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Abstract: A series of dibromo-N-acyclic (NAC) carbene complexes of platinum(II) were synthesized,
starting from trans-[Pt(µ-Br)Br(PPh3)]2 and according to a protocol previously optimized for the
preparation of analogous chlorinated compounds. In the first step of the synthesis, the ring opening
of the dinuclear precursor was carried out using suitable isonitrile ligands, while the following
step consisted of the addition of N,N-diethylamine to the products obtained in the first step. The
two reactions were separately investigated, and attention was given to the differences between
brominated and chlorinated systems.

Keywords: platinum(II) bromocomplexes; isocyanide ligands; carbene ligands; triphenylphosphine

1. Introduction

In the context of our studies about platinum complexes with antiproliferative prop-
erties [1–6], we have been searching for new scaffolds to outline compounds capable of
circumventing platinum resistance phenomena [7,8]. Among the complexes prepared,
those bearing a triphenylphosphino ligand proved capable of affecting mitochondria, and
their modes of action often proved effective on cisplatin resistant cell lines. This prompted
us to design many [PtCl2(PPh3)(L)] complexes, where the PPh3 ligand was maintained
in the coordination sphere of the metal, while neutral ligands L were varied, affording
libraries of compounds with modulable biological properties. We have recently prepared
systems where L was a N-acyclic carbene (NAC) of platinum(II) [9]. The syntheses were
carried out starting from the dinuclear precursor trans-[Pt(µ-Cl)Cl(PPh3)]2 [10], which
was reacted with suitable isocyanide (RNC) ligands, affording cis-[PtCl2(PPh3)(CNR)]
(R = 4-MeOC6H4, CH2Ph). The isocyanido complex was then reacted with a secondary
amine R2NH, to afford the NAC product of addition to the coordinated isonitrile functional
group. The reaction was chemoselective towards addition and stereoselective in both steps,
since only cis carbene complexes were obtained. It was also shown that when particularly
nucleophilic alicyclic amines (pyrrolidine, morpholine and piperidine) were used, ionic
products were obtained, arising from the substitution of a chlorido ligand. The obtained
derivatives showed a good solubility and stability in dimethylsulfoxide (DMSO) solution;
thus, their antiproliferative properties are now under evaluation. In addition to the neutral
ligands, the leaving groups as well can play an important role in modulating the properties
of anticancer complexes [11,12]. Considering the wide applications described for carbene
metal complexes in both bioinorganics [13–30] and catalysis [31–44], we hereby describe
the synthesis of new [PtBr2(PPh3)(CNR)] and [PtBr2(PPh3)(NAC)] compounds, in order to
compare their properties with those of their chlorinated counterparts.
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2. Results and Discussion
2.1. Synthesis of Isocyanide Complexes [PtBr2(PPh3)(CNR)]

The preparation of isonitrile derivatives [PtBr2(PPh3)(CNR)] was carried out accord-
ing to the reaction depicted in Scheme 1. The dinuclear brominated precursor was pre-
pared according to a convenient reported procedure, starting from the easily available
[PtCl2(NCMe)2] [45] (see Supplementary Material for the synthesis), while the chosen
isonitrile ligands were commercially available.
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Scheme 1. Synthesis of isonitrile complexes 1–4.

The ring-opening reaction of the dinuclear precursor was carried out in 1,2-dichloroethane
(1,2-DCE) and was followed by TLC or 31P nuclear magnetic resonance (NMR) spectroscopy.
The isonitrile ([ligand]/[Pt] = 2.0 molar ratio) was dissolved in 1,2-DCE and the addition
was made at 0 ◦C to avoid any further substitution by the nucleophile. In all cases, the
initially orange suspension turned into a light yellow, clear solution in a few hours and
the chromatographic or spectroscopic analysis evidenced the disappearance of the pre-
cursor and the presence of products in solution. Only in the case of tert-butylisocyanide,
a [ligand]/[Pt]= 3.0 molar ratio was necessary to obtain the complete conversion of the
precursor, occurring anyway within a few hours at room temperature. The reaction is
directed by the trans effect exerted by the phosphine ligand, so that the expected kinetic
product is trans-[PtBr2(PPh3)(CNR)]. However, being both isonitrile and triphenylphos-
phine π-acid ligands, the initial formation of the kinetic product can be followed by a fast
isomerization process in solution, to afford a mixture of isomers, where the cis complex is
the most abundant [9]. Meanwhile, for the analogous chloro-complexes [9], we observed
the complete conversion of the kinetic ring-opening products into cis-[PtCl2(PPh3)(CNR)];
in this case, a mixture of the two geometric isomers was obtained in most of the studied
cases, both during the reaction and on the isolated samples, most likely for the higher steric
hindrance of cis bromide ligands. Isolated yields in cis,trans complexes were quite good
and the composition of the equilibrium mixtures could be conveniently studied using 31P
NMR spectroscopy.

