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Abstract: Keggin heteropolyacids (HPAs) are metal–oxygen clusters with strong Bronsted acidity. The
conversion of HPAs to metal salts can result in Lewis acidity, improving their performance in oxidation
reactions. In this review, the main routes for the synthesis of Keggin-type heteropolyacids salts, as
well their use as catalysts in oxidation processes of a plethora of substrates, such as monoterpenes,
olefins, aldehydes, terpene alcohols, and aromatics, are described. Green reactants such as hydrogen
peroxide and molecular oxygen are used as oxidants. These reactions are of interest to several
industries because they can be used to produce drugs, additives, fragrances, and fine chemicals. The
high efficiency of Keggin HPA with green oxidants contributes to a reduction in the environmental
impact of these processes, as preconize the principles of green chemistry. Moreover, Keggin HPAs
can be converted to bifunctional catalysts by the modification of their structure, total or partial
replacement of their protons with Lewis acid metal cations, or the introduction of these cations into
the Keggin anion structure, replacing the addenda atoms (i.e., W and Mo). Aspects linked to the
synthesis and characterization of these catalysts are discussed herein, with emphasis on infrared
spectroscopy and powder XRD patterns. The most recent advances achieved in the development of
catalytic oxidation systems based on Keggin HPA salts are also addressed.

Keywords: Keggin heteropolyacids; solid heteropoly salts; monoterpenes; aromatic aldehydes;
olefins; terpene alcohols

1. Introduction

The development of bifunctional catalysts has attracted attention for economic and
environmental reasons [1]. Many bifunctional catalysts have either Lewis or Brønsted
acidity functionality, which can promote either acidic or oxidative transformations [2].
Another possible use of the term “bifunctional” is concerning catalysts that can promote
hydrogenation and dehydrogenation [3]. Catalysts that can promote reactions for which
the main steps require Lewis or Brønsted acid sites are still scarce. Although it is expected
that these two types of active sites catalyze different elementary steps within an overall
reaction, it is also possible that they participate in the same step.

There are various types of bifunctional catalysts, such as bimetallic catalysts [4]. Nor-
mally, these catalysts comprise noble metals as nanoparticles, solid-supported catalysts, and
metal oxides [5]. In general, these catalysts have active hydrogenation or oxidation sites [6].
Perovskite oxides are bifunctional catalysts with the general formula ABO3 or A2BO4,
where A sites normally represent rare-earth, alkaline-earth, or other large metal cations,
while the B sites are transition metal cations. These compounds have been demonstrated
to be a class of effective bifunctional catalysts due to their plentiful stoichiometries and
crystal structures, as well as multimetal active centers [7]. Bifunctional catalysts frequently
combine active metal sites for hydrogenation/dehydrogenation and active acidic sites for
protonation/deprotonation steps [8]. Salts containing different counterions can also be
used as bifunctional catalysts [9,10].

Keggin heteropolyacids are compounds belonging to the polyoxometalate class that
can also be used as bifunctional catalysts [11,12]. Their strong acidity and their structural
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properties make them easily modulable. Keggin HPAs are solid metal–oxygen clusters with
a high strength of Brønsted acidity, and consequently, they can be used as heterogeneous
acid catalysts [13,14]. Although soluble in polar solvents, the exchange of HPA protons with
large radium cations makes them heterogeneous catalysts. Moreover, their doping with
transition metals results in Lewis acidity or redox potential, which are adequate properties
for use in acid-catalyzed or oxidative processes [15–18]. Consequently, Keggin HPA salts
have been used in both homogeneous and heterogeneous catalytic reactions [19].

The most widely studied heteropoly catalysts have anions with a typical Keggin
structure, as represented by the formula (XM12O40)n−, where X is the central heteroatom
(i.e., Si or P), and tetrahedrally is surrounded with oxygen atoms, which are in octahedral
environmental coordination with addenda metal atoms, usually Mo6+ or W6+ [20].

In this review, various procedures to prepare Keggin HPA salts are addressed, with
an emphasis on those involving unsupported catalysts and a focus on lacunar heteropoly
salts, transition metal cation-exchanged salts, and transition metal-doped salts. Beyond
synthesis and characterization, special attention is dedicated to describing their applications
as catalysts in oxidation and acid-catalyzed reactions.

