, 725 ◦C, and 775 ◦C are shown in Figure 3 with the inset of CBO-450 compared with
the recorded spectra of CaCO3.
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Figure 3. Raman spectra recorded vs. wavelength for the CBO at different temperatures; in the inset
is the calcite spectra recorded versus CBO-450.

The sample calcinated at 450 ◦C composed from Bi2O3, calcite, and Ca2Bi2O5 shows
several strong Raman bands corresponding to different phases of these mixed metallic ox-
ides for the lattice modes as well as for the internal species at 292, 350, 436, and 490 cm−1 [37]
whereas pure Ca2Bi2O5 shows strong peaks at 583 and 625 cm−1, which are attributed
to the Ca–O bond vibration from Ca2Bi2O5 [15]. It is important to note that some high
frequency modes appear in the spectra of the calcium bismuth oxides similar with Sr2Bi2O5,
as reported by Zhang et al. [38].

The CBO peaks increase with increasing calcination temperature, which is consistent
with the XRD results. The peak at 1083 cm−1 was observed for the CBO-450 sample, which
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is attributed to calcite and recorded separately in order to compare. The peak intensity
disappeared with calcination temperature, which can also be observed in the XRD results.
However, the TG-DTA results presented in Section 2.6 indicates the absence of weight loss
when the temperature is higher than 664 ◦C, thereby excluding the possibility of CaCO3 or
Ca(OH)2 formation. This analysis is also confirmed by Raman.

No significant modification of the spectral feature, except a slight frequency shift, is
observed for the same set of mixed oxides by increasing the calcination temperature from
725 ◦C to 775 ◦C.

2.4. Ultraviolet-Visible Spectroscopy and Ab Initio Calculations

The acquired diffuse reflectance spectrum was converted to a Kubelka–Munk function.
The band transition shows a close dependence on n, that is, direct allowed (n = 1/2)

and indirect allowed (n = 2) transitions. The CBO has a direct allowed type because the
best fit is obtained when n is 1/2. The comparison of the estimations of band energies on
Equation (2) with n = 1/2 are as shown in Figure 4a. We can observe a minimum band gap
of 2.8 eV for the CBO containing intermediate phases of Bi2O3 and Ca2Bi2O5, resulting in
absorption of visible spectra, while for CBO-450 the calculated band gap was 3 eV.
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Figure 4. (a) The plot of (αhν2 vs. (hν)) with optical band gaps determination; (b) the band gap of
CBO-450 and CBO-600.

Where multiple phases or a mixture are present in the same sample, both direct and
indirect optical band gaps can be present [39]. The fundamental absorption edge has been
identified from the Kubelka–Munk function. We can estimate an indirect allowed transition
for CBO-450 of 2.8 eV while for CBO-600 it is 2.2 eV, as represented in Figure 4b.

We are not aware of any publications presenting first principles calculations on this
compound, but there is an entry in the Materials Project database [40]. This entry shows
the compound is nonmagnetic and on that basis, we considered calculations without spin
polarization and represented the structure in Figure 5a. We calculated the density of states
(DOS) in Figure 5b to obtain the band gap using the HSE06 [29] hybrid functional as
implemented in Quantum ESPRESSO [41,42]. HSE06 mixes exact (Fock) exchange with the
PBE functional.

The results are generally more accurate than those obtained with PBE or other semi-
local functionals. The band gap increases and usually becomes closer to the true values. The
self-consistent field (scf) calculation used the SG-15 optimized norm-conserving Vanderbilt
(ONCV) pseudo-potentials [43], an energy cutoff of 60 Ry, a 4 × 4 × 4 uniform Monkhorst–
Pack k-points grid, and a Gaussian smearing of 1 mRy for Brillouin zone integration.
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Figure 5. (a) Structure of Ca2Bi2O5 visualizations; (b) Total density of states calculated with
HSE06 functional.

The DOS calculations use the scf calculation results. The DOS is constructed with
an energy step of 1 meV and a simple Gaussian broadening of 2 mRy. The energy cutoff,
k-points grid, and other parameters used in the HSE06 functional (q-mesh for the sam-
pling of the Fock operator and energy cutoff for the exact exchange operator) were tested
for convergence.

A very slight change in the DOS was only seen between the calculations with 3 × 3 × 3
and 4 × 4 × 4 k-points, with no change in the band gap. As a check, we also calculated
the DOS with the PBE semi-local functional, obtaining the same DOS shape and band gap
(2.5 eV) as in the Materials Project database [40]. The HSE DOS is shown in Figure 5. The
zero of energy is set to the valence band maximum. The band gap of 3.5 eV is seen.