Isolated yields and percentage compositions at equilibrium in solution are indicated
in Table 1. Cis,trans percentages were calculated by integrating the corresponding 31P NMR
signals in CDCl3 solution.

Table 1. Isolated yields and isomeric compositions (CDCl3, equilibrium) of [PtBr2(PPh3)(CNR)].

Complex R % Yield cis,trans % a

1 Bz 93 59/41
2 Tert-Bu 98 85/15
3 4-(MeO)C6H4 75 76/24
4 CH2COOEt 83 100/0

a Calculated by integration of 31P NMR signals in solution.
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The coordination of isonitrile ligands to the platinum center was evidenced in 31P
NMR spectra by the presence of satellites, with 1JP-Pt coupling constants within 3310–
3380 Hz for both isomers, in agreement with previous results [2,9,45]. In the 195Pt NMR
spectra, doublet signals were observed in the −4180–−4600 ppm spectral zone, with the
same 1JPPt coupling constants measured in the 31P NMR spectra. In comparing these
values with those previously observed for the chlorinated counterparts [9], a shift towards
high fields is evident, coherently with the substitution of chlorido ligands with bromido
ones [46–52]. Coordination was evident in the infrared (IR) spectrum as well, where very
strong absorption bands were observed around 2200–2240 cm−1, with an hypsochromic
shift of about 90–100 cm−1 from the position of the same band in the free ligand [53].

In the case of complex 3, well-shaped single crystals were obtained by slow diffusion
of pentane vapors into a chloroform solution of the compound, and the molecular structure
was determined using single crystal X-ray diffraction. The structure of 3 is reported in
Figure 1, while the most significant bond lengths and angles are listed in Table 2. The
compound crystallized in the triclinic P-1 space group, and two independent molecules
were observed in the unit cell, together with a molecule of chloroform. The coordination is
square planar around the metal and the configuration is cis, with small deviations from
ideality. The structure is in very good agreement with that previously described [9] for
the chlorinated analogue cis-[PtCl2(CNC6H4(OCH3))(PPh3)], where the most important
differences in bond lengths have been ascribed to the larger size of bromido ions.
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Figure 1. Structure of complex 3. Dark gray: carbon; Light gray: hydrogen; Green: chlorine; Brown:
Bromine; Yellow: phosphorus; White: platinum; Blue: nitrogen; Red: oxygen.

Table 2. Most significant bond lengths and angles for complex 3.

Bond lengths (Å)

Pt1-C1 1.910 (5) Pt1-P1 2.2563 (12)

Pt1-Br2 2.4317 (6) Pt1-Br1 2.4886 (6)

Pt2-C27 1.897 (5) Pt2-P2 2.2536 (10)

Pt2-Br3 2.4358 (5) Pt2-Br4 2.4754 (5)

Bond angles (◦)

P1-Pt1-Br2 89.77 (3) P1-Pt1-Br1 179.32 (3)

C1-Pt1-P1 92.48 (16) C1-Pt1-Br2 177.19 (17)

C1-Pt1-Br1 86.88 (16) C1-N1-C2 179.4 (6)

C27-Pt2-Br4 88.43 (13) C27-Pt2-Br3 177.91 (14)

C27-Pt2-P2 91.74 (13) C27-N2-C28 172.5 (5)

P2-Pt2-Br4 179.69 (3) P2-Pt2-Br3 88.86 (3)