2. Main Routes to Synthesize POMs Salts
2.1. Synthesis of Metal-Exchanged Phosphotungstic, Phosphomolybdic, and Silicotungstic
Acid Salts

Transition metal cation-exchanged salts can be easily synthesized starting from the
metathesis of Keggin HPA solution with another solution containing the metal chloride
with adequate stoichiometry, according to literature (Scheme 1) [21,22]. In this process, the
metal chloride solution is slowly dropped into the Keggin HPA solution; afterwards, the
mixture is heated to release water and HCl, resulting in a solid salt, which is dried in an
oven at 423 K.
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Scheme 1. Synthesis of metal-exchanged phosphotungstic, phosphomolybdic, and silicotungstic
acid salts.

When the metal cation has large ionic radium such as K+, Rb+, or Cs+ ions, the
metal-exchanged Keggin HPA salt is precipitated into the reaction solution. Other cations
such as ammonium and tetrabutylammonium have been widely used to synthesize the
insoluble HPAs [23]. Consequently, when the HPA is insoluble, it is separated through
a filtration step [24]. However, if the metal cation has an ionic radium smaller than
1.3 Angstroms, the HPA salt is water-soluble; therefore, separation requires the vaporization
of the solvent [25,26].

Figure 1 shows the yield achieved in the syntheses of the metal-exchanged silico-
tungstic acid salts [27]. In almost all cases, high yields were attained, demonstrating that
this is an attractive route to obtain these HPA salts.
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2.2. Synthesis of Phosphotungstic, Phosphomolybdic, and Silicotungstic Acids Lacunar Salts

Lacunar Keggin anions are obtained from hydrolyzes of the pristine Keggin HPAs or
their salts [28]. The hydrolysis reaction occurs when a NaHCO3 solution is added to the
HPA solution. This is a key step because the pH control is straightly linked to the number
of MO units removed from the Keggin anions (Scheme 2).

Inorganics 2023, 11, x FOR PEER REVIEW 3 of 24 
 

 

Figure 1 shows the yield achieved in the syntheses of the metal-exchanged silicotung-
stic acid salts [27]. In almost all cases, high yields were attained, demonstrating that this 
is an attractive route to obtain these HPA salts. 

 
Figure 1. The yield of synthesis of the metal-exchanged silicotungstic acid salts [27]. 

2.2. Synthesis of Phosphotungstic, Phosphomolybdic, and Silicotungstic Acids Lacunar Salts 
Lacunar Keggin anions are obtained from hydrolyzes of the pristine Keggin HPAs or 

their salts [28]. The hydrolysis reaction occurs when a NaHCO3 solution is added to the 
HPA solution. This is a key step because the pH control is straightly linked to the number 
of MO units removed from the Keggin anions (Scheme 2). 

 
(a) (b) 

 
(c) 

Scheme 2. Synthesis of phosphotungstic (a), silicotungstic (b), and phosphomolybdic acid (c) lacu-
nar salts. 

However, this synthesis route requires the presence of the pristine HPA or their salt, 
which has a saturated anion. Alternatively, it is possible to obtain the Keggin HPA and 
afterwards their lacunar salt through the one–pot procedure. To do it, solutions containing 
the synthesis precursors in stoichiometry amount should be gently mixed and then the 
pH should be adjusted with NaHCO3 solution, resulting in the lacunar heteropolyanion 
salt. Schemes 3–5 show these procedures. 

Scheme 2. Synthesis of phosphotungstic (a), silicotungstic (b), and phosphomolybdic acid (c) lacu-
nar salts.

However, this synthesis route requires the presence of the pristine HPA or their salt,
which has a saturated anion. Alternatively, it is possible to obtain the Keggin HPA and
afterwards their lacunar salt through the one–pot procedure. To do it, solutions containing
the synthesis precursors in stoichiometry amount should be gently mixed and then the pH
should be adjusted with NaHCO3 solution, resulting in the lacunar heteropolyanion salt.
Schemes 3–5 show these procedures.

It is noteworthy that the lacunar HPAs can be obtained as soluble or insoluble salts,
depending on the ionic radius of the metal cation that replaces the protons [29,30].
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2.3. Synthesis of Metal-Substituted Lacunar HPA Salts

The doping of lacunar salts with transition metal cations is an efficient strategy to con-
vert these salts into highly active catalysts in oxidation reactions with hydrogen peroxide.
Copper, nickel, manganese, vanadium, zinc, and iron are the most common dopants [31,32].
Scheme 6 describes how converting the saturated Keggin heteropolyanion to a lacunar
anion and posteriorly to a metal-doped anion.