2.5. Scanning Electron Microscopy Coupled with Energy Dispersive Spectral Examination and
Inductively Coupled Plasma—Optical Emission Spectrometry Analysis

Figure 6 shows the scanning electron microscopy (SEM) images of calcium bismuthate-
synthesized particles, demonstrating that the particles’ composition defines not only their
crystal structures but also their surface morphology. The sample’s energy dispersive
spectral examination at several sites verified the close-to-1:1 molar ratio of Ca:Bi. The
inductively coupled plasma—optical emission spectrometry (ICP–OES) results are also
shown in Table 2.

Table 2. The sample’s energy dispersive spectral examination at several sites, verified by ZAF
quantification and ICP results.

EDAX ZAF Quantification (Standardless)

Element Normalized Wt % At %

O K 14.29 56.43
CaK 13.87 21.86
BiL 71.83 21.71

ICP

Element Molar Ratio

Ca 1
Bi 1
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Figure 6. SEM pictures recorded for (a) CBO-600 at 10 µm, (b) CBO-725 at 10 µm, (c) CBO-725 at
5 µm, and (d) CBO-775 at 5 µm.

The synthesized CBO composites have a similar Bi-to-Ca molar ratio (1:1), indicating
that the calcination temperature has a negligible effect on the element concentration.

It can be seen from the SEM images that the resulting samples of the calcium bis-
muthates are powder agglomeration composed of particles with sizes of around 700 nm.
The particles of Ca2Bi2O5 calcinated at 600 ◦C and 725 ◦C show similar aspects: sizes of the
particles are under one micron with dumbbell-shaped morphology for particles that may
increase the specific surface area.

2.6. Thermal Analysis

Thermal analysis provides information on the transformations that occur during
thermal treatment of the precalcinated CBO sample in a temperature range of 25–800 ◦C.
The evolution of mass loss during heat treatment at 450 ◦C for the calcinated sample is
depicted in Figure 7. Certainly, no mass loss should be observed under 450 ◦C.

The TG curve of the sample shows that the total mass loss of the sample is 14.7% and
occurs in three steps between 450 ◦C and 660 ◦C.

The first step is up to 550 ◦C with a slight mass loss of 2.4%. The second step is between
550 ◦C and 602 ◦C with a mass loss of 4.3%, accompanied on DTA by an endothermic peak
at 577 ◦C. The third step takes place between 602 ◦C and 660 ◦C with the greatest mass loss
of 7.9%, with an endothermic peak at 641 ◦C.

After 660 ◦C, no mass loss is observed. In all these steps, the mass loss is attributed to
the release of CO and CO2 by the decomposition of carbonate-based compounds formed
by thermal degradation of oxalates.
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2.7. Catalytic Experiments

Figure 8 demonstrates the ability of all CBO materials to degrade the contaminant
during 90 minutes of dark condition followed by 90 minutes of solar irradiation. It can be
noticed that after 90 minutes of dark condition, the RhB decolorization percentage is almost
the same (around 18%) for CBO-600 and CBO-725 as well as CBO-725 in acidic conditions,
whereas CBO-775 contributes to a lower RhB decolorization (12%) in acidic conditions.
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Figure 8. RhB degradation in terms of absorbance ratio for 30 mL RhB solution (of 1.5 ppm initial
concentration) over CBO materials (with concentration of 1 g L−1) at pH = 2 and pH = 5 under
continuous stirring.

After the dark condition and solar irradiation treatments, RhB removal from the solu-
tion increases in the following order: 35.5% (CBO-600) < 39.65% (CBO-725) < 50% (CBO-725,
pH = 2) < 52.5% (CBO-775, pH = 2). The pH change leads to an enhanced RhB removal
when compared with experiments carried out at a normal pH, which is given by two in-
volved processes: RhB photolysis in an acidic medium and photocatalytic degradation. No
degradation of RhB occurred during the exposure to solar irradiation without a catalyst at a
normal pH while the addition of nitric acid facilitated RhB degradation by photolysis. This
can possibly be explained by the fact that nitric acid/nitrates are photochemical reactive
species that generate nitrogen oxides and hydroxyl radicals under solar irradiation [44–46].
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As hydroxyl radicals are strong oxidants, they react with the dye molecules conducting
the dye degradation by photolysis [47]. While the share given by the photolysis of RhB
was 29.2% after 90 minutes of dark condition and 90 minutes of solar irradiation, the effect
given by the catalysts at pH = 2 accounts for 23.22% for CBO-775 and 20.72% for CBO-725.