Br3-Pt2-Br4 90.986 (19) Br2-Pt1-Br1 90.86 (3)
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2.2. Synthesis of Carbene Complexes [PtBr2(PPh3)(Et2N(H)CNR)]

The synthesis of the NAC derivatives was carried out in 1,2-DCE solution, according to
an experimental procedure previously applied to the successful preparation of chlorinated
models. In each experiment, the chosen isocyanide complex was dissolved in 1,2-DCE
and treated with a solution of N,N-diethylamine in the same solvent (Scheme 2) at 0 ◦C,
following the reaction spectroscopically (31P NMR). When complexes one and three were
used, the reaction proceeded smoothly to afford the expected NAC product in a good,
isolated yield.
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Scheme 2. Synthesis of NAC derivatives 5 and 6.

The unprecedented 5 and 6 bromocomplexes were spectroscopically characterized. In
the attenuated total reflectance IR spectra, the strong absorption band due to the stretching
of isonitrile functional group was no longer observable, while a typical absorption band
appeared, in both cases, around 1550 cm−1, which could be ascribed to NCN stretching.
In the 31P NMR spectra, the disappearance of signals due to the isocyanido precursors
was accompanied by the presence of new signals with satellites (JP-Pt ≈ 4000 Hz), which
could be ascribed to the carbene species. In the case of benzyl derivative 5, a single signal
was observed both in 31P- and 195Pt NMR spectra, indicating the stereoselectivity of the
process towards the formation of a single isomer, to which a cis geometry was assigned
for analogy with the analogous chlorinated system [9]. In the case of the 4-methoxyphenyl
derivative 6, a mixture of carbene products was observed, as indicated by the presence of
two distinct signals with satellites in the 31P NMR spectrum and of two doublet signals
in the 195Pt NMR one. The equilibrium composition of the mixture was 80/20 and it
seems reasonable to assign the cis geometry to the main component of the mixture, taking
into account the complete stereoselectivity observed in the synthesis of the analogous
chlorinated compound [9]. The 1H NMR spectra of the carbene complexes 5 and 6 were
quite typical of rigid systems, with non-equivalent hydrogen atoms affording distinct
signals. As an example, we report the 1H NMR spectrum of complex 5 (Figure 2).
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In the aliphatic portion of the spectrum, benzyl hydrogen atoms Ha and Hb originate
two distinct double doublet signals at 5.65 and 4.44 ppm, where a typical geminal coupling
constant (12 Hz) can be measured. Analogously, each of the four methylene hydrogen
atoms of the diethylamino moiety (Hd-g) gives rise to a distinct multiplet signal (at 4.79,
3.64, 2.85 and 2.80 ppm). Finally, two triplet signals are observable at 1.19 and 0.88 ppm,
which can be attributed to the two methyl groups of the diethylamino residue. The non-
equivalence of the ethyl groups of the diethylamino residue is well observable in the 13C
NMR spectrum as well, where each carbon atom originates a distinct signal. A very similar
spectral profile, although complicated by the presence of two geometric isomers, was
observed in the NMR spectra of complex 6.

The reaction of tert-butylisocyano derivative 2 with N,N-diethylamine did not afford
the expected products. Indeed, 31P NMR analyses carried out on samples of the reaction
mixture at different time spans revealed only the presence of the precursor. A greater
excess of the nucleophile was added and the mixture was refluxed longer; nonetheless, the
composition of the solution did not change and the precursor was recovered after the usual
work-up procedures. It seems reasonable to ascribe this different behavior to the steric
hindrance of the tert-butyl group. As a matter of fact, a sample of cis-[PtCl2(PPh3)(CNtert-
Bu)], prepared in this work (see Supplementary Material for the synthesis) showed the
same reactivity as the bromo complex.

Attempts were made to prepare the diethylamino NAC carbene of functionalized
isocyano derivative 4. Unfortunately, repeated experiments afforded complex mixtures
that could not be purified. It has to be noted that 4 is characterized by the presence of
enolizable hydrogen atoms, in alfa position to diethyl carboxylate group. Indeed, this
ligand is a synthetic equivalent of glycine and it has been used successfully to synthe-
size complex aminoacidic derivatives in experimental procedures based mostly upon
the acidity of hydrogen atoms in alfa position to the ester group [54]. It is likely that,
in the presence of N,N-diethylamine, enolization equilibria are established, leading to
the formation of byproducts. The same behavior was observed when a sample of cis-
[PtCl2(PPh3)(CNCH2COOEt)] (see Supplementary Material for the synthesis) was reacted
with N,N-diethylamine.