Charge balancing is done by the counter-ion, which was omitted for clarity. Once
more, the solubility of these salts may vary according to the size of the cation. The pH
control is a key step herein. An excessive increase in the pH may promote successive
hydrolysis of the Keggin anion, and di-or tri-lacunar species can be obtained.
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3. Characterization Techniques of Keggin HPA Salts

There are several techniques used to characterize Keggin HPA salts, however, we will
emphasize only those more frequently used [33]. Most results were previously obtained by
us and the references were adequately cited [26–30,34,35].

3.1. Infrared Spectroscopy

Infrared spectroscopy gives information on the primary structure of Keggin HPAs (i.e.,
heteropolyanion) [34]. The fingerprint region shows the typical absorption bands assigned
to the vibration of chemical bonds involving Si-O, W-Ob-W, W-Oc-W, and W = Od atoms.
The subscript distinguishes the oxygen atoms in the function of the position occupied in
the heteropolyanion [27].

The profile of infrared spectra of silicotungstate anion remained intact after the protons
exchange with metal cations (Figure 2). This indicates that the Keggin structure was
preserved after the synthesis of heteropoly salts.
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 Figure 2. Infrared spectra of metal-exchanged silicotungstic acid salts (adapted from ref. [27]).

Figure 3 shows a comparison of infrared spectra of pristine HPAs (i.e., H3PW12O40,
H3PMo12O40, and H4SiW12O40) and their aluminium-exchanged salts.

The main absorption bands assigned to the vibrations of chemical bonds of Keggin
anion seen in the infrared spectra of pristine HPAs were also observed in the spectra of
aluminium salts.
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As verified in the infrared spectra of aluminium-exchanged salts, the Keggin anion
structure was preserved after the synthesis of the iron-exchanged salts [36].

3.2. Powder X-rays Diffraction Patterns

While infrared spectroscopy provides information about the primary structure of
Keggin HPAs (i.e., heteropolyanion), the powder XRD patterns give information on the
secondary structure, which comprises the tridimensional arrangement of Keggin het-
eropolyanions surrounded by cations (i.e., hydronium, di-hydronium, metals) and water
molecules [34–38]. Figure 5 displays the primary, secondary, and tertiary structures of the
metal-doped heteropoly salts.

Inorganics 2023, 11, x FOR PEER REVIEW 7 of 24 
 

 

Secondary structure

Tertiary structure

Primary structure

W3O13
Triplet

Si

M dopant

W

M cation that replace the protons

 
Figure 5. Primary, secondary, and tertiary structures of Keggin anion. 

The Bragg equation describes the relation between interplanar distance “d” and scat-
tering 2 θ angles. 

sin θ = n λ/ 2d (1)

An increase in metal cation radium led to a greater “d” value, consequently, it is ex-
pected that 2 θ angle values become smaller than scattering angles of pristine HPA. How-
ever, this distance is impacted too by the water molecules. Therefore, ionic radium is not 
the only aspect to be considered.  

Figure 6 presents the powder XRD patterns of silicotungstic acid and their metal-
exchanged cations. Diffractograms of the metal cation-exchanged silicotungstic acid salts 
have some typical diffraction peaks. The main appears at low 2 θ angles (i.e., 6° to 9°), 15° 
and 30° 2 θ angles. In particular, the diffractograms of trivalent cation salts (i.e., Fe3+, and 
Al3+ ions) have more well-defined and more intense diffraction peaks. The differences ob-
served between XRD patterns of silicotungstic acid, and their metal-exchanged salts can 
be a consequence of different hydration levels (Table 1), as well as the different sizes of 
ionic radium of metal cations.  

5 10 15 20 25 30 35 40 45 50 55 60

Co2SiW12O40

Cu2SiW12O40

 2 θ angle 

Al4/3SiW12O40
Fe4/3SiW12O40

H4SiW12O40

Ni2SiW12O40

in
te

ns
ity

 / 
a.

u.

 
Figure 6. Powder XRD patterns of silicotungstic acid and their metal-exchanged cations (adapted 
from ref. [27]). 

Figure 5. Primary, secondary, and tertiary structures of Keggin anion.