Figures 9 and 10 present the degradation of RhB (expressed by the A/A0 ratio) for
CBO-600 and CBO-725 at normal pH and for CBO-725 and CBO-775 at pH = 2 together
with a linear plot of the data under a pseudo-first order reaction in order to emphasize and
compare the results obtained in the same conditions.
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pseudo-first order kinetic curve.

The fitting parameters (the pseudo-1st order reaction rate constant, k, and regression
coefficient, R2) were determined by plotting ln(A0/A) vs. time and are presented in Table 3.
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By comparing the constant rate values for the experiments carried out at normal pH, it is
illustrated that the RhB degradation rate is higher for CBO-725. Similarly, the rate constant
is higher for CBO-775 when compared to CBO-725 at pH = 2.

Table 3. Kinetic parameters resulting from the linear plotting of the first order reaction for the
photodegradation of RhB over all materials.

Catalyst
Fitting Parameters (First Order Reaction)

k (min−1) R2

pH = 5
CBO-600 0.0027 0.9999
CBO-725 0.0036 0.9978
pH = 2

CBO-725 0.0053 0.9830
CBO-775 0.0069 0.9973

The absorbance peaks of RhB were recorded during the catalytic experiments (ad-
sorption and photocatalytic reaction carried out for different periods of time) and are
represented in Figures S1 and S2 (see Supplementary File) by overlapping the spectra in
the wavelength range between 460 nm and 620 nm. These time-dependent spectra are
represented up to minute 90, 120, or 180, which indicate that the photocatalytic reaction
can be maintained for longer periods as the RhB photodegradation progresses after minute
90. Therefore, at pH = 5, the RhB degradation increased from 35.5% (at minute 90) to 46.7%
after 30 minutes of the reaction for CBO-600 (Figure S1a) and from 39.65% to 43.16% (at
minute 120) and to 50.17% (at minute 180) for CBO-725 (Figure S2b). The degradation
percentage was calculated based on the absorbance values recorded at the maximum ab-
sorption wavelength of RhB (λmax = 554 nm) and with Equation (3), as described in the
Section 4.2.

For the experiments performed in an acidic medium (Figure S2), the pH change led to
a shift of the RhB absorbance peak from lower to higher wavelength values, which based
on other studies is explained by the carboxylic group dissociation of RhB [48]. In the case
of RhB degradation for CBO-725 (Figure S2a), the maximum absorbance was shifted back
to lower values and this can explain that the possible RhB degradation mechanism follows
a N-deethylation pathway as mentioned in other investigations [49]. This proves that the
RhB removal is caused by adsorption and catalytic degradation processes and not only
by adsorption.

To the best of our knowledge, there is only one study that has been reported in the
literature to evaluate the photodegradation of RhB over Ca2Bi2O5. In study [22], the
degradation of RhB after 20 minutes of dark condition and 120 minutes of visible light
irradiation was about 93% with a corresponding constant rate for the pseudo-first order
reaction of 0.031 min−1. For this result, a 300 mL solution of RhB with a concentration of
10 mg L−1 and 50 mg of catalyst was used, and the catalyst was obtained via the sol-gel
method. While our study used a higher catalyst to RhB mass ratio, the degradation of
RhB reached a maximum of 52.5% in acidic conditions (for CBO-775) with a corresponding
constant rate of 0.0069 min−1. Even if the photocatalytic activity is lower in our study,
the novelty of this work consists of testing the photocatalytic properties for the RhB
degradation of Ca2Bi2O5 synthesized via the precipitation method, using longer periods
for dark condition experiments, and extending the study to an acidic reaction medium.