2.3. Stability of Complexes in DMSO

As anticipated, one of the possible applications of the prepared carbene complexes
concerns their possible activity as anticancer agents. In view of the study of their antiprolif-



Inorganics 2023, 11, 137 6 of 12

erative properties in vitro, the stability of the derivatives in media used for the biological
tests is mandatory. The compounds here prepared are not soluble in water or ethanol and
are well soluble in DMSO; however, it is well known [55] that the coordination properties
of DMSO towards platinum can severely affect the nature of the tested compounds. Indeed,
the coordination of this solvent to the metal center can be competitive with certain ligands,
displacing them or, in the presence of traces of water, assisting metal-halogen hydrolysis
processes [56,57]. The occurrence of these side reactions is often enhanced by the presence
of strongly trans-directing ligands. Thus, the behavior of derivatives 1–6 in DMSO was
studied spectroscopically. In particular, the stability of the complexes was conveniently
checked by 31P NMR, as the possible substitution product of the isonitrile or NAC ligand
by DMSO (cis-[PtBr2(PPh3)(SOMe2)]) is known to afford a signal at 17.2 ppm in d6-DMSO
(1JP-Pt = 3730 Hz) [45]. In a typical experiment, a sample of the NAC complex 5 (about
10 mg) was dissolved in d6-DMSO and analyzed at different time spans (t = 0, 24 and 72 h).
A single signal was observed in the freshly prepared sample (8.59 ppm, 1JP-Pt = 4084 Hz,
Figure S1), well in agreement with the 31P NMR characterization previously registered in
CDCl3. Analogously, in the 1H NMR, all the signals attributed to 5 were present (Figure S2).
No changes were observed in the spectra registered on the same sample after 24 and 72 h
(Figures S3–S6). Other complexes afforded analogous results, thus proving their stability
in DMSO.

3. Conclusions

The synthetic protocol previously used for the preparation of [PtCl2(PPh3)(CNR)]
and [PtCl2(PPh3)(NAC)] derivatives proved suitable for the synthesis of the analogous
brominated systems. Starting from trans-[Pt(µ-Br)Br(PPh3)]2, the corresponding isonitrile
complexes [PtBr2(PPh3)(CNR)] (R = Bz (1), tert-Bu (2), 4-MeOC6H4 (3) and CH2COOEt (4))
were obtained with very good yields (75–98%), although the reaction was not as stereose-
lective as for the chlorinated counterparts and mixtures of geometric isomers, generally
enriched in the cis isomer, were observed in chloroform solution. This behavior can be rea-
sonably ascribed to the steric hindrance of bromido ligands. In the case of R = 4-MeOC6H4
(3), the cis isomer was crystallized, and its molecular structure was determined using
single crystal X-ray diffraction. The reaction of the isonitrile derivatives 1 and 3 with N,N-
diethylamine afforded the desired NAC compounds in good yields (69–87%), while the
reaction failed when substrates 2 and 4 were used. In the case of complex 2, the complete
lack of reactivity observed seems to have been caused by the steric hindrance exerted by
the tert-butyl residue on the isonitrile functional group, which makes it scarcely accessible
by the attacking N,N-diethylamine. As for complex 4, it is reasonable to ascribe the side
reactions observed to the high reactivity of hydrogen atoms in alfa position to the ethyl
carboxylate group in a basic environment. Indeed, the easily enolizable hydrogen atoms
of ethyl-2-isocyanoacetate are commonly exploited to synthetize glycine derivatives [54].
Finally, both isonitrile and NAC complexes proved stable in DMSO solution, where they
are all well soluble; thus, their antiproliferative properties will be investigated in vitro and
compared with their chlorido counterparts.

