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Abstract: An overview of the known methods of introducing selenium under the action of el-
emental selenium into the structures of various saturated, unsaturated, and heteroaromatic se-
lenacycles containing C–Se, N–Se, B–Se, Ge–Se and P–Se bonds is presented. These methods
include metal, iodine, bromine or chlorine exchange for selenium and the direct cyclization of
1-(2-bromoaryl)benzimidazoles, polyunsaturated hydrocarbons, acetylenes, propargylic amines, 3-
halogenaryl amides, aryl amides, diazo-compounds, 2-aminoacetophenone, and the annulation of
ethynyl arenes. Three- and four-component reactions utilizing elemental selenium as one of the
components and leading to selenium-containing heterocycles are presented as well.

Keywords: elemental selenium; metal–selenium exchange; cyclization; annulation; three-component
reactions; four-component reactions

1. Introduction

The synthesis of organoselenium compounds, and especially selenium-containing
heterocycles, continues to be a very active research area since the 1980s, when the results
for the synthetic ebselen, an organoselenium compound 2-phenyl-1,2-benzoselenazol-3-
one, revealed promising antioxidant properties of this heterocycle [1,2]. Nowadays, a
variety of these compounds are known, which demonstrate antimicrobial, biocidal, anti-
inflammatory, antioxidant and free radical scavenging activities [3–11]. Among them, a
number of organoselenium compounds have been found suitable for the treatment of the
most common ailments—cardiovascular, cancer, viral diseases and AIDS [2,12–17]. Their
practical application in medicine for the treatment of tumors and cancers is a subject of
current intense interest [18–24]. In material science, the utilization of selenium-containing
heterocycles in developing organic conductors, semiconductors, electroconducting materi-
als, paramagnetics and optoelectronics is another area of current interest [25–31].

The selenorganic heterocycles are usually prepared by the direct introduction of
selenium into the organic scaffold or by exchange with another atom. Over the last half
century, a number of selenylating agents have been introduced into the practice, including
nucleophilic H2Se, NaHSe, Na2Se, Li2Se, KSeCN, (Me3Si)2Se, electrophilic organylselenyl
halides, selenium di- and tetrahalides [32–38]. But the most direct synthetic way to obtain
selenaheterocycles consists of introducing elemental selenium into the parent organic
molecule. Elemental selenium lacks the drawbacks of other selenylating agents such as
toxicity, difficulty of preparation and handling as well as instability. At the same time,
since this approach leads to the synthesis of selenium heterocycles by excluding additional
manipulations with selenium such as, for instance, the generation of sodium or potassium
selenides or diselenides Na2Se, K2Se, Na2Se2, K2Se2 or selenium di- or tetrahalides SeX2,
SeX4 it seems quite prospective.

In 2019, a small review [39] was published in which some examples of elemental
selenium introduction into the molecules of different heterocycles were presented. Quite a
number of reviews depicting the syntheses of various selenium-containing compounds also
included examples of the selenacyles formation due to the use of elemental selenium [40–51].
A fairly extensive overview of the use of elemental selenium for the syntheses of different
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classes of organoselenium compounds, including various heterocycles, were presented by
Ma et al. in 2021 [52] and Guo et al. in 2022 [53]. However, the use of elemental selenium
for the synthesis of heterocycles has neither been considered in the literature as a separate
subject nor in more detail. This review presents the currently known data related to the
synthesis of selenium-containing heterocycles using elemental selenium as a selenylating
reagent, which will allow us to establish the limits of the use of elemental selenium in the
construction of various heterocyclic systems.

2. Synthesis of Selenium-Containing Heterocycles by Metal–Selenium Exchange in
Cyclometallated Derivatives of Olefins, Allenes, Acetylenes and Aromatics

The exchange of metal for selenium in metallacyclopentanes 1, -cyclopent-2-enes 2
and –cyclopenta-2,4-dienes 3, generated in situ by Dzhemilev reaction (M = Al [54–57]
and Mg [57–59]) through the catalytic cycloalumination or cyclomagnesation of alkenes
and alkynes in the presence of catalytic amounts of Ti and Zr complexes, can be regarded
as one of the earliest methods for the introduction of elemental selenium to heterocyclic
compounds. Reactions result in a formation of selenium-containing five-membered satu-
rated tetrahydroselenophenes 4, and unsaturated dihydroselenophenes 5 and selenophenes
6 [54,56,59,60] (Scheme 1).
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2,4-dienes 3.

Based on this methodology, Dyakonov et al. [60] developed a one-pot synthesis of
fused five-membered selenium heterocycles via the cyclometallation of methylenecyclobu-
tane 7 and allenes 8a,b using alkyl derivatives of Al and Mg. The reaction of the resulting
alumina- and magnesacarbocycles with elemental selenium afforded various spiro-, bi-
and tricyclotetrahydroselenophenes 9a,b,c and bi- and tricycloselenophenes 10a,b in high
yields (Scheme 2).
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The cycloalumination of cyclotetradeca-1,8-diyne 11 in the presence of Zr catalyst
(Cp2ZrCl2) involved both triple bonds of the diyne to present the isomeric tricyclic bisa-
luminacyclopentenes 12 and 13 in a 1:1 ratio in a 91% yield. The reaction of the lat-
ter with an excess of elemental selenium in boiling benzene afforded a mixture of the
regioisomeric 8,20-diselenatricyclo [15.3.01,17.07,11]eicosa-1(17),7(11)-diene 14 and 8,18-
diselenatricyclo [15.3.01,17.07,11]eicosa-1(17),7(11)-diene 15 in a 1: 1 ratio and a 69% total
yield [61] (Scheme 3).
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The exchange of mercury for selenium in a mercury derivative of biphenyl 18 prepared
by the treatment of diiodobiphenyl 16 with lithium and mercury chloride (II) at 200 ◦C led
to dibenzoselenophene 6a [62] (Scheme 4). Reaction proceeds through the intermediate
formation of a dilithium derivative of biphenyl 17.
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3. Synthesis of Selenium-Containing Heterocycles via Lithium–Selenium Exchange in
Lithium Derivatives of Organic Compounds

The most developed method of introducing selenium into a heterocycle molecule is
lithium–selenium exchange, which sometimes presents results that are difficult to achieve
by other methods.

For instance, if to treat the intermediate dilithium biphenyl 17 mentioned above
(Scheme 4) with elemental selenium in air, instead of mercury chloride, another product,
dibenzo[1,2]diselenine 19, is formed at the expense of direct lithium–selenium exchange,
followed by aerial oxidation [62] (Scheme 5).
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The reaction of the highly crowded trisilylmethyllithium compound (PhMe2Si)3CLi
with elemental Se resulted in a variety of products, which include the triselane [(PhMe2Si)3CSe]2Se,
the unexpected diselane [(PhMe2Si)2HCSe]2 and the novel heterocycle s-tetraselenane
[(PhMe2Si)2CSeSe]2 20 [63] (Scheme 6). The structure of the latter could be elucidated from
the NMR spectroscopic data and was confirmed by the crystal structure, which displays
the SeSeCSeSeC cycle in twist form.
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The 1,2-diselenine-containing-fused π-conjugated compounds 24 were synthesized,
starting from bis(o-haloaryl)diacetylenes 21 via a one-pot intramolecular triple cyclization
reaction [64]. Further deselenation of 1,2-diselenine under the action of Cu afforded five-
membered heteroacenes 25 [64] (Scheme 7).
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The formation of heterole-1,2-diselenin-heterole tricyclic structures 24 in this work
was explained by the three-stage process, including the dilithiation of 21 with t-BuLi in
THF, followed by trapping with elemental selenium to produce the dianionic species 22.
In the second step, the anionic centers attack the inner carbon atoms of the diacetylene
moiety, generating a new dianionic species which is trapped with the remaining elemental
selenium to afford the doubly cyclized dianionic intermediate 23. The fused 1,2-diselenines
24 were obtained in the final step by the oxidation of the latter with potassium ferricyanide
(III) in a 1 M NaOH aqueous solution (Scheme 7).