Inorganics 2023, 11, 162 7 of 23

The Bragg equation describes the relation between interplanar distance “d” and
scattering 2 θ angles.

sin θ = n λ/ 2d (1)

An increase in metal cation radium led to a greater “d” value, consequently, it is
expected that 2 θ angle values become smaller than scattering angles of pristine HPA.
However, this distance is impacted too by the water molecules. Therefore, ionic radium is
not the only aspect to be considered.

Figure 6 presents the powder XRD patterns of silicotungstic acid and their metal-
exchanged cations. Diffractograms of the metal cation-exchanged silicotungstic acid salts
have some typical diffraction peaks. The main appears at low 2 θ angles (i.e., 6◦ to 9◦),
15◦ and 30◦ 2 θ angles. In particular, the diffractograms of trivalent cation salts (i.e., Fe3+,
and Al3+ ions) have more well-defined and more intense diffraction peaks. The differences
observed between XRD patterns of silicotungstic acid, and their metal-exchanged salts can
be a consequence of different hydration levels (Table 1), as well as the different sizes of
ionic radium of metal cations.
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Table 1. Hydration water molecules were determined through thermal analysis (DTG) [27].

Catalyst Water/Catalyst mol

H4SiW12O40 11
Ni2SiW12O40 7
Cu2SiW12O40 7
Co2SiW12O40 10

Fe4/3SiW12O40 13
Al4/3SiW12O40 8

The comparison of powder XRD patterns of tungsten HPAs with their aluminium salts
showed that at 2 θ angles greater than 50◦, the diffractogram of acids displays diffraction
lines present more intensity than their salts. This did not occur with molybdenum HPAs.
Moreover, diffractograms of tungsten heteropoly acids had a more significant peak number.
The different ionic radium of W6+ and Mo6+ cations and the distinct hydration levels
affect the diffraction patterns of these acids and their heteropoly salts. Moreover, Al3+

and H3O+ or H5O2
+ have ionic radium with different sizes, triggering thus change in

the diffraction patterns. Although XRD patterns can give important information about
the secondary structure, it is unable to distinguish the different isomeric structures of
the Keggin anion. However, due to the difficulty to isolate Keggin isomers and evaluate
separately their catalytic activity, most of the time these aspects are not addressed. Figure 7
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shows a comparison between the powder XRD patterns of pristine HPAs (i.e., H3PW12O40,
H3PMo12O40, and H4SiW12O40) and their aluminium-exchanged salts.
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3.3. Acidity Properties

Potentiometric titration is a technique that allows estimating the number of acid sites,
from the plateau region of titration curves. Moreover, it can be determined from the titration
curve’s first-derived curve. The strength of acidic sites is estimated from the initial value
of electrode potential (Ei). They are classified as follows: E > 100 mV (very strong sites),
0 < E < 100 mV (strong sites), −100 < E < 0 (weak sites), and E < −100 mV (very weak
sites) [38]. However, this technique did not distinguish the nature of acid sites (i.e., Lewis
or Brønsted).

It is important to note that although the chemical formulae of salts suggest that there
is no proton, a residual amount remains still. Moreover, the literature describes that Lewis
acid metal cations can react with the hydration water molecules giving H3O+ ions, which
consume n-butylamine. Moreover, the transition metal cations can themself react with the
nitrogen of the base [27]. Therefore, the titrant n-butylamine is still consumed when the
salts are titrated.

Figure 8 displays the potentiometric titration curves of silicotungstic acid and their
silicotungstate salts. All the salts presented very strong acid sites (Ei > 100 mV). However,
the profile of M2+ and M3+ cation salts titration curves differed. Typically, the titration
of Al4/3SiW12O40 and Fe4/3SiW12O40 solutions gave curves with a well-defined plateau,
likewise the pristine H4SiW12O40. Conversely, the titration of Cu2SiW12O40, Ni2SiW12O40,
and Co2SiW12O40 solutions resulted in curves with two plateaus. The profile of these three
last curves suggests that there are acid sites with distinct strengths of acidity [27].
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4. Keggin HPA Salts as Catalysts in Oxidation Reactions

Keggin HPAs such as phosphomolybdic acid are active in oxidation reactions even in
the absence of metal as countercations or dopants. However, depending on the selected
substrate (i.e., aldehydes, alcohols, olefins), the presence of cation metal may trigger a
synergism and increase its efficiency. From a practical viewpoint, most of the reactions
require an initial screening to select the most active Keggin HPA salt. The catalytic activity
of HPA salts can be linked to the electronic aspects, which are modified in the presence of
metal cations in determined positions.