4. Materials and Methods

General. All manipulations were carried out under inert (Ar) atmosphere, if not
otherwise stated. Usual procedures were followed to purify and dry solvents [58,59].
Solid, commercially available reagents were used with no further purification. Samples of
[PtBr2(NCMe)2] [45], trans-[Pt(µ-Br)Br(PPh3)]2 [45], trans-[Pt(µ-Cl)Cl(PPh3)]2 [10] were pre-
pared according to reported procedures. Samples of 4-methoxyphenylisocyanide, benzyliso-
cyanide, tert-butylisocyanide and ethyl isocyanoacetate were purchased from ™Merck and
used without further purification. N,N-diethylamine was distilled over KOH and filtered
over dry alumina immediately before use. An elemental analyzer “Vario MICRO CUBE”
CHNOS was used for elemental analysis. IR spectra were recorded on an Agilent “Cary 630”
spectrometer, equipped with an ATR accessory; absorption peak (ν̃, cm−1) intensities and
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shapes were described by the following abbreviations: s = strong, m = medium, w = weak,
br = broad and sh = shoulder. 1H-, 13C-, 31P- and 195Pt NMR spectra were recorded on
JEOL YH 400 MHz and JEOL CZR 500 MHz spectrometers, in CDCl3 solution (™Deutero
GmbH, stored over Ag) if not otherwise stated. When samples of the reaction mixtures were
analyzed using 31P NMR in non-deuterated solvents, a sealed capillary containing C6D6
was inserted into the sample to lock the instrument. Chemical shifts (δ ppm) referred to:
Si(CH3)4 for 1H and 13C, H3PO4 (85% in D2O) for 31P and H2PtCl6 for 195Pt. The observed
signals were described according to the following abbreviations: s = singlet, d = doublet,
t = triplet, dd = doublet of doublets, q = quadruplet and m = multiplet.

4.1. General Procedure for the Synthesis of [PtBr2(PPh3)(CNR)]

In a Schlenk tube equipped with a magnetic stirrer, an orange suspension of trans-
[Pt(µ-Br)Br(PPh3)]2 [45] (0.200–0.400 g) in 1,2-DCE (10–15 mL) was cooled (0 ◦C) and
treated, under stirring, with a solution of the suitable isocyanide in the same solvent
([isocyanide]/[Pt] = 2.0 molar ratio). The temperature was raised (25 ◦C) and a clear, light
yellow solution was obtained (2–12 h). The proceeding of the reaction was checked by TLC
and/or 31P NMR. The mixture was stirred until the maximum conversion of the precursor
was obtained; then, the solution was concentrated under a vacuum up to a quarter of the
original volume and treated with n-heptane (20–30 mL). A waxy–oily solid precipitated,
which turned into a colorless powder upon prolonged stirring (3–12 h). The product was
filtered, washed with n-heptane (2 × 3 mL) and dried under a vacuum. For each complex,
the used isocyanide ligand, the yield, the elemental analysis and the spectroscopic (IR and
NMR) characterizations are reported.

Cis,trans-[PtBr2(CNCH2Ph)(PPh3)] (1). Benzylisocyanide, 0.293 g (93%). NMR analysis
showed the presence of two geometric cis,trans isomers in a 41/59 molar ratio.

El. Anal. Calcd C26H22 Br2NPPt, %: C 42.5, H 3.0 and N 1.9. Found, %: C 42.2, H 3.2
and N 2.2.

IR (ATR, ν̃, cm−1): 3053 w, 2957 w, 2933 w, 2919 w, 2234 s (stretching C≡N), 2146 m,
1964 w, 1896 w, 1816 w, 1670 w, 1603 w, 1480 m, 1435 s, 1345 w, 1310 w, 1230 w, 1182 w,
1160 w, 1099 s, 999 w, 739 s and 691 s.

1H NMR (mixture of isomers): 7.75–7.07 (m, Harom), 4.42(s, CH2, 41%) and 4.31(s,
CH2, 59%).

31P NMR (mixture of isomers): 9.45 (1JP-Pt = 3330 Hz, 59%) and 7.14 (1JP-Pt = 3310 Hz,
41%).

195Pt NMR (mixture of isomers): −4600(1JP-Pt = 3330Hz, 41%) and −4402 (1JP-Pt
=3310Hz, 59%).