Similarly, the treatment of triphenylene derivative 26 with n-BuLi, followed by elemen-
tal selenium, afforded a 70% yield of heteroacene 27, which was quantitatively transformed
to the triselenasumanene derivative 28 by a solid-state deselenation over copper pow-
der [65] (Scheme 8).
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The dilithiation of 1,4-dibromo-2,5-bis(phenylethynyl)benzene 30a with t-BuLi fol-
lowed by treatment with selenium powder resulted in a synthesis of the corresponding
2,6-diphenybenzo [1,2-b:4,5-b′]diselenophene 31a (DPh-BDS) [66]. The parent 30a was
prepared in this work by the iodation of 1,4-dibromobenzene 29 and subsequent Sono-
gashira coupling with phenylacetylene [66] (Scheme 9). Other BDS derivatives 31b–d with
biphenyl-, p-hexylphenyl- and trimethylsilyl subsistents can also be synthesized by the
same method using the corresponding acetylenes [66–70] (Scheme 9).
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The treatment of disubstituted acetylene, 2,2’-dibromodiphenylacetylene 32a, with tert-
butyllithium followed by elemental selenium insertion in the Li derivative of acetylene 32a
resulted in a intramolecular ring closure to afford [1]benzoseleno [3,2-b][1]benzoselenophene
33a [71] (Scheme 10). According to this procedure, [1]benzothieno [3,2-b][1]benzothiophene
33c and [1]benzotelluro [3,2-b][1]benzotellurophene 33c were also obtained.
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Scheme 10. Annulation of 2,2′-dibromodiphenylacetylene 32a under action of t-BuLi/Se as well as
t-BuLi/Te, t-BuLi/S.

Dinaphtho [1,2-b:2′,1′-d]selenophene 35 was prepared by the exchange of lithium
for selenium in the lithium derivative of sulfonamide generated by the treatment of sul-
fonamide 34 with n-BuLi in tetramethylethylenediamine (TMEDA). Furthermore, the
diselenide 36 was formed in this reaction [72] (Scheme 11).



Inorganics 2023, 11, 287 7 of 37Inorganics 2023, 11, x FOR PEER REVIEW 7 of 38 
 

 

Se

SO2NMe2

R

R R

R Se

SO2NMe2

2

1. TMEDA, n-BuLi, 0 oC, 6 h

2. Se, rt, 3 h

+

34 35 36
R = H, Ph R = H, 31%; Ph, 11% R = H, 21%; Ph =15%  

Scheme 11. Synthesis of dinaphtho [1,2-b:2′,1′-d]selenophene 35 by Li–Se exchange in lithium de-
rivative of sulfonamide 34. 

An ebselen analog 39 was synthesized by treatment with selenium in THF of the 
lithium derivative of bisdihydrooxazole 37, produced by the interaction of the latter with 
LDA in the presence of TMEDA [73,74]. It is assumed that the product 39 is formed due 
to the spontaneous disproportionation of the intermediate diselenide 38 (Scheme 12). 

 
Scheme 12. Synthesis of ebselen analog 39 by Li–Se exchange in lithium derivative of bisdihy-
drooxazole 37. 

A general approach to ebselen and its derivatives 42 involving the use of elemental 
selenium was described. It includes the ortholithiation of benzanilides 40, the subsequent 
insertion of elemental selenium into benzanilide-derived dianion 41 and the cyclization 
of selenium-containing dianion to ebselen derivatives 42 in yields up to 14% [75,76] 
(Scheme 13). 

NHR

O

N
Li

O

Li

R

Se
N

O

R

2 BuLi/THF
1. Se
2. CuBr2

40 41 42

R = Ph, 4-MeC6H4, 3-MeC6H4, 2-MeC6H4, 4-MeC6H4CH2, 2-MeC6H4CH2  
Scheme 13. Synthesis of ebselen and its derivatives 42 by Li–Se exchange in lithium derivatives of 
benzanilides 40. 

Selenazoloindoles 44 were prepared from the readily available N-alkynylindoles 43 
via annulation through the introduction of n-BuLi and the sequential exchange of lithium 
for selenium under the action of elemental selenium. The simultaneous lithiation of triple 
bond to generate intermediate lithium selenolate results in the formation of the corre-
sponding 3-alkylselanyl derivatives 44 on interaction with alkyl bromides [77] (Scheme 
14). 

Scheme 11. Synthesis of dinaphtho [1,2-b:2′,1′-d]selenophene 35 by Li–Se exchange in lithium
derivative of sulfonamide 34.

An ebselen analog 39 was synthesized by treatment with selenium in THF of the
lithium derivative of bisdihydrooxazole 37, produced by the interaction of the latter with
LDA in the presence of TMEDA [73,74]. It is assumed that the product 39 is formed due to
the spontaneous disproportionation of the intermediate diselenide 38 (Scheme 12).
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Scheme 12. Synthesis of ebselen analog 39 by Li–Se exchange in lithium derivative of bisdihydrooxa-
zole 37.

A general approach to ebselen and its derivatives 42 involving the use of elemental
selenium was described. It includes the ortholithiation of benzanilides 40, the subse-
quent insertion of elemental selenium into benzanilide-derived dianion 41 and the cycliza-
tion of selenium-containing dianion to ebselen derivatives 42 in yields up to 14% [75,76]
(Scheme 13).
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Selenazoloindoles 44 were prepared from the readily available N-alkynylindoles 43 via
annulation through the introduction of n-BuLi and the sequential exchange of lithium for
selenium under the action of elemental selenium. The simultaneous lithiation of triple bond
to generate intermediate lithium selenolate results in the formation of the corresponding
3-alkylselanyl derivatives 44 on interaction with alkyl bromides [77] (Scheme 14).
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Scheme 14. Synthesis of selenazoloindoles 44 by annulation of N-alkynylindoles 43 under action of
BuLi/Se.

Treatment of 4,5,11,12-tetrabromo-N,N′-di-n-butyl-2,7,9,14-tetrakis(trimethylsilyl)
tetraphenyleno [1,16-bcd:8,9-b′c′d′]dipyrrole 45 with excess of BuLi at −78 ◦C, and then
with elemental selenium in THF at room temperature afforded diazadiseleno [8]circulene
46 thanks to the exchange of lithium for selenium in the lithium derivatives formed in the
first stage [78] (Scheme 15).
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Scheme 15. Synthesis of diazadiseleno [8]circulene 46 from 4,5,11,12-tetrabromo-N,N′-di-n-butyl-
2,7,9,14-tetrakis(trimethylsilyl) tetraphenyleno [1,16-bcd:8,9-b′c′d′]dipyrrole 45 via Li–Se exchange.

Kobayashi et al. developed a synthetic approach to benzoselenazole-2(3H)-thiones 50,
2-(alkylsulfanyl)benzoselenazoles 51 and S-(benzoselenazol-2-yl)thiocarboxylates 52 [79]
(Scheme 16). Treatment of 1-bromo-2-isothiocyanatobenzene 47 with BuLi to produce
2-lithiophenyl isothiocyanates 48, which were further reacted with selenium powder,
yielded lithium benzo-1,3-selenazole-2-thiolate 49. The quenching of this anion with the
corresponding nucleophiles afforded the above benzoselenazoles 50–52.



Inorganics 2023, 11, 287 9 of 37Inorganics 2023, 11, x FOR PEER REVIEW 9 of 38 
 

 

 
Scheme 16. Synthesis of lithium benzo-1,3-selenazole-2-thiolate 49 from 
1-bromo-2-isothiocyanatobenzene 47 by action of BuLi/Se and consequent transformation of thio-
late 49 into thiones 50, sulfides 51 and thiocarboxylates 52. 