Aluminium or copper salts of the phosphotungstic and silicotungstic acids were
synthesized and used as catalysts in 2-methoxynaphthalene acylation [39]. These catalysts
were compared and the main results are in Figure 9.
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Figure 9. 2-Methoxynaphthalene acylation using aluminium or copper salts of phosphotungstic
silicotungstic acids as catalysts (adapted from ref. [39]) a. a Reaction conditions: time: 65 min,
temperature: 373 K.

The highest conversion and selectivity toward acyl methoxy naphthalene were reached
in the AlPW12O40-catalyzed reaction. Keggin HPA iron salts were evaluated in etherifi-
cation reactions of β-pinene with alkyl alcohols [34]. Salts of three Keggin HPAs were
synthesized containing aluminium or transition metal cations. Among them, FePW12O40
was the most efficient catalyst converting the β-pinene mainly to α-terpinyl alkyl ether
(Scheme 7). The secondary products were fenchyl and bornyl alkyl ethers resulting from the
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carbon skeletal rearrangement reaction of β-pinene followed by the nucleophilic addition
of alkyl alcohol.
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Scheme 7. The main products of the iron phosphotungstate-catalyzed reactions of β-pinene with
alkyl alcohol (adapted from ref. [34]).

Those authors compared the effect of the Keggin anion on the catalytic activity of iron
salts in the reaction of β-pinene with methyl alcohol. Figure 10 displays the main results.
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Figure 10. Impacts of Keggin anion on the conversion and selectivity of Keggin HPA iron salts
phosphotungstate-catalyzed reaction of β-pinene with methyl alcohol (adapted from ref. [34]) a. a Re-
action conditions: β-pinene (3.8 mmol), CH3OH (14.3 mL), temperature (333 K), catalyst (0.50 mol%),
volume (10 mL).

Although the reactions in the presence of iron silicotungstate or phosphotungstate
have achieved almost the same conversion, this last was the most selective toward the
goal product (i.e., α-terpinyl methyl ether). In Figure 11, the activity of FePW12O40 was
compared to the other Lewis acid metal cations (i.e., Cu2+ and Al3+).

The highest activity of the FePW12O40 catalyst was attributed to its highest Lewis
acidity, which promotes the reaction of carbon skeletal of β-pinene and gives the α-terpinyl
carbocation, the most probable reaction intermediate.
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Figure 11. Impacts of metal cation on the conversion and selectivity of phosphotungstate-catalyzed
reaction of β-pinene with methyl alcohol (adapted from ref. [34]) a. a Reaction conditions: β-pinene
(3.8 mmol), CH3OH (14.3 mL), temperature (333 K), catalyst (0.50 mol%), volume (10 mL).

The impact of the size of the carbon chain was also evaluated in reactions with C1-C4
alcohols and β-pinene (Scheme 8) [34].
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Scheme 8. FePW12O40-catalyzed-etherification of β-pinene with different alkyl alcohols (adapted
from ref. [34]).

An increase in the carbon chain size and steric hindrance of the hydroxyl group may
leave to a lower conversion and ether selectivity. However, herein, high conversions were
attained regardless of alcohol. The conversions achieved in the reactions with methyl ethyl,
propyl and butyl alcohols were 95%, 80,%, 85%, and 83%, respectively. Therefore, although
these three last conversions have been lower than reached in the reaction of methyl alcohol,
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this effect was less pronounced herein. Conversely, the selectivity to α-terpinyl alkyl ether
was 70%, 41%, 45%, and 41%, in the reactions with methyl ethyl, propyl and butyl alcohols,
respectively. Thus, it suggests that only methyl alcohol shows a high selectivity. The other
alcohols, regardless of the size of the carbon chain have similar reactivity. Due to the steric
hindrance, isopropyl alcohol was the less reactive, reaching the lowest conversion and
ether selectivity [34].