Cis,trans-[PtBr2(CNC(CH3)3)(PPh3)] (2). Tert-Butylisocyanide, (tert-Butylisocyanide]/[Pt]
= 3.0 molar ratio), 0.384 g (98%). NMR analysis showed the presence of two geometric
cis,trans isomers in a 85/15 molar ratio.

El. Anal. Calcd C23H24Br2NPPt·DCE, % C 37.6, H 3.5 and N 1.8. Found, % C 37.6, H
3.2% and N 2.2%.

IR (ATR, ν̃, cm−1): 3047 w, 2981 w, 2226 s (stretching C≡N), 2143 w, 1982 w, 1900 w,
1828 w, 1773 w, 1479 m, 1432 s, 1401 w, 1372 m, 1310 m, 1185 s, 1096 s, 995 m, 930 w, 880 w,
75 3s and 693 s.

31P NMR(mixture of isomers): 9.94 (3397 Hz, 15%) and 9.30 (1JP-Pt = 3375 Hz, 85%).
195Pt NMR (mixture of isomers): −4259 1JP-Pt = (1JP-Pt = 3397 Hz, 15%) and −4397

(1JP-Pt = 3375 Hz, 85%).
Cis,trans-[PtBr2(CNC6H4(OCH3))(PPh3)] (3). 4-Methoxyphenylisocyanide, 0.353 g

(75%). NMR analysis showed the presence of two geometric cis,trans isomers in a 76/24
molar ratio.

El. Anal. C26H22Br2NOPPt Calcd, % C 41.6, H 3.0, N 1.9. Found, C 42.0, H 3.3 and
N 1.8%.
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IR (ATR, ν̃, cm−1): 3058 w, 3005 w, 2935 w, 2839 w, 2206 s (stretching C≡N), 1991 w,
1889 w, 1815 w, 1761 w, 1673 w, 1600 m, 1503 s, 1433 s, 1301 m, 1252 s, 1165 m, 1099 s,
1024 m, 833 s, 746 s and 691 s.

31P NMR (mixture of isomers): 10.2 (1JP-Pt = 3339 Hz, 24%) and 9.5 (1JP-Pt = 3313 Hz,
cis 76%).

195Pt NMR (mixture of isomers): −4187 1JP-Pt = (1JP-Pt = 3339 Hz, 24%) and −4358
(1JP-Pt = 3313 Hz, 76%).

Cis-[PtBr2(CNCH2COOEt)(PPh3)] (4). ethyl isocyanoacetate, 0.246 g, (83%).
El. Anal. C23H22Br2NO2PPt, Calcd, %: C 37.8, H 3.0 and N 1.9. Found, %: C 37.5, H

2.6 and N 2.2.
IR (ATR, ν̃, cm−1): 3055 w, 2978 w, 2952 w, 2905 w, 2240 s (stretching C≡N), 1748 s

(stretching C=O), 1482 m, 1435 m, 1373 w, 1341 w, 1279 w, 1245 w, 1219 s, 1159 w, 1094 s,
1027 m, 994 m, 937 w, 857 w, 748 m, 709 m and 692 s.

1H NMR: 7.8–7.7 (m, 6H, Harom), 7.5–7.4 (m, 9H, Harom), 4.1 (q, J = 7.0 Hz, 2H,
COOCH2), 3.9 (s, 2H, 1JPPt = 17 Hz, CH2CO) and 1.28 (t, J = 7.0 Hz, 3H, CH3).

31P NMR: 8.8 (1JPPt = 3300 Hz).
195Pt NMR: −4400 (1JPPt = 3300 Hz).

4.2. General Procedure for the Synthesis of [PtBr2(PPh3)(Et2N(H)CNR)]

In a Schlenk tube equipped with a magnetic stirrer, a solution of the suitable [PtBr2(PPh3)
(CNR)] (0.180–0.400 g) in 1,2-DCE (10–15 mL) was cooled (0 ◦C) and a solution of N,N-
diethylamine (Et2NH) in 2 mL of the same solvent ([Et2NH]/[Pt] = 2.0 molar ratio) was
added dropwise under stirring over 1 h. The temperature was slowly raised (25 ◦C) and
the solution was stirred for 24 h. The proceeding of the reaction was followed by 31P NMR,
checking the disappearance of the precursor’s signals. When the maximum conversion of
the precursor was obtained, the solution was concentrated under a vacuum up to a quarter
of the original volume, cooled (0 ◦C) and treated with n-heptane (20–30 mL). A waxy solid
precipitated, which turned into a colorless powder upon prolonged stirring (3–12 h). The
product was filtered, washed with n-heptane (2 × 3 mL) and dried under a vacuum. For
each NAC derivative, the isocyanide complex used, the yield, the elemental analysis and
the spectroscopic (IR and NMR) characterizations are reported.