4. Synthesis of Selenium-Containing Heterocycles by Exchange of I or Br for Se 
The exchange of halogens for selenium is another powerful method for the prepara-

tion of selenium-containing heterocycles. 
Thus, diarylselenophenes 6 were obtained in 49–90% yields by the base-catalyzed 

Se–I exchange reaction of diaryliodonium salts 53 in DMSO at 80 °C [80] (Scheme 17). 
Diaryliodonium salts with both electron-rich and electron-deficient substituents can be 
used in this reaction. 

The annulation of ortho-alkenyl aryliodides 55 under the action of elemental sele-
nium in the presence of CuI results in substituted benzoselenophenes 56 [81,82] (Scheme 
18). The starting aryliodides 55 have been prepared here by the addition of arylzinc rea-
gents 54 to alkynes in the presence of the cobalt–Xantphos complex to form o-alkenyl ar-
ylzinc intermediates and the subsequent substitution of the zinc substituent for iodine 
under the action of I2 [82]. 

 
Scheme 17. Synthesis of dibenzoselenophenes 6 by Se–I exchange in diaryliodonium salts 53. 

Similarly, the Cu-catalyzed reaction of 2-(2-iodophenyl)-1H-indoles 57 and Se 
powder in DMSO at 110 °C affords benzoselenopheno [3,2-b]indole derivatives 58 [83] 
(Scheme 19). 

Scheme 16. Synthesis of lithium benzo-1,3-selenazole-2-thiolate 49 from 1-bromo-2-
isothiocyanatobenzene 47 by action of BuLi/Se and consequent transformation of thiolate 49 into
thiones 50, sulfides 51 and thiocarboxylates 52.

4. Synthesis of Selenium-Containing Heterocycles by Exchange of I or Br for Se

The exchange of halogens for selenium is another powerful method for the preparation
of selenium-containing heterocycles.

Thus, diarylselenophenes 6 were obtained in 49–90% yields by the base-catalyzed
Se–I exchange reaction of diaryliodonium salts 53 in DMSO at 80 ◦C [80] (Scheme 17).
Diaryliodonium salts with both electron-rich and electron-deficient substituents can be
used in this reaction.
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Scheme 17. Synthesis of dibenzoselenophenes 6 by Se–I exchange in diaryliodonium salts 53.

The annulation of ortho-alkenyl aryliodides 55 under the action of elemental selenium
in the presence of CuI results in substituted benzoselenophenes 56 [81,82] (Scheme 18).
The starting aryliodides 55 have been prepared here by the addition of arylzinc reagents
54 to alkynes in the presence of the cobalt–Xantphos complex to form o-alkenyl arylzinc
intermediates and the subsequent substitution of the zinc substituent for iodine under the
action of I2 [82].
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Scheme 18. Synthesis of benzoselenophenes 56 by annulation of ortho-alkenyl aryliodides 55 via
Se–I exchange.

Similarly, the Cu-catalyzed reaction of 2-(2-iodophenyl)-1H-indoles 57 and Se powder
in DMSO at 110 ◦C affords benzoselenopheno [3,2-b]indole derivatives 58 [83] (Scheme 19).
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Scheme 19. Synthesis of benzoselenopheno [3,2-b]indoles 58 by annulation of 2-(2-iodophenyl)-1H-
indoles 57 via Se–I exchange.

2-(2-Iodophenyl)imidazo [1,2-a]pyridine derivatives 59a in similar conditions, under
the action of elemental selenium, result in novel benzo[b]selenophene-fused imidazo [1,2-
a]pyridines 60 [84] (Scheme 20). Both intramolecular cyclizations involve the Ullmann-type
Se-arylation and C(sp2)–H selenation reactions. However, reaction with imidazopyridine
derivatives 59a in contrast to reaction with indoles 57 proceeds under aerobic conditions.
Products were prepared here in moderate-to-high yields.
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Scheme 20. Synthesis of benzo[b]selenophene-fused imidazo [1,2-a]pyridines 60 by annulation of
2-(2-iodophenyl)imidazo [1,2-a]pyridine derivatives 59a via Se–I exchange.

An alternative method for the synthesis of benzo[b]selenophene-fused imidazo [1,2-
a]pyridines 60 through ligand- and base-free CuI-catalyzed cyclization of 2-(2-bromophenyl)
imidazo [1,2-a]pyridine derivatives 59b under the action of elemental selenium in air was
also described [85] (Scheme 21).

A copper-catalyzed reaction between 2-bromobenzothioamides 2-Br-RC6H3C(S)NHR1

(R = H, 5-Me, 5-Cl, 3-Me, etc.; R1 = Ph, pyridin-2-yl, 9H-fluoren-2-yl, etc.) 61 and Se
involves sulfur rearrangement and enables access to benzothiaselenoles 62 in the presence
of Cs2CO3. In the absence of Se, the reaction affords dibenzodithiocines 63 (R = H, 3-OMe,
2-Me, etc.) via two consecutive C(sp2)-S Ullmann couplings [86] (Scheme 22).
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A novel and efficient procedure for one-pot regio- and stereospecific synthesis of
benzo [1,4,2]thiaselenazine 1,1-dioxides 66 via [Cu]-catalyzed ring closure reaction between
N-alkynyl-2-iodobenzene sulfonamides 64 and elemental Se in N-methyl-2-pyrrolidone
(NMP) at 90 ◦C for 20 h has been developed [87]. Its generality was illustrated by extension
to the synthesis of seven-membered benzothiaselenazepines 67 from N-(3-phenylprop-2-
yn-1-yl)-2-iodobenzene sulfonamides 65 (Scheme 23). The involvement of water in the
reaction is demonstrated by the incorporation of 2D at the olefinic site by using D2O in
place of water.

Inorganics 2023, 11, x FOR PEER REVIEW 11 of 38 
 

 

A copper-catalyzed reaction between 2-bromobenzothioamides 
2-Br-RC6H3C(S)NHR1 (R = H, 5-Me, 5-Cl, 3-Me, etc.; R1 = Ph, pyridin-2-yl, 9H-fluoren-2-yl, 
etc.) 61 and Se involves sulfur rearrangement and enables access to benzothiaselenoles 62 
in the presence of Cs2CO3. In the absence of Se, the reaction affords dibenzodithiocines 63 
(R = H, 3-OMe, 2-Me, etc.) via two consecutive C(sp2)-S Ullmann couplings [86] (Scheme 
22). 

 
Scheme 22. Synthesis of benzothiaselenoles 62 by Se–Br exchange in 2-bromobenzothioamides 61 
and consequent sulfur rearrangement. 

A novel and efficient procedure for one-pot regio- and stereospecific synthesis of 
benzo [1,4,2]thiaselenazine 1,1-dioxides 66 via [Cu]-catalyzed ring closure reaction be-
tween N-alkynyl-2-iodobenzene sulfonamides 64 and elemental Se in 
N-methyl-2-pyrrolidone (NMP) at 90 °C for 20 h has been developed [87]. Its generality 
was illustrated by extension to the synthesis of seven-membered benzothiaselenazepines 
67 from N-(3-phenylprop-2-yn-1-yl)-2-iodobenzene sulfonamides 65 (Scheme 23). The 
involvement of water in the reaction is demonstrated by the incorporation of 2D at the 
olefinic site by using D2O in place of water. 

 
Scheme 23. Synthesis of benzo [1,4,2]thiaselenazine 1,1-dioxides 66 and benzothiaselenazepines 67 
by Se–I exchange with ring closure in N-alkynyl-2-iodobenzene sulfonamides 64 and 
N-(3-phenylprop-2-yn-1-yl)-2-iodobenzene sulfonamides 65. 