3. Discussion

Ca2Bi2O5 composite catalysts with a triclinic framework and P-1 space group were
prepared via the precipitation method, a simple method where the pure phase was ob-
tained starting at 725 ◦C. The pure phase was obtained at a similar temperature of 680 ◦C
and 650 ◦C reported in other studies by Ji et al. [21,22] with the same P-1 space group.
Bahmani et al. [50] have used a similar precipitation method starting from different molar
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ratios of Ca:Bi and obtaining bismuthate structures with particle dimensions of 300 nm.
The morphological nature of the obtained catalyst was recorded using SEM from where
it was observed that the image presents aggregations from closely packed particles with
diameters of less than 1µm, comparable to 180–250 nm as reported by Ji et al. Meanwhile,
the EDX spectrum confirmed by ICP-OES shows that the ratio of Ca:Bi is 1:1. The Raman
spectra recorded for all the temperatures showed the crystallization structure starting at
725 ◦C where the shifting is minimally observed and the full width at half-maximum
values of the Raman peaks, which is a reflection of the lower structural distribution and
presents a sharper Raman line with increasing temperature. The peak recorded for the
carbonate disappears with calcination temperature, data that could also be evidenced in
the TGA analysis where no mass loss is observed after 664 ◦C. The change in crystalline
structure and phase composition of the CBO materials were also analyzed based on the
XRD diffractograms wherein the pure phase is also confirmed for CBO-725 and CBO-775.
The crystallite sizes of the Ca2Bi2O5 pure phases were determined from broadening the
X-ray diffraction line using the Debye–Scherrer equation (Equation (1)) to calculate the
particle size:

D = Kλ/βcosθ (1)

where D is the mean size of crystallites (nm), K is the Scherrer constant, λ is wavelength
of the X-ray beam used (1.54, 184 Å), β is the full width at half-maximum (FWHM) of the
peak, and θ is the Bragg angle.

The corresponding band energies calculated for the CBO materials in our work are
higher than that reported by Ji et al., which is 2.49, and similar to those reported by
Shtarev et al. [23] and Wang et al. [28], which are 3.29 eV and 3.34 eV, respectively. This
study used HSE functionals to calculate the band energy for the first time and retrieved
a value of 3.5 eV, similar to the value of 3.5 eV that was calculated based on recorded
UV-VIS data and is in good agreement with the reported value of 3.34 eV by Luo et al. [15]
The band gap energies determined by the Tauc plots of the Kubelka–Munk transformation
for direct electronic transitions were compared with the mixture phases (CBO-450 and
CBO-600). The band gap energies (Eg) of the samples were estimated using the equation:

Ahυ = (hυ − Eg)n (2)

Therefore, the band gaps of pure phases are higher than those of the composites of
two-phase compositions.

Regarding the photocatalytic study, it was noticed that the RhB removal over CBO
materials (calculated with Equation (3) and supported by kinetic parameters) increased
along with an increase in calcination temperature and can be attributed to enhanced
crystallinity obtained at higher temperatures, which generally facilitates charge mobility
in the material [51,52]. The change in photocatalytic properties can be also due to the
variation of phases with different corresponding band gap energies and morphologies. The
phase transition dictates the modality that the CBO materials absorb light and becomes
photoactive. Improved RhB photodegradation efficiency for CBO-775 at pH = 2 when
compared with pH = 5 can be explained by the effect of Rhodamine B and nitrate photolysis.

The higher photocatalytic activity of the calcium bismuthate over Bi2O3 is also men-
tioned in other studies wherein the catalytic properties of CBO materials have been stud-
ied [53–55].

For future research, we will consider collecting more data on the photocatalytic prop-
erties of CBO materials and the underlying mechanisms by extending the experimental
conditions, investigations, and calculations for newly synthesized materials.

4. Materials and Methods
4.1. Preparation

Calcium bismuth oxide, Ca2Bi2O5 (coded CBO), was prepared via the wet chemical
synthesis route using calcium nitrate tetrahydrate (Ca(NO3)2 × 4H2O—Reactivu Bucuresti,
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p.a.), bismuth nitrate pentahydrate (Bi(NO3)3 × 5H2O—Reactivu Bucuresti, p.a.), nitric
acid 65% (HNO3—Chempur, p.a.), and ammonium oxalate ((NH4)2C2O4 × H2O—Reactivu
Bucuresti, p.a.). Bi-distilled water was used as a solvent.

In this process, equal volumes of ammonium oxalate 0.4 M and acidified Ca-Bi-
nitrate 0.2 M aqueous solutions were prepared and stirred for 1 h to make the solution
homogeneous. Afterwards, the ammonium oxalate solution was quickly added to the
Ca-Bi solution at room temperature and continually stirred for 1 h for maturation. The
precipitate was separated by centrifugation, washed with bi-distilled water, and dried at
80 ◦C for 10 h. The obtained powder was calcined at 450 ◦C for 4 h, 600 ◦C for 4 h, 725 ◦C
for 12 h, and 775 ◦C for 12 h. Figure 11 shows a schematic representation of the various
steps in synthesizing the CBO nanopowder.
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4.2. Characterization Techniques