Cis-[PtBr2(PPh3)C(NHCH2Ph)(NEt2)] (5). [PtBr2(PPh3)(CNCH2Ph)], 0.196 g (69%).
El. Anal. Calcd C30H33Br2N2PPt, % C 44.6, H 4.1 and N 3.5. Found, % C 45.0, H 4.0%

and N 3.7%.
IR (ATR, ν, cm−1): 3056 w, 2982 w, 2928 w, 1554 s (stretching C=N), 1434 s, 1379 w,

1095 m, 998 m, 749 m and 691 s.
31P NMR: 9.22 (1JP-Pt = 4010 Hz).
1H NMR: 7.70–7.10 (2 m, 20H, Harom), 5.65 (dd, 1H, J = 13.0 Hz, J’ = 4 Hz, PhCHH),

4.96 (bm, 1H, 3JH-Pt = 80 Hz, NH), 4.79 (m, 1H, CH3CHHN), 4.44 (dd, 1H, J = 13.0 Hz,
J’ = 4.0 Hz, PhCHH), 3,64 (m, 1H, CH3CHHN), 2.83 (m, 2H,CH’3CH’2N), 1.19 (t, 3H,
J = 6.0 Hz, CH3CH2N) and 0.89 (t, 3H, J = 6.0 Hz, CH’3CH’2N).

13C NMR: 162.7, 134.8, 134.7, 134.6, 131.2, 129.0, 128.5, 128.3, 128.2, 53.7, 53.0, 43.3, 13.0
and 12.2.

195Pt NMR: −4159 (1JP-Pt = 4010 Hz).
[PtBr2(PPh3)C(NHC6H4(OCH3))(NEt2)] (6). [PtBr2(CNC6H4(OCH3))(PPh3)], 0.235 g

(87%). Mixture of isomers.
El. Anal. Calcd C30H33Br2N2OPPt, % C 43.8, H 4.0 and N 3.4. Found, % C 43.9, H

3.8% and N 3.3%.
IR (ATR, ν, cm−1): 3059 w, 2932 w, 1611 w, 1545 s (stretching C=N), 1508 s, 1435 s,

1337 m, 1250 s, 1173 w, 1094 m, 1032 m, 833 m and 753 m.
31P NMR: 8.36 (1JP-Pt = 4076 Hz, 80%) and 8.56 (1JP-Pt =4045 Hz, 20%).
1H NMR: Isomer A (selected signals): 7.80–7.00 (m, 17H, Harom), 6.88–6.63 (m, 3H,

Harom + NH), 4.76 (m, 1H, NCHHCH3), 4.15 (m, 1H, NCHHCH3), 3.84 (s, 3H, OCH3), 3.20
(m, 2H, NCH’2CH3), 1.23 (t, 3H, NCH2CH3) and 1.07 (t, 3H, NCH’2CH’3).
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Isomer B (selected signals): 7.80–7.00 (m, 17H, Harom), 6.88–6.63 (m, 3H, Harom +
NH), 4.84 (m, 1H, NCHHCH3), 4.02 (m, 1H, NCHHCH3), 3.84 (s, 3H, OCH3), 2.97 (m, 2H,
NCH’2CH3), 1.40 (t, 3H, NCH2CH3) and 0.86 (t, 3H, NCH’2CH’3).

13C NMR (mixture of isomers): 158.2, 157.5, 134.9, 134.7, 134.6 (2C), 134.5 (2C), 132.4,
132.3, 130.9 (2C), 128.1, 128.0 (2C), 127.9, 127.8, 113.5 (2C), 55.6, 53.6, 44.7 (2C), 41.9, 22.7,
22.3, 12.8 and 12.3.