A similar procedure was used for the synthesis of 2,3-dihydro-1,4-benzoxaselenines 
69 from 2-iodoaryl propargyl ethers 68 [88] (Scheme 24). 
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Se–I exchange with ring closure in N-alkynyl-2-iodobenzene sulfonamides 64 and N-(3-phenylprop-
2-yn-1-yl)-2-iodobenzene sulfonamides 65.

A similar procedure was used for the synthesis of 2,3-dihydro-1,4-benzoxaselenines
69 from 2-iodoaryl propargyl ethers 68 [88] (Scheme 24).
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cles—benzimidazo [2,1-b]benzoselenoazoles 74 [90] (Scheme 26). As compared to the 
above methodology, the proposed mechanism of this reaction involves the deprotonation 
of the imidazole ring at the 2-position and C(Het)–Se bond formation. Consequent ring 
closure via the SNAr reaction by attack of the selenide anion on the phenyl group con-
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2-iodoaryl propargyl ethers 68.

A CuBr2-catalyzed annulation of 2-bromo-N-arylbenzimidamide 70 with selenium
powder was shown to be a general convenient method for the preparation of benzo[d]isosel
enazoles 71 in good yields [89] (Scheme 25). This synthetic strategy demonstrates good
functional group tolerance. Furthermore, the corresponding products could be converted
into N-aryl indoles 72 in the reactions with diarylacetylenes 32c via rhodiumIII-catalyzed
ortho-C–H activation of the N-phenyl ring, providing an efficient approach for axial aromatic
molecules.

Inorganics 2023, 11, x FOR PEER REVIEW 12 of 38 
 

 

 
Scheme 24. Synthesis of 2,3-dihydro-1,4-benzoxaselenines 69 by Se–I exchange and ring closure in 
2-iodoaryl propargyl ethers 68. 

A CuBr2-catalyzed annulation of 2-bromo-N-arylbenzimidamide 70 with selenium 
powder was shown to be a general convenient method for the preparation of ben-
zo[d]isoselenazoles 71 in good yields [89] (Scheme 25). This synthetic strategy demon-
strates good functional group tolerance. Furthermore, the corresponding products could 
be converted into N-aryl indoles 72 in the reactions with diarylacetylenes 32c via rho-
diumIII-catalyzed ortho-C–H activation of the N-phenyl ring, providing an efficient ap-
proach for axial aromatic molecules. 

NH

HN

Br

R

+ Se

CuBr2 (10 mol %)
t-BuONa (3 eq.)

H2O (5.0 eq.)
DMF (0.2 M)
135 oC, air, 3 h

Se
N

HN R

71, up to 94%

Se
N

HN

H
Ar

Ar

RhCp Cl2 2 (5 mol %)

AgSbF6 (20 mol %)

AgBF4 (2.5 eq)
MeOH (0.1 M)
Ar, 100 oC, 24 h

+

Se
N

N

Ar

Ar

70

71 72  
Scheme 25. Synthesis of benzo[d]isoselenazoles 71 by CuBr2-catalyzed annulation of 
2-bromo-N-arylbenzimidamide 70 with selenium and conversion of 71 into N-aryl indoles 72. 

5. Synthesis of Benzoselenazoles by Cyclization of 1-(2-Bromoaryl)benzimidazoles 
under Action of Selenium 

The ring-closure reaction of 1-(2-bromoaryl)benzimidazoles 73 with Se powder was 
promoted by Cs2CO3 in DMF at 150 °C and afforded novel tetracyclic heterocy-
cles—benzimidazo [2,1-b]benzoselenoazoles 74 [90] (Scheme 26). As compared to the 
above methodology, the proposed mechanism of this reaction involves the deprotonation 
of the imidazole ring at the 2-position and C(Het)–Se bond formation. Consequent ring 
closure via the SNAr reaction by attack of the selenide anion on the phenyl group con-
taining bromine generates the target tetracyclic molecule (Scheme 26). Single-crystal 
X-ray analysis of the parent benzimidazo [2,1-b]benzoselenoazole 74a (R = R1 = H) re-
vealed that the tetracyclic ring is almost planar. 
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5. Synthesis of Benzoselenazoles by Cyclization of 1-(2-Bromoaryl)benzimidazoles
under Action of Selenium

The ring-closure reaction of 1-(2-bromoaryl)benzimidazoles 73 with Se powder was
promoted by Cs2CO3 in DMF at 150 ◦C and afforded novel tetracyclic heterocycles—
benzimidazo [2,1-b]benzoselenoazoles 74 [90] (Scheme 26). As compared to the above
methodology, the proposed mechanism of this reaction involves the deprotonation of the
imidazole ring at the 2-position and C(Het)–Se bond formation. Consequent ring closure
via the SNAr reaction by attack of the selenide anion on the phenyl group containing
bromine generates the target tetracyclic molecule (Scheme 26). Single-crystal X-ray analysis
of the parent benzimidazo [2,1-b]benzoselenoazole 74a (R = R1 = H) revealed that the
tetracyclic ring is almost planar.
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6. Cyclization of Polyunsaturated Hydrocarbons under the Action of Elemental Selenium

Another method that can be regarded as one of the earliest for the synthesis of
selenium-containing heterocycles is the cyclization of polyunsaturated hydrocarbons under
the action of elemental selenium.

The selenation of tetraarylbutatrienes R2C=C=C=CR2 75 (R = 4-R1C6H4; R1 = Me, H,
Cl) in DMF in the presence of DBU afforded 1,2,5-triselenepanes 76, while sulfurization
resulted in 1,2,3,4,5-pentathiepanes 77. The further degradation of 1,2,5-triselenepanes 76
resulted in the formation of benzoselenophene derivatives 78 [91] (Scheme 27).
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Scheme 27. Selenation of tetraarylbutatrienes 75 with elemental Se to afford 1,2,5-triselenepanes 76
as compared to sulfurization.

[4+1]-Cycloaddition of elemental selenium to trifluoromethyl derivatives of 1,3-diene
79 in an autoclave without a solvent and in the presence of anhydrous trifluoroacetic acid
anhydride (TFAA) as catalyst presented 2,4-substituted 2,5-dihydroselenophenes 80 [92]
(Scheme 28).
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Scheme 28. Synthesis of 2,5-dihydroselenophenes 80 by cyclization of 1,3-diene 79 under action of
elemental Se.

The reaction of diaryldiynes 81 with elemental selenium, in contrast to 1,3-dienes,
afforded—on heating to 170–230 ◦C—various diselenolodiselenole derivatives 82 [93]
(Scheme 29).

Inorganics 2023, 11, x FOR PEER REVIEW 14 of 38 
 

 

R

F3C

H3C

Se

H3C

F3C
R

Se, TFFA

autoclave, 275 oC

R = CH3, CF3

79 80 (R = CF3, 68%)

 
Scheme 28. Synthesis of 2,5-dihydroselenophenes 80 by cyclization of 1,3-diene 79 under action of 
elemental Se. 

The reaction of diaryldiynes 81 with elemental selenium, in contrast to 1,3-dienes, 
afforded—on heating to 170–230 °C—various diselenolodiselenol derivatives 82 [93] 
(Scheme 29). 

 
Scheme 29. Synthesis of diselenolodiselenol derivatives 82 by action of elemental Se on dia-
ryldiynes 81. 

The direction of the reaction with diynes changes on the addition of hydrazine 
monohydrate and KOH to elemental selenium. Thus, the treatment of diphenyl diacety-
lene 81a with Se/N2H4.H2O/KOH system afforded 2,5-diphenylselenophene 6b due to the 
generation of K2Se in the reaction mixture [94]. Similarly, 1,3-butadiyne-bridged carba-
zole dimer 83 afforded selenophene-bridged carbazole dimer—isophlorin 84, which, 
upon oxidation with MnO2 in CH2Cl2, led to selenaporphyrin 85 [95] (Scheme 30). 