We confirmed the crystal structure and phase purity of Ca2Bi2O5 with powder X-
ray diffraction patterns using a PANalytical X’Pert Pro powder diffractometer with a Cu
Kα radiation (λ = 0.15406 nm) operating at 45 kV and 30 mA. Infrared spectra (FT-IR)
were recorded on a Thermo Scientific Nicolet 6700 FT-IR spectrometer using the KBr
pellet method in a wavenumber range of 400–4000 cm−1, 64 scans, and a resolution of
4 cm−1 to study the chemical structures. Raman spectra were obtained using a multi-
probe imaging MultiView 1000TM system (Nanonics Imaging, Jerusalem, Israel) and
ultraviolet–visible spectroscopy was performed using the UV-Vis spectrometer, Perkin
Elmer type Lambda 950, with an integrating sphere module in the 300–1000 nm range.
Morphological characterization of the samples was performed by recording the scanning
electron microscopy images (SEM, JEOL-6700F). The phase transformations were studied
from a thermogravimetric analysis (TGA) with a Mettler–Toledo TGA/SDTA851 in an
argon atmosphere in the 50 ◦C to 1000 ◦C range with a heating rate of 10 ◦C min−1. The
chemical analysis of the Ca2Bi2O5 powders was carried out through an inductively coupled
plasma optical emission spectrometry (ICP-OES) using a PerkinElmer Optima 2100 DV
spectrometer. The calcium and bismuth detection was made at 317.933 nm (detection
limit 0.00002 mg/L) and 223.061 nm (detection limit 0.02 mg/L), respectively. Ca2Bi2O5
samples were brought in solution by acidic digestion (HNO3 and H2O2). The bismuth-
based materials obtained at different temperatures were also studied for environmental
application through the investigation of their adsorbent and solar energy catalyst properties.
The CBO materials were mixed in a 30 mL suspension together with an aqueous solution
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of RhB at 500 rpm for 90 minutes during the adsorption process and for 90–180 minutes for
the solar-driven catalysis, following the adsorption stage. The solar energy is provided by
a solar simulator (Sol2A 94042A, Oriel Instruments/Newport Corporation) with a power
of 1 sun and the glass containing the suspension was placed at a distance of 7 cm under the
simulator. RhB (extra, manufactured in Hannover, Germany) was selected as a contaminant
and the aim was to analyze the removal of RhB in the catalysis and adsorption processes.
RhB removal was studied using UV-VIS spectroscopy: the absorbance of the RhB solution
was recorded at certain time intervals after small amounts of solution (about 3 mL) were
separated from the suspension by centrifugation (3 minutes at 10,000 rpm). The RhB
removal was calculated as follows using the well-known formula (Equation (1)):

removal yield (%) =

(
1 − Abst

Abs0

)
× 100 (3)

where Abst is the absorbance recorded at time, t, and Abs0 is the absorbance of the RhB
solution at minute 0 at λmax = 554 nm and at λmax = 557 nm (at pH = 2). The pH was
modified for the experiments carried out at pH = 2 using HNO3 (0.1 M).

The absorbance was recorded with a UV-VIS spectrophotometer (portable and modular
Jaz spectrophotometer from Ocean Optics), which was connected with an optical fiber cable
to the cuvette holder where a quartz of cuvette was placed and the cuvette holder was
further connected to the light source (LS-1 from Ocean Optics).

The initial concentration of the RhB solution was 1.5 ppm and the catalyst concen-
tration was 1 g/L. The stirring of the suspension was conducted with a magnetic stirrer
(magnetic stirrer with hotplate MSH-20D, witeg Labortechnik GmbH, Wertheim, Germany).
As well, the separation of the RhB solution from the suspension was carried out with a
centrifuge (Nahita mini centrifuge, Germany).
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//www.mdpi.com/article/10.3390/inorganics11020079/s1, Figure S1:Variations of RhB correspond-
ing visible absorbance peak for (a) CBO-600 and for (b) CBO-775; Figure S2: Variations of RhB
corresponding visible absorbance peak for (a) CBO-725 and for (b) CBO-775 at pH = 2; Figure S3:
(a) RhB removal curves over CBO-600 and CBO-725 at normal pH–5; (b) the corresponding pseudo-
first-order kinetic curve from 0 to 90 min; (c) the corresponding pseudo-first-order kinetic curve
from −90 to 90 min; Figure S4: (a) RhB removal curves over CBO-725 and CBO-775 at pH = 2
and (b) the corresponding pseudo-first-order kinetic curve from 0 to 90 min; (c) the corresponding
pseudo-first-order kinetiv curves from −90 to 90 min; Table S1: Table 3. Kinetic parameters resulted
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