195Pt NMR (only the most abundant isomer was observed): −4130 (1JP-Pt = 4076 Hz).

5. Single-Crystal X-ray Diffraction

Single-crystal X-ray diffraction was performed with a Bruker D8 Venture instrument
equipped with microfocus Mo source (Kα radiation, λ = 0.71073 Å) and a 2D Photon
III detector. The main experimental details regarding the determination of the structure
of 3 by single-crystal X-ray diffraction are reported in Table 3. In detail, a specimen of
C53H45Br4Cl3N2O2P2Pt2, approximate dimensions 0.100 mm × 0.200 mm × 0.400 mm, was
used for the X-ray crystallographic analysis. The integration of the data using a triclinic
unit cell yielded a total of 100,548 reflections to a maximum θ angle of 28.27◦ (0.75 Å
resolution), of which 13,634 were independent (average redundancy 7.375, completeness
= 98.4%, Rint = 5.02%, Rsig = 3.59%) and 12,364 (90.69%) were greater than 2σ(F2). The
final cell constants of a = 10.6145(3) Å, b = 14.8776(4) Å, c = 18.7841(4) Å, α = 103.8190(10)◦,
β = 103.3390(10)◦, γ = 90.3250(10)◦ and volume = 2796.98(13) Å3 are based upon the re-
finement of the XYZ-centroids of reflections above 20 σ(I). The calculated minimum and
maximum transmission coefficients (based on crystal size) are 0.1400 and 0.4980. The final
anisotropic full-matrix least-squares refinement on F2 with 615 variables converged at
R1 = 3.67% for the observed data and wR2 = 11.14% for all data. The goodness-of-fit was
1.099. The largest peak in the final difference electron density synthesis was 1.183 e−/Å3

and the largest hole was −2.282 e−/Å3 with an RMS deviation of 0.199 e−/Å3. On the
basis of the final model, the calculated density was 1.924 g/cm3 and F(000), 1540 e−.

Table 3. Crystal data for cis-[PtBr2(PPh3)(CNC6H4OMe)] (3).

Identification code CP9
Empirical formula C53H45Br4Cl3N2O2P2Pt2

Formula weight 1620.02 g/mol
Temperature 293(2) K
Wavelength 0.71073 Å

Crystal system Triclinic
Space group P-1

Unit cell dimensions a = 10.6145(3)Å α = 103.8190(10)◦

b = 14.8776(4) Å β = 103.3390(10)◦

c = 18.7841(4)Å γ = 90.3250(10)◦

Volume 2796.98(13) Å3

Z 2
Density (calculated) 1.924 g/cm3

Absorption coefficient 8.93 mm−1

F(000) 1540
Theta range for data collection 1.98 to 28.27◦

Index ranges −14 ≤ h ≤ 14, −19 ≤ k ≤ 19, −25 ≤ l ≤ 24
Reflections collected 100,548

Independent reflections 13,634 [R(int) = 0.0502]
Max. and min. transmission 0.4980 and 0.1400

Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 13,634/0/615
Goodness-of-fit on F2 1.099

Final R indices 12,364 data; I > 2σ(I) R1 = 0.0367, wR2 = 0.1041
all data R1 = 0.0406, wR2 = 0.1114

Weighting scheme w = 1/[σ2(Fo2) + (0.0675P)2 + 3.3100P]
Largest diff. peak and hole 1.183 and −2.282 eÅ−3
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Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/inorganics11040137/s1: synthesis of cis-[PtCl2(PPh3)(CNtert-Bu)],
cis-[PtCl2(PPh3)(CNCH2COOEt)], [PtBr2(NCMe)2] and trans-[Pt(µ-Br)Br(PPh3)]2; Figures S1–S6: spec-
troscopic study (1H- and 31P NMR) of the stability of complex 5 in DMSO-d6; and Figures S7–S28: IR, 1H-,
31P-, 13C- and 195Pt NMR spectra of complexes 1–6. CCDC 2244083 for cis-[PtBr2(PPh3)(CNC6H4OMe)]
(3) contains the supplementary crystallographic data for this paper. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre.
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