Ph Ph
SePh Ph

Se, H2NNH2 H2O
KOH, DMSO

81a 6b

NH

t-Bu

t-Bu

HN

t-Bu

t-Bu

N

t-Bu

t-Bu

N

t-Bu

t-Bu

Se

Se

NH

t-Bu

t-Bu

HN

t-Bu

t-Bu

Se

Se

Se, H2NNH2H2O

KOH, DMSO,
100 oC, 20 h

83 84, 87%

85, 51%

MnO2, CH2Cl2

rt, 3 d

 
Scheme 30. Formation of selenophene moieties in compounds 6b and 84 by action of 
Se/N2H4.H2O/KOH on diynes 81a and 83. 

Scheme 29. Synthesis of diselenolodiselenole derivatives 82 by action of elemental Se on di-
aryldiynes 81.

The direction of the reaction with diynes changes on the addition of hydrazine mono-
hydrate and KOH to elemental selenium. Thus, the treatment of diphenyl diacetylene 81a
with Se/N2H4

.H2O/KOH system afforded 2,5-diphenylselenophene 6b due to the genera-
tion of K2Se in the reaction mixture [94]. Similarly, 1,3-butadiyne-bridged carbazole dimer
83 afforded selenophene-bridged carbazole dimer—isophlorin 84, which, upon oxidation
with MnO2 in CH2Cl2, led to selenaporphyrin 85 [95] (Scheme 30).
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7. Selenophenes via Cyclization of Acetylenes under Action of Elemental Selenium

One of the best known methods for producing selenophenes is the interaction of
terminal and disubstituted acetylenes with elemental selenium in benzene at elevated pres-
sure. A reaction of 3-butyn-2-one 32b with Se at 205–215 ◦C in C6H6 in stainless autoclave
resulted in 2,4- and 2,5-diacetylselenophenes 6c and 6d, while tetraphenylselenophene 6e
was prepared in a similar method to that of PhC≡CPh 32c [96] (Scheme 31). The proposed
mechanism for the formation of selenophenes involves the intermediate generation of
diselenins 86, which, under reaction conditions, are subjected to deselenation.
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8. A Carbonylative Cyclization of Propargylic Amines with Elemental Selenium

Various 1,3-selenazolidin-2-ones 88 were prepared via a carbonylative cyclization of
propargylic amines 87 with elemental selenium [97] (Scheme 32). In this process, as a safe
and convenient solid CO source, benzene-1,3,5-triyl triformate (TFBen) was employed
using t-BuOK as the promoter. A broad class of substrates was effectively transformed into
the desired products under mild conditions.
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of propargylic amines 87 with elemental selenium afforded (E)-5-(iodomethylene)-1,3-
selenazolidin-2-ones 89 in up to 95% yields [98] (Scheme 33).
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An alternative method for the preparation of 5-alkylidene-1,3-selenazolin-2-ones 88
was described by Fujiwara et al. [99], who suggested the 5-exo-dig cyclization of selenolate
intermediate 90 generated by the reaction of propargylic amines 87 with elemental selenium
and CO using DBU as a promoter (Scheme 34).
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A similar CuI-catalyzed cyclocarbonylation of homopropargylamine 91 under the
action of CO in the presence of elemental Se afforded the corresponding selenazinan-2-one
derivative 92 [99] (Scheme 35).
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of elemental Se/CO.

9. Synthesis of 1,2,3,5,6,7-Hexaselenacyclooctane via Se–Cl Exchange in
1-Chloro-2,2-bis(diethylamino)ethene under Action of Elemental Selenium

The possibility of Se–Cl exchange in chloroethenes was demonstrated by the synthe-
sis of 4,8-bis[bis(diethylamino)methylene]-1,2,3,5,6,7-hexaselenacyclooctane 94 [100,101].
Treatment of 1-chloro-2,2-bis(diethylamino)ethene 93 with elemental Se in refluxing ben-
zene resulted in compound 94 in 60% yield (Scheme 36). Its structure was determined
by XRD analysis. The compound 94 was shown to behave as 2,2-bis(diethylamino)-2-
ethylium-1-diselenocarboxylate 95 toward a range of reagents. Thus, with di(methyl)
acetylenedicarboxylate 32c, it reacted to provide 1,3-diselenole 96 in high yield (Scheme 36).
Evidence for the dissociation of 94 into 95 in solutions was provided by IR, UV/visible and
1H-, 13C- and 77Se-NMR spectra.
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10. Synthesis of Ebselen via Cyclization of 3-Halogenaryl Amides and Aryl Amides
under Action of Selenium

A general method was developed for the synthesis of the aforementioned biologically
important ebselen and related analogs 42 containing a Se–N bond. It involves an efficient
copper-catalyzed selenium–nitrogen coupling reaction between various 2-chloro, 2-bromo,
2-iodo-arylamides 97 and selenium powder [102,103] (Scheme 37). This copper-catalyzed
reaction tolerates functional groups such as amides, hydroxyls, ethers, nitro, fluorides
and chlorides. The best results have been obtained by using a combination of potassium
carbonate as a base, or iodo-/bromo-arylamide substrates and copper iodide catalyst.
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Scheme 37. Synthesis of ebselen and its analogs 42 by cyclization of 2-halogen arylamides 97 under
action of elemental Se.

In order to prepare the ebselen analogs bearing an 8-quinolyl moiety, the arylamides
97 without halogen substituents at aryl moieties were also used. This efficient Ni-catalyzed
selenation reaction was carried out in DMF at 120 ◦C in air and afforded for 24 h the
corresponding benzoselenazole derivatives 42 in good yields [104] (Scheme 38).
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Scheme 38. Synthesis of ebselen and its analogs 42 by Ni-catalyzed cyclization of arylamides 97 with
elemental Se.

11. Annulation of Ethynyl Arenes under Action of Selenium

Action of elemental Se on ortho-monoalkynyl-substituted perylene diimide (PDI) 98
in dimethylacetamide (DMA) at 140 ◦C resulted in highly regioselective heteroannulation
to form selenophene-fused polycyclic product 99 [105] (Scheme 39).
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(4,5-dihydro-1,3-selenazoles) 107 from N-acyl-2-oxazolidinones 106 and elemental Se in 
the presence of amine and hydrochlorosilane was suggested by Shibahara et al. [107] 
(Scheme 41). Suggested reaction mechanisms include the selenative rearrangement of 
N-acyl-2-oxazolidinones 106 and the elimination of O=C=Se species. A similar selenative 
rearrangement was observed in the reaction of free oxazolidinone 108 carried out under 
the same selenation condition and affording selenazolidinone 109 in moderate yield [107] 
(Scheme 42). 

Scheme 39. Annulation of ortho-monoalkynyl-substituted perylene diimide (PDI) 98 with elemental
Se.

12. Formation of Heterocycles via Cyclization of Diazo-Compounds under Action
of Selenium

The reaction of bis(diazo)octamethyldecane 100 with elemental selenium in DBU at 130
◦C yielded 1,2-di-tert-butyl-3,3,6,6-tetramethylcyclohexene 101 as the major product along
with trans-3,8-di-tert-butyl-4,4,7,7-tetramethyl-1,2-diselenocane 102, while the analogous
reaction of the reagent 100 with elemental sulfur in DBU resulted in trans-3,8-di-tert-butyl-
4,4,7,7-tetramethyl-1,2-dithiocane 103 as the only product [106] (Scheme 40). The reaction of
3,9-bis(diazo)-2,2,4,4,8,8,10,10-octamethylundecane 104 with elemental selenium in DBU at
80 ◦C resulted in the formation of cyclic triselenide, cis-4,10-di-tert-butyl-5,5,9,9-tetramethyl-
1,2,3-triselenecane 105 as the only identifiable product [106] (Scheme 40). The structures of
the heterocycles 103 and 105 were confirmed by X-ray crystallography.
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Scheme 40. Cyclization of bis(diazo)octamethyldecane 100 and bis(diazo)octamethylundecane 104
under action of elemental Se.