Aluminium heteropoly salts were evaluated in oxidation reactions of camphene, another
monoterpene [35]. In that work, the aluminium silicotungstate salt (i.e., Al4/3SiW12O40) was
the most active and selective toward the formation of borneol. Nonetheless, the novelty was
the formation of two novel products: 1-(3-(2-hydroxy propan-2-yl) cyclopentyl) ethan-1-
one, and 3-(3-hydroxy cyclopentyl)-3-methyl butan-2-one. Scheme 9 shows the conversion
and selectivity achieved in the presence of aluminium-exchanged Keggin HPAs salts.
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Scheme 9. Effect of Keggin anion on conversion and selectivity of Al3+ heteropoly salts-catalyzed
camphene oxidation by hydrogen peroxide in CH3CN (adapted from ref. [35]).

Remarkably, the Al4/3SiW12O40 salt provided the highest selectivity toward the two
novel products. The authors attributed this to the greatest Lewis acidity of the catalyst. After
carrying out reactions with Al(NO3)3 salt and H43SiW12O40 acid, those authors demonstrated
that a synergism occurs between the Al3+ cation and silicotungstate anion [35].

Metal-exchanged silicotungstic acid salts were evaluated as catalysts in furfural oxi-
dation reactions with hydrogen peroxide [27]. Furfural-derived products such as furfuryl
ester and dimethyl acetal are valuable compounds for bioadditives formulation.

In this one-pot process, furfural was selectively oxidized to acid and esterified in the
presence of methyl alcohol (Scheme 10). Copper silicotungstate was the most effective
catalyst, which was more efficient than other Lewis’s acid catalysts also tested such as
aluminium or iron silicotungstate. Therefore, it can be concluded that different from
verified in the reactions of carbon skeletal rearrangement followed by the oxidation of
camphene (see ref. [33]), where the Lewis acidity was a key aspect to explain the highest
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activity of Al3+ phosphotungstate, herein other aspects can be also important. For instance,
the nature of heteropolyanion plays an essential role in these reactions.
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Scheme 10. Metal-exchanged silicotungstic acid salts-catalyzed reactions of furfural with hydrogen
peroxide (adapted from ref. [26]) a. a Reaction conditions: furfural (2.5 mmol), CH3OH (9.4 mL,
231 mmol), H2O2 (5.0 mmol), temperature (323 K), catalyst (1.0 mol%, 25.0 µmol), volume (10 mL).

The Cu2SiW12O40-catalyzed oxidative esterification of furfural was carried out with
hydrogen peroxide in the presence of different alkyl alcohols (Scheme 11).
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Scheme 11. Impact of alcohol on the Cu2SiW12O40-catalyzed oxidative esterification of furfural
with hydrogen peroxide (adapted from ref. [27]) a. a Reaction condition: furfural (2.5 mmol), alky
alcohol (9.4 mL), H2O2 (5.0 mmol), temperature (323 K), catalyst (1.0 mol%, 25.0 µmol), reaction
volume (10 mL).

Scheme 11 shows the yield only to alkyl esters. An increase in the size of the carbon
chain of alcohol harmed ester yield. This may be a consequence of hydrophobic forces,
which increase with the size of the carbon chain.
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Although all salts evaluated have been soluble in the reaction medium, a recycling
process was developed to recover and reuse the catalyst (Figure 12).
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Figure 12. Procedure to recover and reuse the soluble catalyst [27].

After the catalytic run, the solvent of the reaction is removed in a rotatory evaporator,
and the neat remaining is extracted with a mixture of water/ethyl acetate. The Keggin HPA
salt catalyst is soluble in water, which is evaporated, giving the solid catalyst. Afterwards, it
is weighted and used in another catalytic cycle. Table 2 shows the conversion and recovery
rates obtained after the successive cycles of recovery/reuse.

Table 2. The recovery rates and conversions achieved in the reuse of Cu2SiW12O40 catalyst in
oxidative esterification reactions of furfural with hydrogen peroxide [27].

Cycle Catalyst Recovery
(%)

Conversion
(%)

1 92 97
2 92 93
3 92 92
4 91 94

In oxidation reactions with molecular oxygen, molybdenum HPAs have been more
active than tungsten. Cobalt cations-doped catalysts have been active in oxidation reac-
tions [30,40]. Swericka et al. studied the effect of the Co position within the Keggin anion
of the catalysts, using cyclooctane as a model molecule [41].

Scheme 12 shows the main results achieved in these reactions. Cyclooctane was
preferentially oxidized to cyclooctanol, cyclooctenone, and cyclooctane peroxide, regardless
of the catalyst. However, the oxygenates yield was higher in the reactions carried out in
the presence of molybdenum HPA or their salts if compared to the tungsten catalysts. The
reactions with cobalt as a counterion or as a dopant of heteropolyanion achieved the same
oxygenate yields. The same happened with tungsten salts that had Co as a counterion.
However, while phosphomolybdic acid reached the same yield as their cobalt salts, the
phosphotungstic acid-catalyzed oxidation of cyclooctane achieved the lowest oxygenate
yield [41].

Lacunar salts have been effective catalysts in oxidation reactions of terpene alcohols
with hydrogen peroxide, even as undoped salts. Vilanculo et al. explored these cata-
lysts in various reactions like these. Scheme 13 displays the main products obtained in
Na7PW11O39-catalyzed linalool oxidation with hydrogen peroxide [30].
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Scheme 13. Main products of Na7PW11O39-catalyzed linalool oxidation with hydrogen peroxide
(adapted from ref. [30]).

Linalool is an unsaturated tertiary alcohol, which may be epoxidized generating mono
or diepoxides. However, herein it was cyclized generating furane and pyrane derived,
which were isolated and spectroscopically characterized [30]. Those authors assessed the
effect of Keggin heteropolyanion in this reaction and the main results are shown in Figure 13.
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from ref. [30]).

The saturated salt Na3PW12O40 was inactive, reinforcing that the presence of vacancy
in the anion is an essential aspect of the activity of these catalysts. The lacunar tungsten
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sodium salt catalysts were more efficient than molybdenum, being the lacunar sodium
phosphotungstate salt the most active, achieving the highest conversion and selectivity
toward furan-derived (Figure 13).

Da Silva et al. investigated the activity of these sodium HPA salts in oxidation reactions
of nerol, an allylic terpene alcohol. Hydrogen peroxide was the oxidant and acetonitrile
was the solvent [26]. Figure 14 describes the results obtained using different sodium salts,
the main products, and a probable reaction pathway.
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products of nerol a probable reaction pathway (adapted from ref. [26]).

As verified in the linalool oxidation, lacunar tungsten salt catalysts were more effi-
cient than molybdenum ones. Again, saturated salt was inactive. Different from linalool,
which undergoes a cyclization reaction, the nerol was preferentially epoxidized giving
monoepoxide as the main product, diepoxide, and aldehyde as secondary products [26,30].
Those authors demonstrated that this epoxidation of allylic alcohols is a hydroxy group-
assisted reaction.

Figure 15 describes the probable reaction pathway. According to this proposal, the
lacunar heteropolyanion is peroxidized, generating intermediate 1, which transfers the
oxygen atom to the substrate, releasing water and the oxidation product [26,30].

Transition metal cations-doped silicotungstic acid salts were evaluated as catalysts
in oxidation reactions with hydrogen peroxide [42]. In these reactions, borneol, a terpene
alcohol was selectively converted to camphor, a product with wide application in the
pharmaceutic and fragrancies industries. Figure 15 exhibits the main results achieved
in reactions where the vacancy of lacunar salt K8SiW11O39 was filled with a transition
metal cation.

Only the nickel and iron-doped potassium silicotungstate salts achieved a camphor
yield equal or superior to that reached by the lacunar potassium silicotungstate salt. How-
ever, while the K8SiW11O39-catalyzed reaction attained the maximum conversion after
2 h of reaction, in the presence of the K6SiW11NiO39 catalyst it was achieved within the
first hour of reaction. Interestingly, when the copper acted as a countercation of silico-
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tungstate salt, it was the best catalyst in furfural oxidation [27]. Herein, as a dopant, the
copper was the worst catalyst, achieving the lowest camphor yield on the borneol oxidation
(Figure 14) [42].
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Another successful example of metal-doped Keggin HPA potassium salts was de-
scribed by da Silva et al., which assessed their use in benzaldehyde oxidation reactions
with hydrogen peroxide [43]. Scheme 14 describes the yield of benzoic acid achieved in the
reactions with various metal-doped catalysts.
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Scheme 14. Benzaldehyde oxidation with hydrogen peroxide over Keggin HPAs or their cobalt-doped
Keggin HPA potassium salts (adapted from ref. [43]).