13. Formation of Selenazolines via Action of Selenium on N-Acyl-2-oxazolidinones

An efficient method for the preparation of chiral selenazolines (4,5-dihydro-1,3-selenaz
oles) 107 from N-acyl-2-oxazolidinones 106 and elemental Se in the presence of amine and
hydrochlorosilane was suggested by Shibahara et al. [107] (Scheme 41). Suggested reaction
mechanisms include the selenative rearrangement of N-acyl-2-oxazolidinones 106 and the
elimination of O=C=Se species. A similar selenative rearrangement was observed in the
reaction of free oxazolidinone 108 carried out under the same selenation condition and
affording selenazolidinone 109 in moderate yield [107] (Scheme 42).
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15. Synthesis of 1,3-Oxaselenoles from Carbonyl-Stabilized Sulfonium Ylides under
Action of Selenium

Carbonyl-stabilized sulfonium ylides 112a,b readily react with elemental selenium to
afford 1,3-oxaselenole derivatives 113a,b in good yields, thus providing a simple method
for constructing these ring systems, which use easily accessible compounds as starting
materials [109] (Scheme 44).
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16. Synthesis of 1,3-Diselenole-2-selones by Interaction of Terminal Acetylenes with
Se, CSe2 and BuLi

4-Methylthio-5-(2-methoxycarbonylethylthio)-1,3-diselenole-2-selone 116a have been
prepared in high yields from methylsulfanyl acetylene 32e or 1-methylsylfanyl-1,2-dichloroe
thylene 114 by their lithyation with 1 or 2 equivalents of BuLi to result in lithium acetylenide,
followed by consequent reaction with elemental selenium and carbon diselenide, and finally
with methyl 3-thiocyanateproponate 115 [110] (Scheme 45).
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by action of elemental Se/CSe2 on lithum acetylenide generated from methylsulfanyl acetylene 32e
or 1-methylsylfanyl-1,2-dichloroethylene 114.

4,5-Alkylenedichalcogeno-substituted 1,3-diselenole-2-selones 116 have been prepared
in a similar way by a one-pot synthetic method, including the successive treatment of
trimethylsilylacetylene 32f with BuLi, Se, CSe2 and finally, α,ω-bis(chalcogenocyanato)alkanes
NCZ(CH2)nZCN (Z = S, Se; n = 1–3) 117 [111] (Scheme 46).
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Scheme 46. Synthesis of 4,5-alkylenedichalcogeno-substituted 1,3-diselenole-2-selones 116 from
trimethylsilylacetylene 32f under action of BuLi/Se/CSe2.

17. Introduction of Selenium into Organic Molecule via Carbanion

The treatment of the mesyloxymethyl-substituted β-lactams 118a–c with elemental
selenium and t-BuOK in THF/DMF led to the synthesis of the cis-configurated biolog-
ically active isodethiaselenapenam 119 as well as isodethiaselenacephems 120a,b [112]
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(Scheme 47). The key step of this synthetic approach involved the addition of Se to the
corresponding carbanions, followed by internal alkylation.
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18. Formation of Heterocycles with Se–El Bonds (El = B, Ge, P)
18.1. Formation of Heterocycles with Se–B Bonds

The treatment of annulated 1,4,2,5-diazadiborinine 121 with elemental selenium re-
sulted in the oxidative addition of selenium, which proceeded regioselectively at the boron
centers of diborine 121 to present a bicyclo [2.2.2] molecule 122 with a B–Se–Se–B unit,
which can be deemed a heavier analog of diboraperoxide [113] (Scheme 48).
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Scheme 48. Formation of bicyclo [2.2.2] system 122 by treatment of 1,4,2,5-diazadiborinine 121 with
elemental Se.

The reaction of diborene 123 with elemental selenium is shown to afford diboraseleni-
rane 124 [114] (Scheme 49). This reaction is reminiscent of the sequestration of subvalent
oxygen and nitrogen in the formation of oxiranes and aziridines; however, such reactivity is
not known between alkenes and the heavy chalcogens. Although carbon is too electronega-
tive to affect the reduction in elements with a lower relative electronegativity, the highly
reducing nature of the B–B double bond enables reactions with Se0.
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The reductive insertion of elemental selenium into the B–B triple bond of the first stable
diboryne 125 [115] under ultrasonic agitation has led to the synthesis of an Se-bridged cyclic
compound containing boron stabilized by N-heterocyclic carbene (NHC) 126. The three
pairs of bonding electrons between the boron atoms in the triply bonded diboryne enabled
a six-electron reduction reaction, resulting in a [2.2.1]-bicyclic system wherein bridgehead
B atoms are spanned by three selenium bridges [116] (Scheme 50). Unfortunately, no yields
have been reported for both compounds 124 and 126.
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Scheme 50. Insertion of elemental Se into B≡B bond of diboryne 125.

Reaction of silaborene, R2Si=B(tmp) (R = SiMeBu-t2, tmp = 2,2,6,6-tetramethylpiperidine)
127 with elemental selenium in THF afforded the novel three-membered ring product, sele-
nasilaborirane 128. In contrast, the oxidation of 127 under an O2 atmosphere produced the
four-membered ring, 1,3,2,4-dioxasilaboretane 129 [117] (Scheme 51). Compounds 128 and
129 were studied using XRD analysis.
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silaborene 127 as compared to oxidation leading to 1,3,2,4-dioxasilaboretane 129.

The treatment of the stable 1-phospha-2-boraacenaphthene 130 with elemental sele-
nium afforded the unique heterocycle, 2-selena-1-phospha-3-boraphenalene 131 through
the insertion of the selenium atom into a P–B bond of acenaphtene 130. Further selenation
of phenalene 131 led to 2-selena-1-phospha-3-boraphenalene-1-selenide 132 [118]. The
unique dynamic behavior of phosphine selenide 132 in solution was explained by facile
selenium exchange in the molecule (Scheme 52).

The carborane-fused heterocycles 134a–c were prepared in good isolated yield via the
reaction of carborane-fused zirconacyclopentane 133 with elemental selenium as well as
with sulfur and tellurium [119] (Scheme 53). This approach represents a promising route to
obtain functionalized carboranes that are difficult to access through conventional methods.
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18.2. Formation of Heterocycles with Se–Ge Bonds

The reaction of stable hafnocene-based bicyclo [2.1.1]hexene germylene 135 with
elemental selenium provides access to 1,3-diselena-2,4-digermetane 137a formed as a
87:13 mixture of cis- and trans-isomers (Scheme 54). This strongly colored four-membered
germanium heterocycle, which is the formal dimer of a heavy ketone 136, was characterized
via NMR and UV spectroscopy as well as the results of an XRD analysis [120]. The same
reactions were realized in the case of elemental sulfur and tellurium [120] (Scheme 54).

Alternatively, 2,2,4,4-tetrakis [2-(dimethylamino)phenyl]-1,3-diselena-2,4-digermetane
137d was prepared by the reaction of {tris [2-(dimethylamino)phenyl]germyl}lithium
(R3GeLi) 138 with elemental selenium [121] (Scheme 55). The crystal structure of this
heterocyclic compound has been determined by XRD analysis. The authors explained
the formation of 1,3-diselena-2,4-digermetane either by an intermediate generation of ger-
manselone and its intramolecular formal head-to-tail [2+2] cycloaddition or an intermolec-
ular nucleophilic attack of the selenide ion at the germanium atom of another molecule.
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137b and 1,3-dithia-2,4-digermetane 137c by action of elemental Se (Te, S) on hafnocene-based bicyclo
[2.1.1]hexene germylene 135.
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Scheme 55. Synthesis of 1,3-diselena-2,4-digermetane 137d by Se–Li exchange in triphenylgermyl
lithium 138.