A noticeable result is that in general, the yields achieved in the reactions with the
Keggin HPAs or cobalt-doped potassium salts were poor, varying from 18 to 39%, being
reaction yields with cobalt salts lower than pristine HPAs. The remarkable exception was
the K6SiW11CoO39-catalyzed reaction, which achieved the highest yield (i.e., 91%) [43].
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Da Silva et al. investigated the oxidation of benzylic alcohol with hydrogen perox-
ide over metal-doped phosphotungstic acid potassium salts [30]. Figure 16 displays the
main results.
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Figure 16. Benzylic alcohol oxidation with hydrogen peroxide over aluminium or transition metal-
doped lacunar phosphotungstic acid potassium salts (adapted from ref. [30].

Different than found in the benzaldehyde oxidation [43], where the cobalt-doped
potassium phosphotungstate salt was the most active catalyst, herein, the reactions carried
out over the nickel-doped potassium phosphotungstate salt were those that achieved the
highest conversion and selectivity to carboxylic alcohol (benzylic acid) [30]. Patel et al.
have found a similar result, where nickel-doped phosphotungstic acid salt was the most
efficient catalyst in oxidation reactions of aldehydes and alcohols, however, those authors
used the catalyst supported on the zirconia [44].

Serwicka et al. investigate the Keggin salts in Baeyer Villiger oxidation of cyclohex-
anone [12]. Partially exchanged salts with cobalt, manganese, or iron cations were the
catalysts (Figures 17 and 18).
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Among the evaluated salts, it is possible to observe that while the reactions in the
presence of cobalt or manganese salts achieved almost the same conversion and selec-
tivity, regardless of Keggin anion, the reactions with iron as the dopant were the most
efficient (Figures 17 and 18). However, the H2Fe0.33PW12O40-catalyzed reaction achieved
the highest conversion and lactone selectivity if compared to the reaction in the presence of
H2Fe0.33PMo12O40 [43].

The performance of silicotungstic acid and its saturated or lacunar salts of tert-
butylammonium was evaluated in the oxidation reaction of cyclopentene [45]. Scheme 15
shows the main results of conversion and selectivity. Cyclopentene was selectively con-
verted to cyclopentanediol and 1,5-diketone.
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hydrogen peroxide (adapted from ref. [45]) a,b. a Reaction conditions, catalyst (0.03 mmol), CH3CN
(4 mL), cyclopentene (25 mmol), H2O2 (30% (mass)) 30 mmol); stirring speed: 500 r·min−1. b Conver-
sions and selectivity values were expressed only with one or two significant figures.

All the silicotungstate salts were very efficient catalysts, except the tert-butylammonium
silicotungstate saturated salt. Once more the importance of the presence of a vacancy on
the Keggin structure of heteropolyanions was demonstrated. Although the silicotungstic
acid had achieved a high conversion, the selectivity to oxidation products was poor. The
performance of di-lacunar salt was superior to the mono-lacunar silicotungstate.
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Tahar et al. prepared nickel or ammonium salts of phosphomolybdic acid replacing
partially their protons and evaluated its catalytic activity in reactions of oxidative cleavage
of cyclohexanone to adipic acid [46]. Nickel performance is depicted in Schemes 16 and 17.
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Those authors verified that 14 h was time enough to achieve a good conversion. They
investigated the effect of catalyst load, and the main results are in Scheme 18.
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5. Conclusions

The synthesis routes of a series of Keggin heteropolyacid (HPAs) salts were described.
Infrared, powder XRD patterns and measurements of the acidity strength of these salts
were discussed. The Keggin HPA salt catalysts are used in the oxidation processes of
monoterpenes, aldehydes, alcohols, and olefines to produce valuable fine chemicals. Herein,
the most significant results were described. Lacunar HPA salts and metal-doped HPA
salts were the focus and had their activity compared in several oxidative processes. A
comparison of the main results of these two types of processes showed that the Keggin
heteropolyacid salts are efficient catalysts, with performance superior to the conventional
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catalysts used in oxidation processes, either with hydrogen peroxide or molecular oxygen.
Commonly, noble metal catalysts such as Au, Ag, and Pd are used in oxidation processes.
However, they decompose hydrogen peroxide and are incompatible with this oxidant.
Even when used with molecular oxygen, frequently they require high oxygen pressure,
hampering the processes. Therefore, Keggin HPA salts are efficient and cheaper than these
noble metals. Moreover, hydrogen peroxide is a nonflammable oxidant and easier to handle
than molecular oxygen.
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