The treatment of stable cyclic digermenes, 1,2-digermacyclobutene 139 and antiaro-
matic 1,2-digermacyclobutadiene derivatives 140, with elemental selenium yielded novel
[Ge2Se2/3Cx] heterocycles, 5,6-diselena-1,4-digermabicyclo [2.1.1]hexane 141, 5,6,7-triselena-
1,4-digermabicyclo [2.2.1]hept-2-ene (1,2,4,3,5-triselenadigermolane) 142 and 5,6-diselena-
1,4-digermabicyclo [2.1.1]hex-2-ene 143 (Scheme 56), which should be a convenient pro-
cedure for the preparation of the cyclic tetrel selenides [122,123]. These Ge-containing
polyselenide products were isolated and characterized using X-ray crystallography.

The formation of selenagermanium heterocycle via the selenation of C=Ge bond was
exemplified by the reaction of germabenzene 144a and 2-germanaphtalene 144b bearing
a Tbt group (Tbt = 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl) with elemental selenium
in THF, which resulted in the cyclization and formation of only cyclic triselenides, 1,2,3,4-
triselenagermolanes 145a and 145b [124] (Scheme 57). These new cyclic triselenides contain-
ing a germanium atom were characterized via NMR spectroscopy and elemental analysis.
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C=Ge bond.

18.3. Formation of Se–P Heterocycles via Insertion of Se into P=P and P–P Bonds

The reactions of P=P systems kinetically stabilized by 2,4,6-tris[bis(trimethylsilyl)
methyl]phenyl (Tbt) or 2,6-bis[bis(trimethylsilyl)methyl]- 4-[tris(trimethylsilyl)methyl]phenyl
(Bbt) groups—TbtP=PTbt 146a, TbtP=PFc (Fc = ferrocenyl) 146b [125] or BbtP=PBbt 146c [126]
—with elemental selenium in the presence of triethylamine, which resulted in the formation of
the corresponding selenadiphosphiranes 147 (Scheme 58). The molecular structures of these
three-membered heterocyclic compounds were confirmed by spectroscopic analysis.
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lenadiphosphinane 155, and WR 151 [132] (Scheme 60). The main products were 
five-membered diselenadiphospholane 153 and four-membered 
2-selena-1,3-diphosphetane 154b prepared from the compound 152 in 94% and 68% 
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Scheme 58. Synthesis of selenadiphosphiranes 147 by insertion of elemental Se into P=P bond.

The oxidative addition of elemental selenium to the homocyclic pentamer (PhP)5
in refluxing toluene afforded various five-membered P–Se heterocycles. By varying the
molar ratio of (PhP)5 to selenium, the different selenaphospholanes 148–150 as well as
the red crystalline solid 2,4-diphenyl-1,3,2,4-diselenadiphosphetan-2,4-diselenide, or the
so-called Woollins reagent (WR) 151, were prepared by this method [127–129] (Scheme 59).
Karaghiosoff and co-workers extended this oxidative route to other (RP)5 homocyclic
pentamers, R=Me, Et, 4-Me2NC6H4 and 4-MeOC6H4 [44,130,131].
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Scheme 59. Synthesis of selenaphospholanes 148–150 and Woollins reagent 151 by insertion of
elemental Se into P–P bond of homocyclic pentamer (PhP)5.

The oxidative addition of elemental selenium to tetraphospholanes (PhP)4CR2 152a,b
(R = H (a), Me (b)), prepared from (PPh)5 by a reduction with potassium to form the
phosphorus chain species, K2P4Ph4, and further by its cyclization with dichloromethane
and 2,2-dichloropropane, afforded 4-, 5-, and 6-membered heterocycles—2,3-diselena-1,4-
diphospholane 153, selenadiphosphetanes 154a and 154b, tetraselenadiphosphinane 155,
and WR 151 [132] (Scheme 60). The main products were five-membered diselenadiphos-
pholane 153 and four-membered 2-selena-1,3-diphosphetane 154b prepared from the com-
pound 152 in 94% and 68% yields, correspondingly. Six-membered tetraselenadiphosphi-
nane 155, WR 151 and four-membered 2-selena-1,3-diphosphetane 154a were formed only
in small quantities. Crystallographic analysis revealed a trans-configuration of exocyclic Ph
in the formed heterocycles 153 and 154b.
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18.4. Formation of Se–P Heterocycles through Interaction of Se with Methylenephosphorane

The reaction of tert-butylarylmethylenetriphenylphosphoranes R-p-C6H4C(t-Bu)=PPh3
(R = OMe, OPh) 156 with elemental selenium afforded the corresponding five-membered
1,2,4-triselenolanes 157 as trans-isomers, four-membered 1,3-diselenetanes 158 and
Ph3P=Se [133] (Scheme 61). Triselenolanes 157 were shown to in fact be formed from
the selenation of the 1,3-diselenetanes 158, which were the dimerization products of ini-
tially generated selenoketones.
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19. Formation of Heterocycles through Three- and Four-Component Reactions
Involving Elemental Selenium

Reactions involving the interaction of elemental selenium with organic substrates can
also be found among multicomponent reactions with selenium, since selenium in them
directly interacts with an organic intermediate.

2-Aryl-1,3-benzoselenazoles 161 have been formed in a selenium-mediated decar-
boxylative cyclization of 2-chloronitrobenzenes and chloronitropyridines 159, and aryl-
and hetaryl (pyridine and thiophene) acetic acids 160 under metal-free conditions using
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N-methylpiperidine (NMP) as a base (Scheme 62). The reactions proceeded in moderate-to-
good yields with good functional tolerance [134].

Inorganics 2023, 11, x FOR PEER REVIEW 28 of 38 
 

 

N-methylpiperidine (NMP) as a base (Scheme 62). The reactions proceeded in moder-
ate-to-good yields with good functional tolerance [134]. 

 
Scheme 62. Synthesis of 2-aryl-1,3-benzoselenazoles 161 by decarboxylative cyclization of 
2-chloronitrobenzenes and chloronitropyridines 159, and aryl- and hetaryl (pyridine and thio-
phene) acetic acids 160 in the presence of elemental Se. 

Another approach to preparation of 2-substituted 1,3-benzoselenazole derivatives 
161 consisted in (1) the three-component one-pot reactions of readily available 
2-iodoanilines 162, arylacetic acids 160 or arylmethyl chlorides 163, as well as selenium 
powder in the presence of CuBr in DMSO at 120 °C [135], or (2) in the three-component 
reactions of 2-iodoanilines 162, aromatic and heteroaromatic aldehydes 164, as well as 
elemental Se in DMSO at 120 °C in the presence of a Cu powder catalyst [136]. Substi-
tuted 1,3-benzoselenazoles 161 were prepared by these methods in moderate-to-high 
yields (Scheme 63). 

 
Scheme 63. Synthesis of 2-substituted-1,3-benzoselenazoles 161 by three-component reactions of 
2-iodoanilines 162, arylacetic acids 160, or arylmethyl chlorides 163, or aldehydes 164 and selenium 
powder. 

The three-component assembly of 1-substituted indoles 165, aromatic ketones 166 
and selenium powder were enabled by the IBr-promoted highly selective double C–H 
selenylation/annulations. This protocol provided a novel access to a diverse variety of 
selenopheno [2,3-b]indoles 167 with good efficacy and a broad functional group com-
patibility [137] (Scheme 64). However, with 2-aryl- and hetaryl-substituted indoles 165, 
the same three-component assembly afforded indolyl-substituted benzoselenophenes 56 
via the selective formation of one C–C and two C–Se bonds (Scheme 65). Acetophenones 
with both EWG and EDG were converted to the corresponding products [138]. The reac-
tion mechanism of these two reactions is based on the generation of a 3-vinylindole in-
termediate and oxidative dual CH selenylation. Annulation in the case of 2-unsubstituted 
indoles proceeds at the indole substituent, and in the case of 2-arylsubstituted indoles, at 
the aryl substituent of intermediate 3-vinylindole. 

Scheme 62. Synthesis of 2-aryl-1,3-benzoselenazoles 161 by decarboxylative cyclization of 2-
chloronitrobenzenes and chloronitropyridines 159, and aryl- and hetaryl (pyridine and thiophene)
acetic acids 160 in the presence of elemental Se.

Another approach to preparation of 2-substituted 1,3-benzoselenazole derivatives 161
consisted in (1) the three-component one-pot reactions of readily available 2-iodoanilines
162, arylacetic acids 160 or arylmethyl chlorides 163, as well as selenium powder in
the presence of CuBr in DMSO at 120 ◦C [135], or (2) in the three-component reactions
of 2-iodoanilines 162, aromatic and heteroaromatic aldehydes 164, as well as elemen-
tal Se in DMSO at 120 ◦C in the presence of a Cu powder catalyst [136]. Substituted
1,3-benzoselenazoles 161 were prepared by these methods in moderate-to-high yields
(Scheme 63).
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Scheme 63. Synthesis of 2-substituted-1,3-benzoselenazoles 161 by three-component reactions of
2-iodoanilines 162, arylacetic acids 160, or arylmethyl chlorides 163, or aldehydes 164 and selenium
powder.

The three-component assembly of 1-substituted indoles 165, aromatic ketones 166
and selenium powder were enabled by the IBr-promoted highly selective double C–H
selenylation/annulations. This protocol provided a novel access to a diverse variety of
selenopheno [2,3-b]indoles 167 with good efficacy and a broad functional group compat-
ibility [137] (Scheme 64). However, with 2-aryl- and hetaryl-substituted indoles 165, the
same three-component assembly afforded indolyl-substituted benzoselenophenes 56 via
the selective formation of one C–C and two C–Se bonds (Scheme 65). Acetophenones with
both EWG and EDG were converted to the corresponding products [138]. The reaction
mechanism of these two reactions is based on the generation of a 3-vinylindole intermediate
and oxidative dual CH selenylation. Annulation in the case of 2-unsubstituted indoles
proceeds at the indole substituent, and in the case of 2-arylsubstituted indoles, at the aryl
substituent of intermediate 3-vinylindole.
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Scheme 65. Synthesis of indolyl-substituted benzoselenophenes 56 by three-component reaction of
2-aryl- and hetaryl-substituted indoles 165, aromatic ketones 166 and elemental Se.

The base-promoted three-component cascade reaction of ortho-functionalized iso-
cyanides 168, secondary amines 169, and elemental Se in 1,2-dichloroethane (DCE) at room
temperature under metal-free conditions afforded 2-amino-3,1-benzoselenazines 170 in
high yields [139] (Scheme 66).
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Scheme 66. Synthesis of 2-amino-3,1-benzoselenazines 170 by three-component cascade reaction of
isocyanides 168, secondary amines 169 and elemental Se.

Alternatively, the three-component mixture of isocyanides 168, arylamidine hydrochlo-
rides 171 and elemental Se successfully reacted in the presence of N,N-diisopropylethylamine
(DIPEA) as an efficient base to present a series of 1,2,4-selenadiazol-5-amine derivatives
172 [140] (Scheme 67).
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Scheme 67. Synthesis of 1,2,4-selenadiazol-5-amine derivatives 172 by three-component reaction of
isocyanides 168, arylamidine hydrochlorides 171 and elemental Se.

Another three-component reaction of isocyanides 168, alk-2-yn-1-ols 173 and elemental
selenium afforded, in the presence of DBU, 2-imino-4-alkylidene-1,3-oxaselenolanes 175 in
high yields via the intramolecular addition of selenolate moieties of the generated in situ
oxyimidoyl selenoates 174 to the carbon–carbon triple bond (Scheme 68) [141].
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Scheme 68. Synthesis of 2-imino-4-alkylidene-1,3-oxaselenolanes 175 by three-component reaction of
isocyanides 168, alk-2-yn-1-ols 173 and elemental Se.

2-Substituted naphtho [2,1-d][1,3]selenazoles 178 and naphtho [1,2-d][1,3]selenazoles
179 were prepared in generally high yields for 178 and modest yields for 179 via efficient
molecular iodine-catalyzed three-component cascade reactions from naphthalen-2-amine
176 in a case of [1,3]selenazoles 178, and naphthalen-1-amine 177 in a case of [1,3]selena-
zoles 179, aldehydes 164 and selenium powder [142] (Scheme 69). This approach has the
advantages of metal-free conditions, simple operation and available raw materials. The
possible reaction mechanism involves the formation of imine intermediates and consequent
radical process triggered by iodine radicals.
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Scheme 70. Formation of zwitterionic azaselenadithiapentalene 182 by four-component reaction of 
(2-benzimidazolyl) acetonitrile 180, isothiocyanate 181, CS2 and elemental Se. 

Scheme 69. Syntheses of naphtho [2,1-d][1,3]selenazoles 178 and naphtho [1,2-d][1,3]selenazoles 179
by molecular iodine-catalyzed three-component cascade reactions from naphthalen-2(1)-amines 176
or 177, aldehydes 164 and elemental Se.

The four-component reaction of (2-benzimidazolyl) acetonitrile 180, CS2, isothio-
cyanate 181 and elemental selenium led to a zwitterionic azaselenadithiapentalene 182 [143]
(Scheme 70). The structure of the product has been established by XRD analysis. The pro-
posed reaction mechanism comprises the addition of the anion of 180 to CS2 to yield
intermediate A, which then reacts with selenium to result in intermediate B. The ring
closure of the latter to C, the addition of 4-bromophenyl isothiocyanate to present D and cy-
clization lead to the final product 182, via tautomerization and protonation. It is worthwhile
to mention that the same reaction with elemental sulfur results in tetracyclic [1,3]thiazolo
[4′,5′:4,5]pyrimido [1,6-a]benzimidazol-2(3H)-thione (Figure 1) [143].
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Scheme 70. Formation of zwitterionic azaselenadithiapentalene 182 by four-component reaction of
(2-benzimidazolyl) acetonitrile 180, isothiocyanate 181, CS2 and elemental Se.
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ebselen and its analogs from 2-halogenarylamides and selenium. 

For the synthesis of a selenium element-containing heterocycles, the introduction or 
addition of elemental selenium at El–El or C–El bond is mainly used, which distinguishes 
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20. Conclusions

In conclusion, metal-to-selenium exchange is the most widely used method for intro-
ducing selenium into the heterocycle molecules, with lithium being mainly used as the
metal, which is due to the ease of the starting organic compounds lithiation and the ease
of further lithium-to-selenium exchange. The synthesis of 1,3-diselenol-2-selones by the
interaction of terminal acetylenes with butyllithium, selenium and carbon diselenide can
be considered as a variant of this method.

For the construction of five-, six- and seven-membered unsaturated and saturated
selenacycles, the exchange of iodine, bromine or chlorine for selenium in a presence of CuI
or CuO is also often used. In particular, this method is utilized in the synthesis of ebselen
and its analogs from 2-halogenarylamides and selenium.

For the synthesis of a selenium element-containing heterocycles, the introduction or
addition of elemental selenium at El–El or C–El bond is mainly used, which distinguishes
this methodology from the preparation of C–selenium containing heterocycles, where
the introduction of selenium with carbon–carbon bond rupture, or the direct addition of
selenium at carbon–carbon bond is impossible.
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